FExcursions in Statistical History: Highlights

James Hanley
Dept. of Epidemiology, Biostatistics \& Occupational Health McGill University, Montréal, Québec, Canada

McGill University, Statistics Seminar
15:30-16:30 (Montreal time) March 17, 2023

Burnside Hall 1104
or via Zoom \boldsymbol{B} link
[Meeting ID: 83436686293 Passcode: 12345]

Possible Destinations

Galton	[$\$ 'Transmuting' women into men: Galton's family data on human stature & 2004 TAS \hline Gosset & \checkmark Student's z, t, and s: What if Gosset had R?	2008 TASJulien/Moodie
Gompertz Pearson Addison	\checkmark Cultural imagery and statistical models of the force of mortality	2010 JRSSA
Farr	[Age in plagues \& pandemics:medieval Dances of Death/Pearson's Bridge of Life	2010 SignificanceTurner
Wilson FDR Nixon	\checkmark Lest We Forget: U.S. Selective Service Lotteries, 1917-2019	2019 TAS
CTGosset CRutherford Erlang	The 'Poisson' Distribution: History, Reenactments, Adaptations	$\begin{aligned} & 2022 \text { TAS } \\ & B h a t n a g a r ~ \end{aligned}$

‘Transmuting' women into men: Galton's family data on human stature

‘Transmuting’ women into men: Galton's family data on human stature

[J webpage, containing

- Galton's 1884 letter to The Times thanking it for publicity, and announcing the prize winners in the 4 month 'crowd-sourcing' data-collection effort
- The American Statistician (TAS) Article
- Poster
- Shiny App to implement Galton's Height Forecaster
- Source of recovered data
- Images from Record of Family Faculties (album)
- Images of pages of Notebook with family data on height
- Datafile [csv]

SUMMARY

"Transmuting" women into men: Galton's data on human stature

The first two regression lines, and the first correlations, were calculated by
Francis Galton, in his work on heredity in sweet-peas and in humans. When Francis Galton, in his work on heredity in sweet-peas and in humans. When
'regressing' the heights of adule children on those of their parents. Galton 'regressing' the heights of adult children on those of their parents, Galton
had to deal with the fact that men are generally taller than women- but had to deal with the fact that men are generally taller than women- but
without modern-day statistical tools such as multiple regression and partial without modern-day statistical tools such as multiple regression and partial
correlation. This poster uses the family data on stature, which we oblained correlation. This poster uses the fami
(a) compare the sharpness of his methods, relative to modern-day
(a) compare the sharpness of his methods,
ones, for dealing with this complication;
(b) estimate the additional familial component of variance in stature estimate the additional familial component of varial
beyond that contributed by the parental heights.

Galton and Regression: An Introduction and Background

Galton defined regression as a reversion of a characteristic measured in offspring, away from the mean value of the same characteristic in their own parents, and away from the mean value of the same characteristic in their own parents, and
towards the mean value in all parents/offspring. In his "regression line" (see towards the mean value in all parentsoffspring. In his "regression line" (see
Figure below), "the Deviates of the Children are to those of their Mid-Parents Figure below), "the Deviates of the Children are to those of their Mid-Parents
as 2 to $3^{\text {" implying that "When Mid-Parents are taller than mediocrity, their }}$

Children tend to be shorter than they", and conversely.

The contours of equal frequency in the two-way frequency table (see right) led Galton to the correlation coefficient of the bivariate Gaussian distribution, From these, Karl Pearson developed a full treatment of correlation, multiple and partial. Pearson's early work relied on these family data, which "Mr. Galton, partial. Pearson's early work relied on these family data, which "Mr.
with his accustomed generosity", had placed at Pearson's disposal.

differvit groups of the returas.

A_{n} analysis of the records fill coods and the concluitions I obtained from the condirms and goes far beyonal the conclunions I obtained from tho noedr. It gives the numerical
value of the regrossion towards mediocrity in the case of human value of the regrossion towards mediocrity in the case of haman [ace Piato IX, fig. (a)], and it supplies me with the class of frets 1 wanted to investigate the degroes of family likeness in differvnt degrees of kinship, and the ntepm through which special family pecaliarities
race at large.
My data consisted of the heights of 930 adult children and of their rospeotive parontagos, 205 in number. In every caso I trans muted the female statures to their corresponding male equivalents and used them in their transmuted form, so that no objection
grounded on the sexual difference of statare need be raised when I grounded on the sexual difteronce of statare soce whe raised when I to adding a little less than one-twelfth to each fermale hegrght. It differs a very little from the factors employed by otber anthropologiste, who, moreover, differ a trifle between themselves; anybow,
it suits my dnta better than 1.07 or $1-09$. The final result is not of a kind to be affected by these minute details, for it happened that, owing to a mistaken direetion, the computer to whom I finst entrusted the figurea used a somewhat different factor, yet the rexult came out closely the same.

	Heate cos stas Civer												Teatroved		Malize
	newo		$\sec =$	$\log _{\infty \times 1}$						mimo			catm		
Tiate ...	$\stackrel{1}{4}$	7	m $\quad 1$	\% ${ }^{\text {a }}$	± 17	吅	150	14 \%	- 4	44	415	14	mm	$\%$	$\stackrel{ }{+}$
velum -	"		mosat	Tsa0	-arr	7040	mas ant	198100	20000	200 100	\% \cdot	\%	-	.	-

Two questions led me to pursue these same raw data which Galton placed at Pearson's disposal:

1. How would today's statisticians deal with the fact that men are generally taller than women?

Partialing out" the "effect" of sex; or "adjusting for sex in a regression model", is conceptually like adding so many inches to the height of each female, or subtracting this amount for each male. In Galton's analysis, "All female heights were multiplied by $1.08^{\text {" ; i.e., he "transmuted" them. I wished to test whether }}$ Galton's 'proportional' scaling is a more biologicallv appropriate adiustment

andivsis 1
"Transmuting" of Female Heights

Heights (in inches) of adult children in relation to their mid-parent beight. (a) each daughter's height 'as is' (b) daughte's height multiplied by 1.08 (c) 5.2 inches added to daughter's height.
Daughters' heights are shown in pink, and sons' in blue, symbols Ellipses (75%) are drawn Daughters heights are shown in pink, and sont
based on the observed means and covariances.
In all three panels, and in analyses for "Do Residuals Segregate along Family lines?", the
[Average Residual, in inches]

andixsis?
Do Residuals Segregate along Family Lines?

Distribution of within- and between-family residuals from simple linear regression, after Fisughters' heights have been multiplied by 1.08 , of offspring height on mid-parent height
Families listed left to right, in same order as in Galton's notebook.
Larger green dot the average residual for a family, multiplied by the square root of the number Of offspring in the family, so as to put all 205 averages on the same scale. Smaller brown doe oftspring). Marginal distributions shown on right. Boxplots show the $10 \mathrm{th}, 25$ th, 75 th and 90 th
percentile.
ICC $=19 \%$ ercentiles. ICC $=19 \%$

The 205 Families

NUMBERS OF.

Sons
Daughters
Sons + Daughters
NUMBERS FOR WHOM HEIGHI
REPORTED AS A NUMBER...
Sons
Daughters
Sons + Daughters
FREIMMINARY ANAIYSIS
Role of Stature in Marriage Selection

$$
\text { Table } 9 .
$$

Mamehan Smeotion is maphut to Statele

$\begin{gathered} \mathrm{s}, \mathrm{t} . \\ 12 \text { cancs. } \end{gathered}$		$\text { T., } \mathrm{t}$ $18 \text { cases. }$
$\begin{aligned} & 8, \mathrm{~m} \text {. } \\ & 25 \text { cases. } \end{aligned}$	M, m. 51 cames.	T., in. 28 casen.
$\begin{aligned} & \text { 8., s. } \\ & 0 \text { eases. } \end{aligned}$	$\begin{gathered} \text { M., s. } \\ 28 \text { cases. } \end{gathered}$	$\begin{gathered} \text { T., s. } \\ 14 \text { cases. } \end{gathered}$

Short and tall, $12+14=32$ cases Short and short, $\left.{ }^{9}\right\}=27$ cases.
Tall and tall, 18
We may therefore regurd the marriod folk as couples pleked out of the general We may therefore regurd the marriod folk ha couples picked out of the general
pmpalation at haphasard when applying the law of probabilities to heredity of ${ }_{\text {intatare. }}^{\text {prpalatio }}$
T,M,S = Tall/Medium/Short men;
$t, m, s=t a l l / m e d i u m / s h o r t$ women.

Plate IX.

'Student's z, t, and s: What if Gosset had R?

'Student's z, t, and s: What if Gosset had R?

webpage, containing

- TAS article, 2008
- Supplementary Figures, with results for finger length Expanded version, 2008, of Fisher's Derivation of pdf(s, xbar)
- Frequency table of heights [22 bins] \times finger-lengths [42 bins] of 3000 criminals, assembled by Macdonell (1901), and used in simulation by Student (1908)
- Excerpts from 'Student's' 1908 paper
- Gosset's 750 samples of size $n=4$
- Census of Ireland 1911: Return completed by (a) Gosset (b) JH's grandfather
- Presentations
- Statistical Society of Montreal \& 2008 SSC Annual Meeting
- Gosset Centenary (IBS/ISA) Dublin 2008
- 2017 SSC Annual Meeting ("Gosset: Guinness, simulations \& benefits of milk": video+lyrics)
- Photos
- 2008 unveiling of plaque to Gosset at Guinness Storehouse in Dublin
- IBS/ISA session at IBC2008

Gosset:

Guinness, simulations, and the benefits of milk

James A. Hanley

Department of Epidemiology, Biostatistics and Occupational Health, McGill University

Session In honour of Gosset's birthday Statistical Society of Canada Annual Meeting

Winnipeg, 2017.06.13
[30-min presentation via pre-recorded video

OUTLINE - 2017

- WILLIAM SEALY GOSSET \& HIS 1908 PAPER
- HIS SIMULATIONS: NOTEBOOKS
- FIRST (EXTRA-MURAL) T-TEST - 1912
- CRITIQUE: LANARKSHIRE MILK EXPERIMENT - 1931
- MESSAGES - 2017
(ㅅ) $>000: 53-1$

Gosset's introduction to his paper

"Usual method of determining the probability that μ lies within a given distance of \bar{x}, is to assume ..."

$$
\mu \sim N(\bar{x}, s / \sqrt{n})
$$

But, with smaller n, the value of s "becomes itself subject to increasing error."

Sampling distributions studied

$$
\bar{x}=\frac{\sum x}{n} ; \quad s^{2}=\frac{\sum(x-\bar{x})^{2}}{n} .
$$

"when you only have quite small numbers, I think the formula with the divisor of $n-1$ we used to use is better"
... Gosset letter to Dublin colleague, May 1907
Doesn't matter, "because only naughty brewers take n so small that the difference is not of the order of the probable error!"
... Karl Pearson to Gosset, 1912

$$
z=(\bar{x}-\mu) / s
$$

Three steps to the distribution of z

Section I

- Derived first 4 moments of s^{2}.
- Found they matched those from curve of Pearson's type III.
- "it is probable that that curve found represents the theoretical distribution of s^{2}." Thus, "although we have no actual proof, we shall assume it to do so in what follows."

Section II

- "No kind of correlation" between \bar{x} and s
- His proof is incomplete: see ARTICLE in The American Statistician.

Section III

- Derives the pdf of z :
- joint distribution of $\{\bar{x}, s\}$
- transforms to that of $\{z, s\}$,
- integrates over s to obtain $\operatorname{pdf}(z) \propto\left(1+z^{2}\right)^{-n / 2}$.

Sections IV and V

- .
- ..

Section VI: "Practical test of foregoing equations."

pdf's of s and z "are compared with some actual distributions"

Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically.

The material used was a correlation table containing the height and left middle finger measurements of 3000 criminals, from a paper by W. R. Macdonell (Biometrika, Vol. I, p. 219).

ON crininal anthropometry and the IDENTIFICATION OF CRIMINALS.

The measurements were written out on 3000 pieces of cardboard, which were then very thoroughly shuffled and drawn at random.

As each card was drawn its numbers were written down in a book, which thus contains the measurements of 3000 criminals in a random order.

Finally, each consecutive set of 4 was taken as a sample - 750 in all - and the mean, standard deviation, and correlation of each sample determined.

The difference between the mean of each sample and the mean of the population was then divided by the standard deviation of the sample, giving us the z of Section III.

This provides us with two sets of 750 standard deviations and two sets of 750 z's on which to test the theoretical results

2 of Gosset's notebooks (Pearson Collection, UCL)

FOR...

- Results of our simulations, 100 years later
- Description of remainder of 1908 article
- Fisher's geometric vision
- Fisher and Gosset, and transition $z \rightarrow t$
- Backpack \& Desktop Computers

SEE..

- SLIDES FROM LONGER VERSION OF TALK
- ARTICLE in The American Statistician
- http://www.biostat.mcgill.ca/hanley/Student

Gosset's rucksack computer: Triumphator A ser 43219

http://www.calculators.szrek.com/

Fisher's desktop computer: Millionaire Ser 1200

in the article
Cultural_imagery_and_statistical_models_of the_force of_mortality:Addison, Gompertz_and_Pearson.
Turner EL and Hanley JA. J. R. Statist. Soc. A (2010) 173, Part 3, pp. 483-499.
and in various presentations, e.g., presentation_by_JH_tothe Statistical Society of Montreal

BRIDGES OF LIFE -- after Addison, 1711

If your OS allows it, the following lifetables can be animated using the java app. This R code provides another (albeit slower) way:

* Sweden, Female, 1751-1851 (cohort)
frames/second: 1. 51525100 or ... screenshot
* England, Male, 1871-1880 (current)
frames/second: $1 \begin{array}{llllll}5 & \underline{15} \quad \underline{25} \quad \underline{100} \text { or screenshot or mov }\end{array}$
* France, 1895 (current) Male
* France, 1895-2004 (cohort) Male Female
* Switzerland, 1895-2004 (cohort) Male Female
* Canada, Female, 2000-2002 (current)
frames/second: $1.515 \quad 25100$ or ... screenshot
* PhD in Epidemiology \& Biostatistics (1970-2002)
frames/second: $\underline{5} \underline{25}$
\qquad

BRIDGES OF LIFE -- after Pearson, 1897

* England, Male, 1871-1880 (current)
frames/second: 1. 5 15 25 mov 100 500 mov 2500

Cultural imagery and statistical models of the force of mortality

Elizabeth L. Turner ${ }^{1}$ James A. Hanley ${ }^{2}$
${ }^{1}$ Medical Statistics Unit, Department of Epidemiology and Population Health
London School of Hygiene and Tropical Medicine
${ }^{2}$ Department of Epidemiology, Biostatistics and Occupational Health
McGill University

2010.11.19

In order of appearance...

- 1950-1976: hazard function and incidence density
- 1711: allegorical essay, non-mathematical
- 1825 \& 1832 : intensity/force of mortality
- 1897: imagery back to 1400 's; mixtures of pdf's
- 2009: computer animations

Force of mortality in The Vision of Mirza

The SPECTATOR.

Interdum Jpeciofa locis, morataque reete Fabula nuilius Veheris, fine pondere 8 -Artes Valdius oblettat popilum, melimfque maratur, Quam vorfus impes reram, magreq, canre. Hor.

Therflos Jas \%. stu

Poets' Corner http://1poet.org
Joseph Addison

Imagery in The Vision of Mirza

Allegorical essay

BRIDGE OF HUMAN LIFE

Multitudes of people passing over it

Passengers dropping through innumerable concealed trap-doors that...

- were set very thick at the entrance
- grew thinner towards the middle
- multiplied and lay closer together towards the end

Sept. 1, 1711

Gompertz’ 'Law’ of Mortality

" [his] paper [...] opened up a new approach to the life table. Previously, the table had been regarded as little more than a record of the number of persons surviving to successive integral ages out of a given number alive at an earlier age; Gompertz introduced the idea that I_{x} [the survival function] was a function connected by a mathematical relationship with a continuously operating force of mortality."

> P. F. Hooker. J. Inst. Actuaries (1965).

BENJAMIN GOMPERTZ. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Phil. Trans. R. Soc. London, 115. (1825), 513-583.

UK males 1871-1880 C’Addison, animated

Pearson's data: frequency distribution of age at death

Source: Pearson, K. (1897) The Chances of Death and Other Studies in Evolution. London: Arnold.

How Pearson fitted the 5-component mixture

The full 5-component mixture

PHATE IV。

Rendered by Pearson's wife, Maria Sharpe Pearson.
$\square \mathrm{JH}$ animation, 2009

EXCESS MORTALITY

1849 Cholera; 1918-19, 1957, 1968 Flu; 2020-COVID-19
$\boldsymbol{\pi}$ https://jhanley.biostat.mcgill.ca/Pandemics/

EXCESS MORTALITY

 1849 Cholera; 1918-19, 1957, 1968 Flu; 2020-COVID-19

 1849 Cholera; 1918-19, 1957, 1968 Flu; 2020-COVID-19}
$\boldsymbol{\pi}$ https://jhanley.biostat.mcgill.ca/Pandemics/
Cultural imagery and statistical models of the force of mortality:
Addison, Gompertz and Pearson
Turner EL and Hanley JA. J. R. Statist. Soc. A (2010).

Age in plagues and pandemics: medieval Dances of Death or Pearson's Bridge of Life?
E Turner and J Hanley, Significance, June 2010.

Age in medieval plagues and pandemics: Dances of Death or Pearson's bridge of life?

Death has long obsessed humanity. In times of plague and pandemic even more so. Medieval man saw four horse men of the apocalypse, and of them, Death by disease was gathering the greatest harvest. How randomly did he gather? And how random is the death toll in later pandemics? James Hanley and Elizabeth Turner look at Karl Pearson's visualisations of mortality.

In October 1347 a trading ship from the Crimea with its crew dead and dying drifted into a harbour in Sicily, and black rats leapt ashore. The European phase of the Black Death had begun.

At the time they called it the Great Mortality, subsequently the "Great Pestilence" or the "Great Plague". Today we call it the "Black Death" and consider it as perhaps the deadliest pandemic ever to have struck humanity.

In the countryside, peasants dropped dead in the fields; in towns, the sick died too fast for the

That indeed was how it was seen at the time. Paintings and woodcuts depicted the "Dance of Death" - Death as a skeleton indiscriminately carrying off old and young, rich and poor, kings and commoners. A good life, a healthy life, a clean-lived life was no protection: the medieval folk-conception was of Death as one who obeys no rule of time, of place, of age, of sex, or of household. Five hundred years later a young Karl Pearson (1857-1936) viewed two of the 67 images painted inside the roof of the Spreuer
indiscriminate this distribution should resemble the (pyramid-like) shape of the living population just before the plague - many young, fewer adults, and fewer still who had reached old age. Margerison and Knüsel ${ }^{6}$ found that the age-atdeath distribution of those buried in the Royal Mint site, London, a Black Death cemetery of 1349, "coincides generally with what one would expect from" an age-indiscriminate Death. But DeWitte and Wood ${ }^{7}$ compared the same skeletal remains with contemporary non-epidemic

DEATHS FROM CHOLERA England and Wales, 1849

Figure 1. The age-specific numbers of cholera deaths for the year 1849, based on Farr's report, are shown on the left. The age-specific average numbers of deaths due to all causes for the years 1845-1847, along with those for 1849, are shown on the right, and based on data available in the online Human Mortality Database ${ }^{12}$

Figure 2. Deaths from all causes in 1918, the peak year of the Spanish Flu pandemic, compared to 1917. In the case of Switzerland, and of women in England and Wales, the excess deaths are entirely due to disease, not war. Data from the Human Mortality Database ${ }^{12}$

Lest We Forget: U.S. Selective Service Lotteries, 1917-2019

James A. Hanley
Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada

Abstract

The United States held 13 draft lotteries between 1917 and 1975, and a contingency procedure is in place for a selective service lottery were there ever to be a return to the draft. In 11 of these instances, the selection procedures spread the risk/harm evenhandedly. In two, whose anniversaries approach, the lotteries were problematic. Fortunately, one (1940) employed a "doubly robust" selection scheme that preserved the overall randomness; the other (1969) did not, and was not even-handed. These 13 lotteries provide examples of sound and unsound statistical planning, statistical acuity, and lessons ignored/learned. Existing and newly assembled raw data are used to describe the randomizations and to statistically measure deviations from randomness. The key statistical principle used in the selection procedures in WWI and WW II, in 1970-1975, and in the current (2019) contingency plan, is that of "double"-or even "quadruple"robustness. This principle was used in medieval lotteries, such as the (four-month) two-drum lottery of 1569. Its use in the speeded up 2019 version provides a valuable and transparent statistical backstop where "an image of absolute fairness" is the over-riding concern.

ARTICLE HISTORY

Received June 2019
Accepted November 2019

KEYWORDS

Datasets; History;
Multiple-robustness;
Randomness; Teaching

1. Introduction

The draft lottery of 1917 was-in the words of the then US War Department Secretary Newton D. Baker-the "first application of a principle believed by many of us to be thoroughly democratic, equal and fair in selecting soldiers to defend the national honor abroad and at home." New statistical evidence presented below shows that the 1917-1918 lotteries were successful in spreading the risk/harm as evenhandedly as possible: no (identifiable a priori) subgroup bore more of the burden than would be expected.

We are now approaching the 50th anniversary of a December
an opportunity to consider the statistical ingredients for a fair process, and to examine the contingency procedure currently in place for a selective service lottery were there to be a return to the draft today.

These lotteries are big-ticket examples of sound and unsound statistical planning, lessons learned/ignored, and the central role of statisticians and statistical analyses. They also provide some interesting teaching perspectives. I begin with the meticulously planned "lower-tech" doubly robust lottery of 1917 and end with the also doubly robust but "high-tech" plan in place as of 2019. In between, I show the high resolution version of the 1940 lottery data. as well as a high-resolution nhotograph $\overline{\underline{E}}$ not widelv avail

Table 1. WW I and WW II lotteries.

Year	Age/born	Registration day	Millions registered	Lottery date	Numbers drawn, 1-	Duration (hr)
1917	$21-30$	June 5	10	July 20	10,500	16
1918	21^{*}	June 5	0.7	June 27	1200	2
1918	$18-45$	September 12	13	September 30	17,000	18
1940	$21-30$	October 16	16	October 29	9000	14
1941	21^{*}	July 1	0.75	July 17	800	2
1942	$20-45$	February 14-16	9	March 17	7000	13

*Had reached 21 since previous registration.

Figure 1. Scatterplots (A), conditional means (B), and observed and expected cell frequencies (C) based on raw data from WW I lotteries. Instead of using them to esti a p-value, the correlations in 1000 simulated lotteries were ranked from smallest (1) to largest (1000), and the reported rank of the observed correlation is its positi this array; thus a "rank" of 0 means that the observed correlation was smaller than all 1000 simulated correlations. The vertical ranges in (B) are the same as in (A), na 1 to 10,500 and 1 to 1200 , and the means are conditional on the " x " bins. The 5250 and 600 cells, respectively, used in (C) were formed by binning the x and y axes i so as to have rectangles ("cells") with a mean of 2 dots per cell (see cells formed using 1918 lottery data). O and E : Observed and expected frequencies, both summil 5250 or to 600 . E's and ranked goodness of fit (G.o.F) statistics are based on the 1000 simulated lotteries.

Figure 2. Scatterplots (A), conditional means (B), and observed and expected cell frequencies (C) based on raw data from the WW II lotteries. Explanations as in Figure 1. In (C) a "rank" of 1001 meas that the observed G.o.F statistic was larger than the 1000 simulated G.o.F statistics.

Figure 3. Drawing of the fourth number in the 1940 lottery by the (blindfolded) Secretary of the Navy, Frank Knox, with President Franklin Roosevelt (left) looking on. The image is licensed from http:www.alamy.com. The problems caused by the ad-hoc extension to the bowl used in 1917 are easily seen if one looks carefully at the capsules near the bottom of the bowl. Photographs of the drawings of the first and fourth numbers are also available at the Library of Congress: https://www.loc.gov/item/2012648302/ and https://www.loc.gov/item/2004671493/.

Figure 4. Scatterplots (A), conditional means (B), and observed and expected cell frequencies (C) based on raw data from the first three Vietnam War era lotteries. Explanations as in Figure 1. Each black dot in (B) is a mean $(y \mid x)$; each red dot is a mean $(x \mid y)$, the more commonly used conditioning in previous analyses of these data. (The 12 red means from the 1969 data were plotted as a bar graph in the New York Times.) The $12 \times 12=144$ cells in (C) are formed from the 2-way grid using x - and y-intervals of length $31,28(29), 30, \ldots, 31$. Expected numbers and ranks are based on 1000 simulated lotteries. The three datasets are provided in the article by Starr (1997), which also provides a valuable set of primary and secondary print sources.

Figure 5. Toy example illustrating the setup of, and a realization from, the "4 randomizations (R_{1} to R_{4}) and 2 drums" procedure used in the 1970-1975 draft lotteries. Randomizations R_{1} and R_{2} (see text) determined the order in which the birthdays and the call up numbers were placed in the 2 respective drums. Randomizations R_{3} and R_{4} determined the order in which they were drawn from them. The significance of the 8 birthdays is left for readers to determine.

Figure 6. In readiness for another Selective Service Lottery, https://www.sss.gov/ About/History-And-Records/Selective-Service-Lottery. The image is reproduced with the permission of the Selective Service System agency.

\square

The 'Poisson' Distribution:
History, Re-enactments, Adaptations

- Introduction
- Before 1900
- deMoivre 1718, and Poisson 1837
- Newcomb 1860
- Clausius to Bortkewitsch, 1858-1898
- Early 1900 s
- The Distribution of Objects in Space/Volumes, Gosset 1907
- Counting Events in Time, Rutherford-Geiger-Bateman 1910
- Poisson \leftrightarrow Exponential Distrn’s, Marsden-Barratt 1910-1911
- The Minimalist Derivation by Danish Engineer Erlang 1909
- Formal Entry | Reception | Warnings
- Soper 1914
- Objections: Whitaker, Student 1919, Keynes 1921
- "Extra-Poisson" Variation in Bacteriology: Fisher 1922
- Extra Variation in Human Counts: Erlang'09; Student'19
- An Early Extra-Poisson Model: Greenwood and Yule 1920
- A Broader View: Applications Involving Human Activities/Behavior
- Feller's '50 Story, Revised by More Recent "Bigger" Picture
- Avoiding "Fake Standard Errors"
- In Conclusion

