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OUTLINE

¢ An introduction to Stephen Stigler’s book The Seven Pillars
of Statistical Wisdom (and his 2 earlier books)

¢ The first of these pillars: ‘Aggregation’
¢ early instances of the sample mean in scientific work
* multi-parameter situations [briefly]
® some early error distributions

® how their ‘centres’ were fitted
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Why do we continue to ask: What is Statistics?

e Not a single subject.
* Has changed dramatically, from a profession that
e claimed such extreme objectivity that statisticians would
only gather data — not analyze them
® to a profession that seeks partnership with scientists in all
stages of investigation, from planning to analysis.
¢ Different faces to different sciences: in some applications,
* we accept the scientific model as derived from
mathematical theory; in others
® we construct a model that can then take on a status as firm
as any Newtonian construction.

* In some, we are active planners and passive analysts; in
others, just the reverse.



A unified discipline, even a science of our own?

¢ | will not try to tell you what Statistics is or is not.

e | will attempt to formulate seven principles, seven pillars
that have supported our field in different ways in the past
and promise to do so into the indefinite future.

¢ | will try to convince you that each of these was
revolutionary when introduced, and remains a deep and
important conceptual advance.



The 7 Pillars



Introduction

1 AGGREGATION From Tables and Means to Least Squares

2 INFORMATION Its Measurement and Rate of Change

3 LIKELIHOOD Calibration on a Probability Scale

4 INTERCOMPARISON Within-Sample Variation as a Standard

5 REGRESSION Multivariate Analysis, Bayesian Inference, and Causal Inference
6 DESIGN Experimental Planning and the Role of Randomization

7 RESIDUAL Scientific Logic, Model Comparison, and Diagnostic Display
Conclusion

Notes
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‘Aggregation’ / ‘Combination of Observations’ / ‘Taking a mean’ (simplest e.g.)

e An old idea, revolutionary in an earlier day — and still so
today, whenever it reaches into a new area of application.

e Given a no. of observations, you gain information by
throwing information away!

¢ A simple arithmetic mean discards the individuality of the
measures, subsuming them to one summary.

¢ |t may come naturally now in repeated measurements of,
say, a star position in astronomy. But in the seventeenth
century it might have required ignoring the knowledge that
the French observation was made by an observer prone to
drink and the Russian observation was made by use of an
old instrument, but the English observation was by a good
friend who had never let you down.

¢ Details of individual observations ‘erased’ to reveal a better
indication than any single observation could on its own.



Averages are many but they have a short history

The earliest clearly documented use of an arithmetic mean
was in 1635

Other forms of statistical summary have a much longer
history, back to Mesopotamia and nearly to the dawn of
writing.

Recent important instances of this first pillar are more
complicated. The method of least squares and its cousins
and descendants are all averages.

19th century: “ combination of observations.”



The taking of a mean of any sort is a rather radical
step in an analysis

e statistician is discarding information in the data;

¢ the individuality of each observation is lost:
® the order in which the measurements were taken
e the differing circumstances in which they were made,

® including the identity of the observer.



Examples

e 1860s: Pushback against Jevons’ Commodities Index

* 1874: Determining dimensions of solar system using
measurements during Transit of Venus
Are those made with different equipment by observers of
different skills at slightly different times at different places
like enough to be meaningfully averaged?

® Are successive observations of a star position made by a
single observer, acutely aware of every tremble and hiccup
and distraction, sufficiently alike to be averaged?

¢ In ancient and even modern times, too much familiarity
with the circumstances of each observation could
undermine intentions to combine them.

e Strong temptation to select one observation thought to be
the best, rather than to corrupt it by averaging with others
of suspected lesser value.



‘Funes the Memorious’
(Jorge Luis Borges 1942)

Ireneo Funes found after an accident that he could remember
absolutely everything. He could reconstruct every day in the
smallest detail, and he could even later reconstruct the
reconstruction, but he was incapable of understanding.

“To think is to forget details, generalize, make abstractions.

In the teeming world of Funes there were only details.”

Aggregation can yield great gains above the individual
components.

Funes was big data without Statistics.



THE ARITHMETIC MEAN



1. When was it first used to summarize a data set?
2. When was this practice widely adopted?

1 : may be impossible to answer.

2: seems to be sometime in the 17th century, but being more
precise about the date also seems intrinsically difficult.

To better understand the measurement and reporting issues
involved, let us look at an interesting example, one that
includes what may be the earliest published use of the phrase
“arithmetical mean” in this context.



§ Article Talk Read Edit View history
\
. Magnetic declination
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Magnetic declination or variation is the angle on the horizontal plane between magnetic
north (the direction the north end of a compass needle points, corresponding to the
direction of the Earth's magnetic field lines) and true north (the direction along a meridian
towards the geographic North Pole). This angle varies depending on position on the
Earth's surface, and changes over time.

Somewhat more formally, Bowditch defines variation as “the angle between the magnetic
and geographic meridians at any place, expressed in degrees and minutes east or west to
indicate the direction of magnetic north from true north. The angle between magnetic and
grid meridians is called grid magnetic angle, grid variation, or grivation.”]

By convention, declination is positive when magnetic north is east of true north, and
negative when it is to the west. /sogonic lines are lines on the Earth's surface along which
the declination has the same constant value, and lines along which the declination is zero
are called agonic lines. The lowercase Greek letter & (delta) is frequently used as the
symbol for magnetic declination.

The term is i used loosely to mean the same as magnetic
declination, but more correctly it refers to the error in a compass reading induced by
nearby metallic objects, such as on board a ship or aircraft.

Magnetic declination should not be confused with magnetic inclination, also known as

&

Example of magnetic declination
showing a compass needle with a
"positive" (or "easterly") variation from
geographic north. Ny is geographic or
true north, Ny, is magnetic north, and &
is magnetic declination


https://en.wikipedia.org/wiki/Magnetic_declination
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His 11° 15" does not correspond to any modern
summary measure

e |tis smaller than the mean, median, midrange, and mode.

e |t agrees with the value for 22° elevation, and could have
been so chosen — but then why also give 11°20’, the figure
for 23° elevation?

e Or perhaps he rounded to agreement with “one point of the
compass,” that is, the 11° 15’ distance between each of the
32 points of the compass?

® Regardless, it is clear Borough did not feel the necessity
for a formal compromise.
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His “meane” is not the arithmetic mean of all 11; that would be 4°5’

® Instead he gives the mean of the largest and smallest:
what later statisticians would call a midrange

e As such it is not remarkable. While it is an arithmetic mean
of two observations, there is scarcely any other way of
effecting a compromise between two values.

e There were in fact several earlier astronomers who had
done this or something similar when confronted with two
values and in need of a single value - certainly Brahe and
Johannes Kepler in the early 1600s, and possibly al-Biruni
ca. 1000 CE.

e What was new with Gellibrand’s work was the terminology
— he gives a name to the method used. The name had
been known to the ancients, but, as far as is now known,
none of them had felt it useful or necessary to actually use
the name in their written work.



Sign that statistical analysis of observations had entered into a new phase:

short note in the Transactions of the Royal Society in 1668

Ol'}trv(d June 3 1668,

.Sun sﬂbfcr\r'd Magne- | Suns
Arirude. ! tica true Wcﬁer-
| Azimuch.Azimuathy ly.
"Gr.l M.Gr._M.Gr, MJG. M.
2072 c070 381 22
308 <078 24t 36
e 90,9'0 oc88 261 34
27 4395 0093 36| 24
23 :oltog oojtor 23fx 23

“In taking this Table [ Captain Sturmy] notes the greatest

distance or difference to be 14 minutes; and so taking the mean
for the true Variation, he concludes it then and there to be just 1
deg. 27 min. viz. June 13 1666



While the true mean is 1 deg. 27.8’ and Captain
Sturmy (or mathematician Staynred) rounded down

¢ |tis in any event clear that the arithmetic mean had arrived
by the last third of that [17th] century and been officially
recognized as a method for combining observations.

* The date of birth may never be known, but the fact of birth
seems undeniable.



Example: land surveying in the early 1500s

e The basic unit of land measure in those times was the rod,
defined as 16 feet long.

¢ And in those days a foot meant a real foot, but whose foot?

e Surely not the king’s foot, or each change of monarch
would require a renegotiation of land contracts.



Simple and elegant solution reported by Kébel

e “Stand at the door of a church on a Sunday and bid 16
men to stop, tall ones and small ones, as they happen to
pass out when the service is finished;

¢ then make them put their left feet one behind the other,
and the length thus obtained shall be a right and lawful
rood to measure and survey the land with,

¢ and the 16th part of it shall be the right and lawful foot.”



— It was truly a community rod!
— Functionally, it's the arithmetic mean of the 16 individual feet,
— but nowhere was the mean mentioned. [cf. *havaria’ in marine insurance]



COMBINATION OF OBSERVATIONS

(Multiparameter applications)



{a, B, 0} —Mayer, 1750

Table 1.1. Mayer’s twenty-seven equations of condition, derived froi
observations of the crater Manilius from 11 April 1748 through 4 }

Eq. no. Equation
1 f—13°10" =+0.8836c — 0.4682a sin §
2 B—13°8" =+0.9996c — 0.0282c sin €
3 f—13°12"=+0.9899c: + 0.1421 e sin &
4 f—14°15" = +0.2221a + 0.9750c sin §
5 B— 14°42" = +0.0006¢ + 1.0000c sin 6
6 p—13°1" =+0.9308x — 0.3654c sin 0
7 £—14°31" =+0.0602c + 0.9982a sin 0
8 f—14°57 =~0.1570a + 0.9876a sin 0
9 p—18°5" =+0.9097a — 0.4152c sin 6
10 B—13°2" =+1.0000c + 0.0055a sin 6
11 p—13°12' =+0.9689c + 0.2476c sin 6
12 B—13°11"=+0.8878a + 0.4602¢ sin 0
13 p—13°34" =+0.7549c + 0.6558a sin 6
14 f—13°53" =+0.57550 + 0.8178a sin 6
15 B —13°58" = +0.3608c + 0.9326c sin §
16 f—14°14' =+0.1302c + 0.9915¢ sin §
17 B—14°56" =—0.1068cx + 0.9943a sin 0
18 f—14°47 =—0.3363c + 0.9418a sin 6

19 B— 16°56’ =—0.8560c + 0.5170a sin 6
20 A —18°29" = +0.8002cx + 0.5997cx sin 6

21 B — 15°55" = —0.99520 — 0.0982cx sin 6
22 B—15°39" =—0.8409c + 0.5412a sin &
23 B—16°9’ =—0.94290 + 0.3330a sin 6
24 B—16°22" =—0.9768c + 0.2141a sin 6
25 B—15°38’ =—0.62620 — 0.7797a sin §
26 B —14°54' =—0.4091c — 0.9125¢ sin 6
27 B—13°7" =+0.9284c — 0.3716a sin 6

Source: Mayer (1750, p. 153).
Note: One misprinted sign in equation 7 has been corrected.



Table 1.1. Mayer’s twenty-seven equations of condition, derived from
observations of the crater Manilius from 11 April 1748 through 4 March 1749.

Eq. no Equation Group
1 £—13°10" =+0.8836 — 0.4682a¢ sin 8 I
2 p—13°8" =+0.9996c — 0.0282c sin 1
3 f—13°12" =+0.9899x + 0.1421a sin 6 I
4 f—14°15" = +0.2221 + 0.9750c sin 6 jits
5 B — 14°42’ = +0.0006¢ + 1.0000c sin & 1L
6 p—13°1" =+0.9308x —0.3654 sin § 1
7 B—14°31" =+0.0602 + 0.9982« sin 0 1iI
8 p—14°57"=—0.1570c + 0.9876« sin & 1
9 p—18°5" =+0.9097c — 0.4152a sin 6 1

10 p—13°2" =+1.0000c + 0.0055a sin & 1
11 f—18°12' = +0.9689x + 0.2476a sin § 1
12 p—13°11' =+0.8878c + 0.4602a sin & 1
13 B—13°34" = +0.7549a + 0.65580: sin & 111
14 B—13°68" =+0.57550 + 0.8178a sin 6 1
15 £ —13°58' =+0.3608c + 0.93260 sin 6 111
16 B—14°14' = +0.1302a + 0.99150 sin 6 111
17 —0.1068a + 0.9943¢ sin 6 111
18 —0.3363a + 0.9418a sin 6 1L
19 B — 15°66’ =—0.8560c + 0.5170a sin 6 11
20 A—13°29' =+0.8002a + 0.5997¢ sin 6 111
21 B —15°55" =—0.9952a — 0.0982¢: sin 6 iI
22 B—15°39’ = —0.8409c + 0.5412a sin 6 11
23 B—16°9" =—0.9429a + 0.3330c sin 6 11
24 p—16°22"=~-0.9768c + 0.214 1 sin 0 i
25 B—15°38" =—0.6262a — 0.7797cx sin 6 I
26 B —14°54' =—0.4091c — 0.9125 sin § I
27 B—13°7" =+0.9284c — 0.37160 sin 6 1

Source: Mayer (1750, p. 153).

Note: One misprinted sign in equation 7 has been corrected.



The Earth is not perfectly spherical

Figure 1.3. A side view of an exaggeratedly oblate earth, illustrating the
lengthening of degrees of arc toward the pole. The meridian quadrant AB is
broken into nine segments, each of 10° latitude. (Based upon Berry, 1898, p.
277.)



1755

Table 1.4. Boscovich’s data on meridian arcs. “y” “X”
Arc length Boscovich’s
Location Latitude (6) (toises) sin? 6 X 104
(1) Quito 0°0’ 56,751 0
(2) Cape of Good Hope 33°18’ 57,037 2,987
(3) Rome 42°59’ 56,979 4,648
(4) Paris 49°23" 57,074 5,762
(5) Lapland 66°19’ 57,422 8,386

Source: Boscovich and Maire (1755, p. 500). Reprinted in Boscovich and Maire (1770,
p. 482). =

Note: Arc lengths are given as toises per degree measured, where 1 toise = 6.39 feet.
The value for sin? § X 10* for the Cape of Good Hope is erroneous and is evidently based
on 33°8’. The correct figure would be 3,014.

where he followed in a Newtonian tradition of giving geometric descrip-
tions rather than analytic ones.® It will be easier, however, to relate Bosco-
vich’s different efforts to later work if we adopt an analytic formulation
from the beginning. In analytic terms, Boscovich was faced with the equiv-
alent of five observational equations,

a=ztysin?6,  E[YIX]=A+BX

where g;and 6; are the length of an arc (in toise per degree, 1 toise = 6.39
feet) and the latitude of the midpoint of the arc, both at location i. The
unknowns yand z are, respectively, the excess ofa 1° arcat the pole over
‘one at the equator and the length of a degree at the equator. A




1793: 1 metre = 10,000,000th part of the meridian quadrant

D
5 Figure 17.1
The French meridian arc, through
Dunkirk (D), the Pantheon (P)
E in Paris, Evaux (E), Carcassone (C),
and Barcelona (B).
C
B
2=

Figure 17.2

A meridian quadrant, from
the Equator (E) to the North
Pole (N), showing an arc
segment of d degrees latitude
and length § modules, centered

at latitude L.




NOUVELLES METHODES
POUR LA DETERMINATION

DES

ORBITES DES COMETES;

PAR A. M. LEGENDRE,

Membre de PInstitut et de la Légion d’honneur, de la Société
royale de Londres, &c.

A PARIS,

Chez Firmin DIDOT, Libraire pour les Mathématiques , la Marine,
PArchitecture , et les Editions stéréotypes , rue de Thionville, n° 116.

AN xI1T — 1805,



APPENDICE.

- Sur la Méthode des moindres quarrés.
_

Daxs 1a plupart des questions ot il s’agit de tirer des mesures
données par 'observation , les résultats les plus exacts qu’elles
peuvent offrir, on est presque tonjours conduit 4 un systéme
d’équations de la forme

E=a+bx+cy+fz+&c.
dans lesquelles e, 4, c, f> &c. sont des coéfficiens connus ,
qui varient d’'une équation a autre, et x, ¥, z, &ec. sont des
inconnues qu’il faut délerminer jpar la condition que la valeur

de E se réduise, pour chaque équation, 4 une quantité ou nulle
ou trés-petite.
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D.xs la plupart des questions ou il s’agit de tirer des mesures
données par I'observation , les résultats les plus exacts qu’elles
peuvent offrir, on est presque tonjours conduit &4 un systéme
d’¢quations de la forme

E—_—a+bx+cy+fz+&c.
dans lesquelles @, b, ¢, £, &c. sont des coéfficiens connus s
qui varsent d’'une équation a lautre, et x, 5, z, &c. sont des
inconnues qu’il faut déterminer par la condition que Ia valeur
de E se réduise, pour chaque équation, 4 une quantité ou nulle
ou tres-pelite.

Si l'on a aulant d’équations que d’inconnues «, y, z, &ec.
il 1’y a aucune difficulté pour la détermination de ces incon-
nues, et on peut rendre les erreurs E absolument nulles. Mais
le plus souvent, le nombre des équations est supérieur a
celal des inconnues, et il est impossible d’anéantir toutes les
erreurs.



Dans cette circonstance , qui est celle de la plupart des pro-
blémes pliysiques et astronomiques, ou Yon cherche & déter-
miner quelques €lémens importans, il enltre nécessairement de
Parbitraire dans la distribution des erreurs, et on ne doit pas
s’attendre que toutes les hypothéses conduiront exactement anx
mémes résultats ; mais il faut sur-tout faire en sorte que les
erreurs extrémes, sans avoir égard & leurs signes, soient ren-
fermées dans les limites les plus étroiles qu’il est possible.

De tous les principes qu’on peut proposer pour cet objet,
je pense qu’il n'en est pas de plus général, de plus exact, ni
d’une application plus facile que celui dont nous avons fdlt
usage dans les recherches précédentes, ct qui consiste & rendre

minimum la somme des quarrés des erreurs. Par ce moyen, il
s’établit entre les erreurs unc sorte d’ équilibre qui empéchant
les extrémes de prévaloir, est trés-propre a faire connoitre
Pétat du systéme le plus proche de la vérité.




Lieu ) Arcs compris
: Sa latitude. . L'+ L
deobservation. exprimés enmodules.|
Dunkerque ...:.. 51° 2’ 10" 50 N .
DP 62472.59 }2°11"20"95/99°53' o”
Panthéon 2 Paris{48 50 49.75 '
, PE 76145.74 |2 40 7.25195 1 32
EvauX.enal46 10 43.50
EC  84424.55 |2 57 48.10{89 23 3
Carcassonne.....]43 12 54.40 ‘ 7 9 7
. . : CM 52749.48 84 33 3
Montjouy ........ 41 21 44 8o . 434 39




EARLY ERROR DISTRIBUTIONS

(and how their ‘centres’ were fitted)



3 discrepant observations




Various estimates of ‘Centre’ of 3 discrepant observations
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1778
DANIELE BERNOVLLI. “The most probable choice between
several discrepant observations and the formation therefrom of
the most likely induction”



After preliminaries re. choice of the radius of the controlling circle M L Crlterlon

® it remains to determine the position of the controlling circle, since it is at the
centre of this circle that the several observations should be deemed to be, as it
were, concentrated.

® The aforesaid position is deduced from the fact that the whole complex of
observations would occur more easily, and therefore more probably, for
this location than for any other position of the circle.

® We shall have the true degree of probability for the whole complex of
observations if we note the probability corresponding to the several observations
that have been carried out and multiply all the probabilities by each other.

® Then the product of the multiplication is to be differentiated and the differential
put = 0. In this way we shall obtain an equation whose root will give the distance
of the centre from any given point.

The common rule gives § = 0.4. Let us see the new one which
to my mind is more probable, and let us put r = 1. The
following purely numerical equation results

1.92 — 0.320 — 12.9602 + 4.646° + 120* — 6x0° = 0,

the solution of which is approximately § = 0.44, which exceeds
the commonly accepted value by more than a tenth.
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Daniel Bernoulli’s 1769 manuscript, studied by Stigler
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Figure 16.1 Daniel Bernoulli’s manuscript drawing of his semicircular curve describing the frequency of errors, and

showing the first two iterations of his procedure which used that curve to take a weighted average of the
observations depending upon their distance from the previously determined average.



Bernoulli 1769: Robust (M-)Estimation of a Location Parameter, Huber 1964
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MEMOTRE
LA PROBABILITE DES CAUSES

PAR LES EV

Mémoires de IAcadeimic royale des Sciences de Paris (Savants trangers),
Tome VI, p. G215 1774 .

L
1.

La théorie des hasards est une des partics les plus curicuses et les
plus délicates de I'Analyse, par la finesse des combinaisons qu'elle

ge et par la difficulté de les soumettre au caleul; celui qui parait
I'avoir traitée avee le plus de succes est M. Moivre, dans un excellent
Ouvrage qui a pour litre : Theory of chances; nous devons i cet habile
géometre les premieres recherches que I'on ait faites sur

Légration
des équations différenticlles aux différences finies; la méthode qu'i
imaginée pour cet objet est fort ingénicuse et il I'a

a
res heurcusement
appliquée a la solution de plusicurs problemes sur les Probabilités; on
gé
cette matiere est indireel. Les équations aux différences finies sont
susceplibles des mémes considérations que celles aux difl¢
ment petites, ct doivent étre traitées d’une maniere analogue

doit convenir cependant que le point de vué sous lequel il a env

nces inli-

seule dilférence qui s'y rencontre est que, dans le eas des dilférences
infiniment petites, on peut négliger cert

nes quantités qu'il n’est pas

(') Par M. de la Place, Professeur a I'Ecole royale militaire.

Memoire on the Probability of the Causes of Events
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The True Title of Bayes's Essay

Stephen M. Stigler

Abstract. New evidence is presented that Richard Price gave Thomas
Bayes’s famous essay a very different title from the commonly reported
one. It is argued that this implies Price almost surely and Bayes not
improbably embarked upon this work seeking a defensive tool to combat

David Hume on an issue in theology.

Key words and phrases: Thomas Bayes, Richard Price, Bay

rem, history.

Monday 23 December 2013 is the 250th anniver-
sary of the date Richard Price presented Thomas
Bayes’s famous paper at a meeting of the Royal So-
ciety of London. The paper was published in 1764 as
part of the 1763 volume of the Philosophical Trans-
actions of the Royal Society, with the block of print
shown in Figure 1 at its head. In December 1764
Richard Price read a follow-up paper with himself
as author (Figure 2); it was published in 1765 as
part of the volume for 1764. All modern readers have
taken these article heads as the titles of the papers;
the first as “An Essay toward solving a Problem in
the Doctrine of Chances;” the second as “A Demon-
stration of the Second Rule in the Essay toward the
Solution of a Problem in the Doctrine of Chances.”
But Richard Price (and perhaps Bayes as well) had
very different titles in mind.

At that time, it was the occasional practice of the
Royal Society to supply authors with offprints of
published papers, generally before the appearance of
the printed volume, based upon the same print block

[ 370]
quodque folum, certa nitri figna prabere, fed plura
concurrere debere, ut de vero nitro producto dubium
non relinquatur.

LII. An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
My Bayes, F.R.S. communicated by Mr.
Price, in @ Letter 1o John Canton, 4. M.
F.R.S.

Dear Sir,

Resd Dec. 23, T Now fend you an effay which T have

1758 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.
Experimental philofophy, you will find, is nearly in-
terefted in the fubject of it; and on this account there
feems to be particular reafon for thinking that a com-
‘munication of it to the Royal Society cannot be im-

Bopes < = e

FiG. 1. The heading for Bayes (1764)



MM B T Hi-00. D

OF CALCULATING
. THE EXACT PROBABILITY
O F

All Conclufions founded on Inpuction.

By the late Rev. Mr. Tromas Baves, F.R. S,

Csmmunicated to the Royal Socicty in a Letter to

JOHN CANTON, MAFRS
AND
Publifhed in Vol. LIIL of the Philofophical Tranfations.

With an APPENDIX by R.Price.

Read at the ROYAL SOCIET Y Dec. 23, 1763

LONDON:
Printed in the Year M.DCC.LXIV,

Fi1G. 3. The title page from the offprint of Bayes (1764).

Source: Watson (2013).



Memoire on the Probability of the Causes of Events

PRINCIPLE: If an event can be produced by a number n of different
causes, the probabilities of these causes given the event are to each
other as the probabilities of the event given the causes, and the
probability of the existence of each of these is equal to the probability
of the event given that cause, divided by the sum of all the
probabilities of the event given each of these causes.

® problem I: If an urn contains an infinity of black and white tickets in an unknown ratio, and we draw p + q
tickets from it, of which p are white and g are black, then we require the probability that when we draw a

new ticket from the urn, it will be white.

® problem II: Two players A and B, whose respective skills are unknown, play some game, for example piquet,
where the first player to win a number n points receives a sum a deposited at the beginning of play. |
suppose that the two players are forced to abandon play with player A lacking f points and player B lacking

g points. In this situation, we ask how we should divide the sum a between the two players.

e Problem lll: Determine the mean that one should take
among 3 given observations of the same phenomenon.



Mémoire sur la probabilité des causes par des
événements

PriNcIE. — St un céeénement peat étre produit par un nombre n de
causes differentes, les probabilites de Uexistence de ces causes prises de
U'événement sont entre elles comme les probabilites de Uéeénement prises
de ces causes, et la probabilité de Uexistence de chacune d’elles est égale a
la probabilité de I'événement prise de cette cause, divisée par la somme de

toutes les probabilite's de U'éeénement prises de chacune de ces causes.



Prosuiye I. — St une urne renferme une infinité de billets blancs ct
noirs dans un rapport inconnu, et que l'on en tire p + q billets dont P
sotent blancs et q sotent noirs; on demande la probabilité qi'en tirant un

nouveau billet de cette urne il sera blanc.

Propievk I, — Deux jouewrs \ et B, dont les adresses respectives sont
inconnues, jouen! @ un jeu quelconque, par exemple au piquet, @ cette
condition que celui qui, le premier, aura gagne le nombre n de parties,
obtiendra une somme a déposée au commencement du jeu; je suppose que
les deux joueurs sotent forcés d’abandonner le Jew, lorsqu’d manque
S parties au joueur A, et | parties au joueur B; cela posé, on demande

comment on dott partager la somme a entre les deux: joucurs.



Prorrene I, — Déterminer le milicu que Uon doit prendre entre trots

observations donnces d’un méme phénomenc.
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Suppose now (Figure 1) that the true instant of the
phenomenon is at the point V, at the distance x from
the point a. The probability that the three observa-
tions a, b, and ¢ deviate by the distances Va, Vb, and
Ve will be ¢(x) - ¢(p — x) - ¢o(p + g — x). If we
suppose the true instant were at the point V' and that
aV’ = x’, then this probability would be = ¢(x") -
d#(p—x') - ¢(p+ q— x’). It follows then from our
fundamental principle of section II that the probabil-
ities that the true instant of the phenomenon is at the
points V or V', are to each other as ¢(x) - ¢(p — x) -

_o(ptag—x):dx") - d(p—2x") - ¢(p+qg—=x'). Thus

if we construct a curve HOL with the equation y =
d(x) - ¢(p — x) - ¢(p + g — x), the ordinates of this
curve would represent the probabilities of the corre-
sponding points on the abscissa.




blll)pos‘)“s mamwenant (/. 1) que 1¢ verianic mstue au pueno-
méne soit au point ¥V, i la distanee a2 du point a; la probabilité que les

trois observations «, & ¢l ¢ s'écarteront anx distanees Vo, Vb et Ve
sera

le)g(p—)z(p-+q—r);
et, si nous supposons le véritable instant au point V', en sorte que
aV'=a’, celte probabilité sera

oo (p—2No(p-+qg—2')

d'oir il résulte, par notee principe fondamental de PArticle 1, que les
probabilités que le véritable instant du phénomene est anx points V
ou V' sont entre clles comme

w()g(p—o)yp(p+qg—x)ig(x)e(p—a)o(p--q—2').

Si donc on construit une courbe 1OL, dont I'équation soit

y=9(2)g(p—x)o(p+q—2),
les ordonnées de cette courbe pourront représenter les probabilités des
points correspondants de I'abscisse. Cela posé :



In seeking the mean that we should choose among
many observations, there are two objects we may have
in mind.

The first is the instant such that it is equally prob-
able that the true instant of the phenomenon falls
before it or after it. We can call this instant the mean
of probability. Median

The second is the instant that minimizes the sum
of the errors to be feared multiplied by their probabil-
ities. We can call this the mean of error or astronomical
mean, since it is that which astronomers should give
preference to.

To find the first mean, it is necessary to determine
the ordinate OV which divides the area of the curve
HOL in two equal parts, since then it is clearly as
probable that the true instant of the phenomenon falls
to the right as to the left of the point V.

To find the second mean, it is necessary to choose
(Figure 3) a point V on the abscissa such that the sum
of the ordinates of the curve HOL, multiplied by their
distance from the point V, is a minimum. Now I claim
that the second mean differs not at all from the first.




ar le milieu que I'on doit choisir entre plusicurs observations, on

R . 5 - ap a -ncd - , i PR Y
peut entendre deux choses qu'il importe également de considérer.

La premiere est P'instant tel qu’il soit également probable que le
véritable instant du phénomene tombe avant ou apres; on pourrait ap-
peler cet instant milicu de probabilite.

~La scconde est I'instant tel qu’en le prenant pour milieu, la somme
des errears i craindre, multipli¢es par leur probabilité, soit un mini-
mum; on pourrait Vappeler miliew d’erreur ou milieu astronomique,

comme élant celui auquel les astronomes doivent s'arvéter de préfe-
rence. .



Pour avoir le premicr milieu, il faut déterminer I'ordonnée OV, qui
divise I'aire de la courbe IIOL en deux parties égales; cav il y a visi-
blement alors autant de probabilité que le véritable instant du phéno-
méne tombe a droile comme a gauche du point V.

Pour avoir le second milieu, il faut choisir (fig. 3) un point V sur

Fig. 3.
0o
'/l' \'.

[} Yu - n

I'abscisse, tel que la somme des ordonnées de la courbe 1OL, multi-
plices par leurs distances a ee point V, soit un minimum. Or je dis que
ce second milieu ne differe point du premier. Pour le faire voir, me-

nons Lordonnee ow, infiniment pl'ochc de OV. Soient




Laplace’s (First) Error Distribution

differences, it follows that we must, subject to the
rules of probabilities, suppose the ratio of two infi-
nitely small consecutive differences to be equal to that
of the corresponding ordinates. We thus will have

do(x + dx)  ¢(x + dx)

do(x) ¢
Therefore
do(x) _
dx - m¢(x)9

which gives ¢(x) = Ce™™*. Thus, this is the value that
we should choose for ¢(x). The constant C should be
determined from the supposition that the area of the
curve ORM equals unity, which represents certainty,
which gives C = Yem. Therefore ¢(x) = (m/2)e ™, e
being the number whose hyperbolic logarithm is unity.



With m fixed, ‘MEDIAN OF POSTERIOR’ Estimator:

less than q. We suppose that p is greater than q in the
following calculations; then to determine the distance
x of the point a from the point V where we should fix
the true instant of the phenomenon, we will have the
following equation.

er—m(2p+q—x) — mze —m(p+q)(1 + Vg™ — 1/?€—mq),
from which we find

x=p+ (1/m)In(1l + Yze ™™ — Yze™ ™),

§ = 0.37 ifwe fix m=1/V8,

(so his error distribution has same variance as D.Bernoulli(r = 1).



My textbook in 1966 — Cramér 1946, 10th printing
MATHEMATICAL METHODS By

HARALD CRAMER

OF STATISTICS ——————

OF 8TOCKHOLM

As shown in the preceding paragraph, the mean is characterized
by a certain minimum property: the second moment becomes a mini-
mum when taken about the mean. There is an analogous property of
the median: the first absolute moment E(| & —c|) becomes a minimum
when ¢ 15 equal to the median. This property holds even in the in-
determinate case, and the moment has then the same value for ¢ equal

to any of the possible median values. Denoting the med.inm {or, in
the indeterminate case, any median value) by p, we have in fact the

relations .
'E(IE—#U + 2f(c—x)dF(a:) for e>u,
“

E(t—c|)=
lE(lE—#ll o 2f(x—c)dF(z) > e<p.

i i i itive, ex-
4 terms on the right hand sides are evidently positive,
e e . (indeterminate case),

; i . las
cept in the case when ¢ is another median val .
when the corresponding term is zero.]) The proof of these relations

will be left as an exercise for the reader, y




Where to stand: 3 unequally spaced elevators

Visualizing the median as the minimum deviation location.
Hanley JA, Joseph, L, Platt RW, Chung MK, Bélisle P

The American Statistician 55(2): 150-152, May 2001.


http://www.medicine.mcgill.ca/epidemiology/hanley/elevator.html
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1809: “Theory of the Motion of Heavenly Bodies
Moving about the Sun in Conic Sections”

The most probable value of a single unknown observed with
equal care several times under the same circumstances is the
arithmetic mean of the observations y1, y», . ..

In this case y maximizes L only when

h e_hZFZ.

P(e) = N

In the more general situation, this error distribution leads to the
method of least squares as providing values that maximize L.



Stigler: The History of Statistics (1986)

xil CONTENTS

4. The Gauss— Laplace Synthesis

Gauss in 1809 140

Reenter Laplace 143
A Relative Maturity: Laplace and the Tides of the Atmosphere

The Situation in 1827 157



Various estimates of ‘Centre’ of 3 discrepant observations

0.44
0.4
0.37
0.3
0.2

0.199




Stigler didn’t say why it took so long, ...

To move up from probability theory and gambling to
mathematical statistics, we had to wait for the infinitesimal
calculus (Newton, Leibnitz, 2nd half of 1600s).

The Enlightenment helped: “Nullius in verba’, Latin for “on
the word of no one” or "take nobody’s word for it”; sapere
aude Latin for “Dare to know”.

Laws derived from principles: e.g., ways to come up with
error distributions.

Surveying, astronomy, navigation, ...
Estimands (parameters) before coming up with estimates

It takes time to join dots. DeMoivre — Laplace — Gauss;
Legendre — Galton.



TODAY, STATISTICAL HISTORY IS ONLY A CLICK AWAY

NOT TOO YOUNG/OLD TO
START/CONTINUE TO CONNECT THE DOTS



The 7 pillars rephrased:
the usefulness of 7 basic statistical ideas

. The value of data targeted reduction or compression of data
. The diminishing value of an increased amount of data

. How to put a probability measuring stick to what we do

. How to use internal variation in the data to help in that

. How asking questions from different perspectives can lead to
revealingly different answers

. The essential role of the planning of observations

. How all these ideas can be used in exploring and comparing competing
explanations in science



The revolutionary ideas pushed aside or overturned
firmly held mathematical or scientific beliefs

e Discarding the individuality of data values
* Downweighting new and equally valuable data

® Qvercoming objections to any use of probability to measure uncertainty
outside of games of chance.

® How can the variability interior to our data measure the uncertainty
about the world that produced it?

® Galton’s multivariate analysis revealed to scientists that their reliance
upon rules of proportionality dating from Euclid did not apply to a
scientific world in which there was variation in the data — overthrowing
3000 years of mathematical tradition.

® Fisher’s designs were in direct contradiction to what experimental
scientists and logicians had believed for centuries; his methods for
comparing models were absolutely new to experimental and required a
change of generations for their acceptance.



Fine tools that require wise and well-trained hands for effective use

These ideas are not part of Mathematics, nor are they part
of Computer Science.

They are centrally of Statistics,

and I must now confess that while I began
by explicitly denying that my goal was to
explain what Statistics is, I may by the
end of the book have accomplished that goal
nonetheless.



Seven support pillars — the disciplinary foundation, not the whole edifice, of Statistics

¢ All seven have ancient origins, and the modern discipline
has constructed its many-faceted structure with great
ingenuity and with a constant supply of exciting new ideas
of splendid promise.

e But without taking away from that modern work, | hope to
articulate a unity at the core of Statistics both across time
and between areas of application.



1860s: Jevons versus critics of a Commodities Index

that discarded information to increase information

absurd to average data on pig iron and pepper.

Individual commodities: investigators with detailed with
historical knowledge were tempted to think they could “explain”
every movement, every fluctuation, with some story of why that
particular event had gone the way it did.

“Were a complete explanation of each fluctuation thus
necessary, not only would all inquiry into this subject be
hopeless, but the whole of the statistical and social sciences,
so far as they depend upon numerical facts, would have to be
abandoned.”

It was not that the stories told about the data were false; it was
that they (and the individual peculiarities in the separate
observations) had to be pushed into the background. If general
tendencies were to be revealed, the observations must be
taken as a set; they must be combined.



Combination of Observations - Multiparameter applications

1750 Mayer
Boscovich 1755 (10 pairs of 2), 1757, 1760, 1770 (Least
sum of absolute errors)

Laplace 1783 ((Least maximum error — trés pénible))
1788 LaplaceSaturnData.pdf

1789 (formalize Boscovich) 1799 ((Least sum of weighted
absolute errors) )

7?7?77 Legendre

Gauss



1788 - Saturn

Table 1.3. Laplace’s Saturn data. _

Data - Laplace

Year Laplace  Halley Ls.

Eq.no. (i) —a; b; G d; residual residual residua
1 1591 1'11.9” —158.0 0.22041 —0.97541 +1'33” —0’54” +1'36"
2 1598 382.7” —151.78  0.99974 —0.02278 —0.07 +0.37 +0.05
3 1660 512.0” —89.67 0.79785 0.60352 —1.36 +2.58 —1.21
4 1664 3'56.7” —85.54  0.04241 0.99910 —0.35 +3.20 —0.29
5 1667 3'31.7” —82.45 —0.57924 0.81516 —0.21 +3.50 —0.33
6 1672 3'32.8” —77.28 —0.98890 —0.14858 —0.58 +3.25 —1.06
7 1679 3'9.9” —70.01 0.12591 —0.99204 —0.14 —1.57 —0.08
8 1687 4749.2” —62.79  0.99476  0.10222 —1.09 —4.54 —0.52
9 1690 326.8” —59.66 0.72246 0.69141 +40.25 —7.59 +0.29
10 1694 249”7 -—5552 —0.07303 0.99733 +1.29 —9.00 +1.23
11 1697 2'37.4" —52.43 —0.66945 0.74285 +0.25 —9.35 +0.22
12 1701 2'41.2” —48.29 —0.99902 —0.04435 +0.01 —8.00 —0.07
13 1731 8'31.4” —18.27 —0.98712 —0.15998 —0.47 —4.50 —0.53
14 1738 495”7 ~11.01 0.13759 —0.99049 —1.02 —7.49 —0.56
15 1746 4'58.3" —3.75 0.99348 0.11401 —1.07 —4.21 —0.50
16 1749 4/3.8” —0.65 0.71410 0.70004 —0.12 —8.38 +0.03
17 1753 158.2” 3.48 —0.08518 0.99637 +1.54 —13.39 +1.41
18 1756 135.2"” 6.58 —0.67859  0.73452 +1.37 —17.27 +1.35
19 1760 3'14.0” 10.72 —0.99838 —0.05691 —0.23 —22.17 —0.29
20 1767 1'40.2” 17.98  0.03403 —0.99942 +1.29 —18.12 +1.34
21 1775 3'46.0” 25.23  0.99994 0.01065 +0.19 +2.12  +0.26
22 1778 4/32.9” 28.33  0.78255  0.62559 —0.34 +1.21 —0.19
23 1782  44.4” 3246 0.01794 0.99984 —0.23 —5.18 —0.15
24 1785 4'17.6" 35.56 —0.59930  0.80063 —0.56 —12.07 —0.57

Source: Laplace (1788).
Note: Residuals are fitted values minus observed values.



Ceres to MH370


http://www.deepseanews.com/2015/07/how-currents-pushed-debris-from-the-missing-malaysian-air-flight-across-the-indian-ocean-to-reunion/

In 428 BCE, how to settle on a single figure?

Thucydides:

e Height of the enemy’s wall (in no. of bricks) were counted
by many persons at once; and though some might miss the
right calculation, most would hit upon it, particularly as they
counted over and over again.

* The length required for the ladders was thus obtained.

The mode — the most frequently reported value.



