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Preface

The aim of this book is to give a self-contained account of the statistical
basis of epidemiology. The book is intended primarily for students enrolled
for a masters degree in epidemiology, clinical epidemiology, or biostatistics,
and should be suitable both as the basis for a taught course and for private
study. '

Although we anticipate that most readers will have taken a first course
in statistics, no previous knowledge is assumed, and the mathematical level
of the book has been chosen to suit readers whose basic training is in biol-
ogy. Some of the material in the book could be omitted at first reading, ei-
ther because it is rather more demanding of mathematical skills or because
it deals with rather specialized points. We have been careful to gather such
material either into complete chapters or complete sections and to indicate
these with a marginal symbol, as here.

Epidemiologists today have ready access to computer programs of great
generality, but to use these sensibly and productively it is necessary to
understand the ideas which lie behind them. The most important of these
is the idea of a probability model. All statistical analysis of data is based
on probability models, even though the models may not be explicit. Only
by fully understanding the model can one fully understand the analysis.

Models depend on parameters, and values must be chosen for these
parameters in order to match the model to the data. In showing how this
is done we have chosen to emphasize the role of likelihood because this offers
an approach to statistics which is both simple and intuitively satisfying.
An additional advantage of this approach is that it requires the model and
its parameters to be made explicit, even in the simplest situations. More
complex problems can then be tackled by natural extensions of simple
methods and do not require a whole new way of looking at things.

Most of the material in this book was developed during successive res-
idential summer courses in epidemiology and statistics, held in Florence
under the auspices of the European Educational Programme in Epidemiol-
ogy. We are grateful to the International Agency for Cancer Research, the
Regional Office for Europe of the World Health Organization, the Commis-
sion of the European Communities, and the Tuscany Regional Government,
for sponsoring the program, and to Walter Davies, Organizing Secretary,
and Rodolfo Saracci, Course Director, whose respective skills ensured that
the course took place each year. We also acknowledge with thanks helpful
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comments on earlier drafts from Damien Jolley, Bendix Carstensen, Dave
Leon, and Nick Hills.

David Clayton

Cambridge’
* g Michael Hills

London
February 1993

Dedication

To the students of the Florence course, 1988 — 92, without whose help and
encouragement this book would never have appeared.
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1
Probability models

1.1 Observation, experiments and models

Science proceeds by endless repetition of a three-stage process,

1. observation;

2. building a model to describe (or ‘explain’) the observations; and

3. using the model to predict future observations. If future observations
are not in accord with the predictions, the model must be replaced
or refined.

In quantitative science, the models used are mathematical models. They
fall into two main groups, deterministic models and probability (or stochas-
tic) models. It is the latter which are appropriate in epidemiology, but the
former are more familiar to most scientists and serve to introduce some
important ideas.

DETERMINISTIC MODELS

The most familiar examples of deterministic models are the laws of classical
physics. We choose as a familiar example Ohm’s law, which applies to the
relationship between electrical potential (or voltage), V, applied across a
conductor and the current flowing, I. The law holds that there is a strict
proportionality between the two — if the potential is doubled then the
current will double. This relationship is represented graphically in Fig. 1.1.

Ohm’s law holds for a wide range of conductors, and simply states that
the line in Fig. 1.1 is straight; it says nothing about the gradient of the
line. This will differ from one conductor to another and depends on the
resistance of the conductor. Without knowing the resistance it will not be
possible to predict the current which will flow in any particular conductor.
Physicists normally denote the resistance by R and write the relationship
* v

I _— E.
However, R is a different sort of quantity from V or I. It is a parameter —
a number which we must fix in order to apply the general law to a specific
case. Statisticians are careful to differentiate between observable variables
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14
Fig. 1.1. A deterministic model: Ohm’s law.

(such as V' and I) and parameters (such as R) and use Greek letters for
the latter. Thus, if Ohm were a modern statistician he would write his law
as

I=—

p

In this form it is now clear that p, the resistance, is a parameter of a simple
mathematical model which relates current to potential. Alternatively, he
could write the law as

I =~V

where 7 is the conductance (the inverse of the resistance). This is a simple
example of a process called reparametrization — writing the model differ-
ently so that the parameters take on different meanings.

STOCHASTIC MODELS

Unfortunately the phenomena studied by scientists are rarely as predictable
as is implied by Fig. 1.1. In the presence of measurement errors and un-
controlled variability of experimental conditions it might be that real data
look more like Fig. 1.2. In these circumstances we would not be in a po-
sition to predict a future observation with certainty, nor would we be able
to give a definitive estimate of the resistance parameter. It is necessary
to extend the deterministic model so that we can predict a range of more
probable future observations, and indicate the uncertainty in the estimate
of the resistance.

Problems such as this prompted the mathematician Gauss to develop
his theory of errors, based on the Gaussian distribution (often also called
the Normal distribution), which is the most important probability model
for these problems. A very large part of statistical theory is concerned with
this model and most elementary statistical texts reflect this. Epidemiology,

BINARY DATA 5

14
Fig. 1.2. Experimental/observational errors.

however, is more concerned with the occurrence (or not) of certain events in
the natural history of disease. Since these occurrences cannot be described
purely deterministically, probability models are also necessary here, but
it is the models of Bernoulli and Poisson which are more relevant. The
remainder of this chapter discusses a particularly important type of data
generated by epidemiological studies, and the nature of the models we use
in its analysis.

1.2 Binary data

Many epidemiological studies generate data in which the response mea-
surement for each subject may take one of only two possible values. Such
a response is called a binary response. Two rather different types of study
generate such data.

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

In a cohort study a group of people are followed through some period of
time in order to study the occurrence (or not) of a certain event of interest.
The simplest case is a study of mortality (from any cause). Clearly, there
are only two possible outcomes for a subject followed, say, for five years —
death or survival. »

More usually, it is only death from a specified cause or causes which
is of interest. Although there are now three possible outcomes for any
subject — death from the cause of interest, death from another cause, or
survival — such data are usually dealt with as binary data. The response is
taken as death from cause of interest as against survival, death from other
causes being treated as premature termination of follow-up. Premature
termination of follow-up is a common feature of epidemiological and clinical
follow-up studies and may occur for many reasons. It is called censoring, a
word which reflects the fact that it is the underlying binary response which
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we would have liked to observe, were it not for the removal of the subject
from observation. _

In incidence studies the event of interest is new occurrence of a spec-
ified disease. Again our interest is in the binary response (whether the
disease occurred or not) although other events may intervene to censor our
observation of it.

For greater generality, we shall use the word failure as a generic term
for the event of interest, whether incidence, mortality, or some other (unde-
sirable) outcome. We shall refer to non-failure as survival. In the simplest
case, we study N subjects, each one being followed for a fixed time in-
terval, such as five years. Over this time we observe D failures, so that
N — D survive. We shall develop methods for dealing with censoring in
later chapters.

CROSS-SECTIONAL PREVALENCE DATA

Prevalence studies have considerable importance in assessing needs for
health services, and may also provide indirect evidence for differences in-in-
cidence. They have the considerable merit of being relatively cheap to carry
out since there is no follow-up of the study group over time. Subjects are
simply categorized as affected or not affected; according to agreed clinical
criteria, at some fixed point in time. In a simple study, we might observe
N subjects and classify D of them as affected. An important example is
serological studies in infectious-disease epidemiology, in which subjects are
classified as being seropositive or seronegative for a specified infection.

1.3 The binary probability model

The obvious analysis of our simple binary data consisting of D failures
out of N subjects observed is to compute the proportion failing, D/N.

However, knowing the proportion of a cohort which develops a disease, or .

dies from a given cause, is of little use unless it can be assumed to have a
wider applicability beyond the cohort. It is in making this passage from
the particular to the general that statistical models come in. One way
of looking at the problem is as an attempt to predict the outcome for a
new subject, similar to the subjects in the cohort, but whose outcome is
unknown. - Since the outcome for this new subject cannot be predicted
with certainty the prediction must take the form of probabilities attached
to the two possible outcomes. This is the binary probability model. It
is the simplest of all probability models and, for the present, we need
to know nothing of the properties of probability save that probabilities
are numbers lying in the range 0 to 1, with 0 representing an impossible
outcome and 1 representing a certain outcome, and that the probability
of occurrence of either one of two distinct outcomes is the sum of their
individual probabilities (the additive rule of probability).

THE BINARY PROBABILITY MODEL 7

F (Failure)

S (Survival)

_Fig. 1.3. The binary probability model.

THE RISK PARAMETER

The'binary probability model is illustrated in Figure 1.3. The two outcomes
are labelled F (failure) and S (survival). The model has one parameter, 7,
the probability of failure. Because the subject must either fail or survive,
the sum of the probabilities of these two outcomes must be 1, so the proba-
bility of survival is 1 — 7. In the context where 7 represents the probability
of occurrence of an event in a specified time period, it is usually called the
risk.

THE ODDS PARAMETER

An important alternative way of parametrizing the binary probability model
is in terms of the odds of failure versus survival. These are

m:(l—n),

which may also be written as

1—-m

It is convenient to omit the : 1 in the above expression and to measure the

odds by the fraction
T

1—7m

a

This explains why, although the word odds is plural, there is often only
one number which measures the odds.

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a)
0.75, (b) 0.50, (c) 0.25.

In general the relationship between a probability = and the corresponding
odds Q is

(T-m)
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This can be inverted to give

= L 1 =
Tive T T T ira

Exercise 1.2. Calculate the probability of failure when Q, the odds of F to S is
(a) 0.3, (b) 3.0.

RARE EVENTS

In this book we shall be particularly concerned with rare events, that is,
events with a small probability, 7, of occurrence in the time period of
interest. In this case (1 — ) is very close to 1 and the odds parameter and
the risk parameter are nearly equal:

Q.

This approximation is often called the rare disease assumption, but this is
a misleading term, since even the common cold has a small probability of
occurrence within, say, a one-week time interval.

1.4 Parameter estimation

Without giving a value to the parameter , this model is of no use for
prediction. Our next problem is to use our observed data to estimate its
value. It might seem obvious to the reader that we should estimate 7 by
the proportion of failures, D/N. This corresponds to estimating the odds
parameter {2 by D/(N — D), the ratio of failures to survivors.

It might also seem obvious that we should place more reliance on our
estimate (and upon any predictions b.sed on it) if N is 1000 than if N is
10. The formal statistical theory which provides a quantitative justification
for these intuitions will be discussed in later chapters.

1.5 1Is the model true?

A model which states that every one of a group of patients has the same
probability of surviving five years will seem implausible to most clinicians.
Indeed, the use of such models by statisticians is a major reason why some
practitioners, brought up to think of each patient as unique, part company
with the subject!

The question of whether scientific models are true is not however, a
sensible one. Instead, we should ask ourselves whether our model is useful
in describing past observations and predicting future ones. Where there re-
mains a choice of models, we must be guided by the criterion of simplicity.
In epidemiology probability models are used to describe past observations
of disease events in study cohorts and to make predictions for future indi-
viduals. If we have no further data which allows us to differentiate subjects

SOLUTIONS 9

in the cohort from one another or from a future individual, we have no op-
tion save to assign the same probability of failure to each subject. Further
data allows elaboration of the model. For example, if we can identify sub-
jects as exposed or unexposed to some environmental influence, the model
can be extended to assign different probabilities to exposed and unexposed
subjects. If additionally we know the level of exposure we can extend the
model by letting the probability of failure be some increasing function of
exposure.

In this book we shall demonstrate the manner in which more compli-
cated models may be developed to deal with more detailed data. The
binary model has been.our starting point since it is the basic building brick
from which more elaborate models are constructed.

Solutions to the exercises

1.1 (a) Odds = 0.75/0.25 = 3.
(b) Odds = 0.50/0.50 = 1.
(c) Odds = 0.25/0.75 = 0.3333.

1.2 (a) Probability = 0.3/1.3 = 0.2308.
(b) Probability = 3/4 = 0.75.
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Conditional probability models

In this chapter we introduce the idea of conditional probability, which allows
us to extend the binary model so that the probability of failure can depend
on earlier events. The natural way of thinking about conditional proba-
bilities is in terms of a tree diagram. These diagrams are used extensively
throughout the book.

2.1 Conditional probability

Suppose a bifiary probability model ‘assigns a probability to a subject’s
death during some future time period. It may be that this prediction would
be better if we knew the subject’s smoking habits. This would be the case
if the probability of death for a smoker were 0.015 but only 0.005 for a
" non-smoker. These probabilities are called conditional probabilities; they
are the probabilities of death conditional on being a smoker and a non-
smoker respectively. Epidemiology is mainly concerned with conditional
probability models that relate occurrence of some disease event, which we
call failure, to events which precede it. These include potential causes,
which we call exposures.

When subjects are classified as either exposed (E+) or not exposed
(E-), the conditional probability model can be represented as a tree with
6 branches. The first two branches refer to E+ and E—; then there are two
referring to failure and survival if the subject is exposed, and two referring
to failure and survival if the subject is not exposed. An example is shown in
Fig. 2.1. The tips of the tree correspond to the four possible combinations
of exposure and outcome for any subject.

The probabilities on the first two branches of the tree refer to the prob-
ability that a subject is exposed and the probability that a subject is not
exposed. Using the smoking example we have taken these to be 0.4 and
0.6. The probabilities in the next two pairs of branches are conditional
probabilities. These are 0.015 (F) and 0.985 (S) if a subject is exposed
(smokes), and 0.005 (F') and 0.995 (S) if a subject is not exposed (does not
smoke).

The probability of any combmatlon of exposure and outcome is ob-
tained by multiplying the probabilities along the branches leading to the

CONDITIONAL PROBABILITY 11

Probability
0.006

0.003

0.995 S

Fig. 2.1. A conditional probability tree.

tip which corresponds to that combination. For example, the probability
that a subject is exposed and fails is

0.4 x 0.015 = 0.006,
and the probability that a subject is not exposed and fails is
0.6 x 0.005 = 0.003.

This is called the multiplicative rule.

Exercise 2.1. Calculate the probabilities for each of the remaining 2 possibilities.
What is the overall probability of failure regardless of exposure?

This overall probability is usually called the marginal probability of failure.

STATISTICAL DEPENDENCE AND INDEPENDENCE

Fig. 2.1 illustrates a model in which the probability of failure differs accord-
ing to whether an individual was exposed or not. In this case, exposure and
failure are said to be statistically dependent. If the probability of failure is
the same, whether or not the subject is exposed, then exposure and failure
are said to be statistically independent.
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Probability
E+ 0.006
F
E- 0.003
E+
S
E—

Fig. 2.2. Predicting exposure from the outcome.

2.2 Changing the conditioning: Bayes’ rule

The additive and multiplicative rules are the basic building blocks of prob-
ability models. A simple application of these rules allows us to change the
direction of prediction so that, for example, a model for the probability of
failure given exposure can be transformed into a model for the probability
of exposure given failure. : '

We shall demonstrate this by using the tree in Fig. 2.1, where the first
level of branching refers to exposure and the second to outcome. This is
turned round in Fig. 2.2, so that the first level of branching now refers
to outcome and the second to exposure. The probabilities of the different
combinations of exposure and outcome are the same whichever way the
tree is written; our problem is to fill in the probabilities on the branches of
this new tree.

Working backwards from the tips of the tree, the probability of failure
regardless of exposure is 0.006 + 0.003 = 0.009. This is the probability
for the first branch of the tree to F. Since the probability corresponding
to any tip of the tree is obtained by multiplying the probabilities in the
branches that lead to the tip, it follows that the probability in the branch
from F to E+, for example, is 0.006/0.009 = 0:667. This is‘the conditional
probability of being exposed given the outcome was failure. This process of
reversing the order of the conditioning is called Bayes’ rule, after Thomas
Bayes.

AN EXAMPLE FROM GENETICS 13

Exercise 2.2. Calculate the remaining conditional probabilities.

The following exercise, inspired by problems in screening, demonstrates
one of the many uses of Bayes’ rule.

Exercise 2.3. A screening test has a probability of 0.90 of being positive in true
cases of a disease (the sensitivity) and a probability of 0.995 of being negative in
people without the disease (the specificity). The prevalence of the disease is 0.001
so before carrying out the test, the probability that a person has the disease is
0.001. -

(a) Draw a probability tree in which the first level of branching refers to having
the disease or not, and the second level to being positive or negative on the
screening test. Fill in the probabilities for each of the branches and calculate the
probabilities for the four possible combinations of disease and test.

(b) Draw the tree the other way, so that the first level of branching refers to
being positive or negative on the screening test and the second level to having
the disease or not. Fill in the probabilities for the branches of this tree. What
is the probability of a person having the disease given that they have a positive
test result? (This is called the positive predictive value.)

2.3 An example from genetics

Our next exercises illustrate a problem in genetic epidemiology. For a
specified genetic system (such as the HLA system), each person’s genotype
consists of two haplotypes,* one inherited from the mother and one from
the father. If a mother has haplotypes (a,b), then one of these is passed to
the offspring with probability 0.5. Likewise for a father’s haplotypes, (c,d)
say. Fig. 2.3 shows the probability tree for the genotype of the offspring.
The presence of haplotype (a) carries a probability of disease of 0.05 while,
in its absence, the probability is only 0.01.

Exercise 2.4. Work out the probabilities for the four tips of the probability
tree which end in disease (F). Hence work out the probabilities of the four pos-
sible genotypes conditional on the fact that the offspring is affected by disease
(Fig. 2.4). '

Exercise 2.5. In practice the probabilities of disease conditional upon genotype
are not known constants but unknown parameters. Repeat the previous exercise
algebraically, replacing the probabilities 0.01 and 0.05 by = and 67 respectively.
How are the conditional probabilities changed if the subject’s father has genotype
(c,0)? -

The parameter 8, described in Exercise 2.5, is a risk ratio,

_ Risk of disease if haplotype (a) present
" Risk of disease if haplotype (a) absent

*The word haplotype refers to a group of genetic loci which are closely linked and
therefore inherited together.
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From mother From father Offspring
Disease, F
0.5 c (asc) <
a
0.5 Disease, F
0.5 4 (a,d) <
Disease, F
05 c (b,c) <
0.5
b
Dlsease,
N4 kg <

Fig. 2.3. Disease conditional upon inheritance.

(a,c)
(a,d)

(bc)

(b,d)

Fig. 2.4. Inheritance conditional upon disease.

It measures the strength of statistical dependence (or association) between
the presence of haplotype (a) and occurrence of disease. The above exercise
shows that the conditional probability of genotype given the presence of
disease and parental genotypes depends only on this risk ratio.

SOLUTIONS 15
Solutions to the exercises
2.1
Pr(E4+ and S) = 0.4 x 0.985 = 0.394
Pr(E— and S) = 0.6 x 0.995 = 0.597

The overall probability of failure is 0.006 + 0.003 = 0.009.

2.2 See Fig.-2.5. The conditional probabilities of E+ and E— given

survival are 0.394 0.597
0.991 03976, 0.991 0.6024
2.3 (a) See Fig. 2.6.
(b) See Fig. 2.7. The probability of disease given a positive test result is

0.0009
0.005895

Note that this is much lower than 0.90, the sensitivity of the test. The
remaining conditional probabilities are calculated in a similar manner.

= 0.1527.

2.4 - The probabilities for each of the four tips are obtained by multiply-
ing along the branches of the tree. The sum of the four probabilities is
0.0300. The conditional probabilities sum to 1.0.

Genotype Disease Probability Conditional prob.
(a,c) F 0.5x 0.5 x 0.05=0.0125 0.0125/0.03 = 0.417
(a,d) F 0.5 x 0.5 x 0.05 = 0.0125 0.417
(b,c) F 0.5 x 0.5 x 0.01 =0.0025 0.0025/0.03 = 0.083
(b,d) F 0.5 x 0.5 x 0:01 = 0.0025 0.083
Total 0.0300 1.0

2.5 Repeating the above calculations algebraically yields:

Genotype Disease Probability Conditional Prob.
(a,c) F 0.5 x 0.5 x 7 = 0.2567 0/(20 + 2)
(a,d) F 0.5 x 0.5 x 6 = 0.2507 6/(20 + 2)
(b,c) F 0.5x0.5 x7m=0.257 1/(26 +2)
(b,d) F 0.5x0.5x7=0.257 1/(20 + 2)

Total . 0.257 (26 + 2) 1.0
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If the father has genotype (c,c) then he can only pass on (c) and the possible |
genotypes of offspring are (a,c) and (b,c). Prior to observation of disease
presence, these both have probabilities 0.5. Thus, for a subject known to
have disease, we have

Genotype Disease Probability

Conditional Prob.

(a,c) F 0.5 x 67 = 0.567 0/(6+1)
(b,c) F 0.5 x m = 0.57 1/(60+1)
Total 0.5m(6 + 1) 1.0
Probability
0.667 — E+ 0.006
F
0.009
0333\ g 0.003
0.3976_— E+ 0.394
0.991
S
0.6024 ™ g 0.597

Fig. 2.5. Probability tree for exposure given outcome.

D+

Test results, T, given disease status, D.

SOLUTIONS
Probability
09— T+ 0.0009
SN 0.0001
0.005_— T+ 0.004995
0.995 ™~ 7_ 0.994005

Probability
0.1527 D+ 0.0009
08473~ p_ 0.004995
D+ 0.0001
D— 0.994005

Fig. 2.7. Disease status given test results.

17
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1 Probability models

1.1 Observation, experiments and models

STOCHASTIC MODELYY

Normal vs Bernoulli and Poisson: We need to distinguish between individual
observations, governed by Bernoulli and Poisson (or if quantitative rather
than all-or-none or a count, Normal) and statistics formed by aggregation of
individual observations. If a large enough number of individual independent
but non-Gaussian observations are used to form a statistic, its (sampling)
distribution can be described by a Gaussian (Normal) probability model. So,
ultimately, the Normal probability model is very relevant.

1.1.1 Epidemiologic [subject-matter] models [JH]

We need to also make a distinction between the quantity(quantities) that
is(are) of substantive interest or concern, the data from which this(these)
is(are) estimated, the statistical models used to get to the the quan-
tity (quantities) and the relationships of interest.

For example, of medical, public health or personal interest/concern might be
the [list compiled some years ago, add your own for 2021 onwards|

e level of use of cell phones among drivers

e average and range [across people] of reductions in cholesterol with regular
use of a cholesterol-lowering medication.

e amount of time taken by health care personnel to decipher the handwrit-
ing of other health care personnel.

e (average) number of times people have to phone to reach a ‘live’ person.

e reduction in one’s risk of dying of a specific cancer if one is regularly
screened for it.

1‘Stochastic’ |http://www.allwords.com/word-stochastic.html French: stochas-
tique(fr) German: stochastisch(de). Etymology: From Ancient Greek (polytonic, ), from
(polytonic, ) “aim at a target, guess”, from (polytonic, ) “an aim, a guess”. Parzen, in his
text on Stochastic Processes .. page 7 says: <<The word is of Greek origin; see Hagstroem
(1940) for a study of the history of the word. In seventeenth century English, the word
“stochastic” had the meaning “to conjecture, to aim at a mark.” It is not clear how it ac-
quired the meaning it has today of “pertaining to chance.” Many writers use the expression
“chance process” or “random process” as synonyms for “stochastic process.” >>

e appropriate-size tracheostomy tube for an obese patient, based on easily
easily obtained anthropometric measurements.

e length of central venous catheter that can be safely inserted into a child
as a function of the child’s height etc.

e rate of automobile accidents as a function of drivers’ blood levels of alco-
hol and other drugs, numbers of persons in the car, cell-phone and other
activities, weather, road conditions, etc.

e Psychological Stress, Negative Life Events, Perceived Stress, Negative
Affect Smoking, Alcohol Consumption and Susceptibility to the Common
Cold.

e The force of mortality as a function of age, sex and calendar time.

e Genetic variation in alcohol dehydrogenase and the beneficial effect of
moderate alcohol consumption on myocardial infarction.

e Are seat belt restraints as effective in school age children as in adults?

e Levels of folic acid to add to flour, so that most people have sufficiently
high blood levels, but birth defects are reduced.

e Early diet in children born preterm and their IQ at age eight.

e Prevalence of Down’s syndrome in relation to parity and maternal age.

Of broader interest/concern might be

e the wind chill factor as a function of temperature and wind speed.

e how many fewer Florida votes Al Gore got in 2000 US Presidential be-
cause of a badly laid-out ballot.

e a formula for deriving one’s “ideal” weight from one’s height.

e yearly costs under different cell-phone plans.

e yearly maintenance costs for different makes and models of cars.

e car or life insurance premiums as a function of ...

e cost per foot? of commercial or business rental space as a function of ...
e Rapid Changes in Flowering Time in British Plants.

e How much money the City of New York should revover from Brink’s
for the losses the City incurred by the criminal activities of two Brink’s
employees (they collected the money from the parking meters, but kept
some of it!).


http://www.allwords.com/word-stochastic.html
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1.1.2 From behaviour of statistical ‘atoms’ to statistical
‘molecules’

‘1 condition’ or ‘1 circumstance’ or ‘setting’ [“l-sample problems”|

The smallest statistical element or unit (¢ atom): the quantity of interest
might have a Y distribution that under sampling, could be represented by a
discrete random variable with ‘2-point’ support (Bernoulli), 3-point support,
k—point support, etc. or interval support (Normal, gamma, beta, log-normal,)

The aggregate or summary of the values associated with these elements is
often a sum or a count: with e.g., a Binomial, Negative Binomial, gamma
distribution. Or the summary might be more complex — it could be some re-
arrangement of the data on the individuals (e.g., the way the tumbler longevity
data were summarized). This brings in the notion of “sufficient statistics”.

More complex: ¢, F ...

‘2 or conditions’ or ‘circumstances’ or ‘settings’, indexed by possible
values of ‘X’ variable(s). Think of the ‘X’ variable(s) as ‘covariate patterns’
or ‘profiles,” not as a ‘random’ variable.

Unknown conditions or circumstances: Sometimes we don’t have a mea-
surable (or measured) ‘X’ variable(s) to explain the differences in Y from say
family to family or person to person. There instead of the usual multiple
regression approach, we use a hierarchical or random-effects or latent class or
mixture model. [case in point]: JH’s numbers of steps, 2017-2020]

1.2 Binary data

It is worth recalling from bios601 in earlier years||the concepts of states and
events (transitions from one state to another).

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

Recall: cohort is another name for a closed population, with membership (en-
try) defined by some event, such as birth, losing one’s virginity, obtaining one’s
first driver’s permit, attaining age 21, graduating from university, entering the
‘ever-married’ state, undergoing a certain medical intervention, enrolling in a
follow-up study, etc. Then the event of interest is the exit (transition) from
a/the state that prevailed at entry. So death is the transition from the living
state to the dead state, receiving a diagnosis of cancer changes one’s state
from ‘no history of cancer since entry/birth’ to ‘have a history of cancer’, a
conviction for traffic offense changes one’s state from ‘clean record’ to ‘have

2https ://jhanley.biostat.mcgill.ca/bios601/Epidemiologyl/epi-notes—bios601-2009.pdf

a history of traffic offences.” We can also envision more complex situations,
with a transition from ‘never had a stroke,” to ‘have had 1 stroke,” to ‘have
had 2 strokes,’ ... or ‘haven’t yet had a cold this winter,” to ‘have had 1 cold,’
to ‘have had 2 colds,’ etc.

Censoring: to be distinguished from truncation. Truncation implies some
observations are missed by the data-gathering process, i.e., that the observed
distribution is a systematic distortion of the true distribution. Note that we
can have censoring of any quantitative variable, not just one that measures
the time duration until the event of interest. For example, the limits on say a
thermometer or a weight scale or a chemical assay may mean that it cannot
record/detect values below or above these limits. Also, the example in C&H
implicitly refers to right censoring: one can have left censoring, as with lower
limits of detection in a chemical assay, or interval censoring, as — in repeated
cross-sectional examinations — with the date of sero-conversion to HIV.

Incidence studies: the word new means a change of state since entry.

“Failure”: Tt is a pity that C&H didn’t go one step more and use the even more
generic term “event”. That way, they would not have to think of graduating
with a PhD (i.e., getting out of — exiting from — here) as “failure” and “still
pursuing one” as “survival.” This simpler and more general terminology would
mean that we would not have to struggle to find a suitable label of the ‘y’
axis of the 1 — F(t), usually called S(t), function. One could simply say
“proportion still in initial state,” and substitute the term for the initial state,
i.e., proportion still in PhD program, proportion event-free, etc.

N or n? D or d? JH would have preferred lower case, at least for the
denominator. In sampling textbooks, N usually denotes the population size,
and n the sample size. In the style manual used in social sciences, n is the
sample size in each stratum, whereas N is the overall sample size: thus, for
example, a study might report on a sample of N = 76 subjects, composed of
n = 40 females and n = 36 males.

Cohort studies with variable follow-up time: If every subject entered a study
at least 5 years ago, then, in principle, one should be able to determine D
and N — D, and the 5-year survival proportion. However, losses to follow-up
before 5 years, and before the event of interest, lead to observations that are
typically regarded as censored at the time of the loss. Another phenomenon
that leads to censored observations is staggered entry, as in the JUPITER
trial Unfortunately, some losses to follow-up may be examples of ‘informa-
tive’ censoring.

Shttps://jhanley.biostat.mcgill.ca/c634/JUPITER/


https://jhanley.biostat.mcgill.ca/bios601/Epidemiology1/epi-notes-bios601-2009.pdf
https://jhanley.biostat.mcgill.ca/c634/JUPITER/
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CROSS-SECTIONAL PREVALENCE DATA

Recall again that prevalence refers to a state. Examples would include the
proportion (of a certain age group, say) who wear glasses for reading, or have
undetected high blood pressure, or have high-speed internet at home, or have
a family history of a certain disease, or a certain ‘gene’ or blood-type.

From a purely statistical perspective, the analysis of prevalence proportions
of the form D/N and incidence proportions of the form D/N takes the same
form: the underlying statistical ‘atoms’ are N Bernoulli random variables.

Important: Concepts and terms in Epidemiology

) Stat vs. Even [the transition (rapid) from one state to another] ﬁ

4Google: The way something is with respect to its main attributes; “the current state of
knowledge”; “his state of health”; “in a weak financial state”. State of matter: (chemistry)
the three traditional states of matter are solids (...) liquids (...) and gases (...).

5Most of the definitions below are adapted from the glossary in the textbook Theoretical
Epidemiology: Principles of Occurrence Research in Medicine by O.S. Miettinen (Wiley
1985). See also, by same author, Epidemiological Research: Terms and Concepts https:
//1link-springer-com.proxy3.library.mcgill.ca/book/10.1007%2F978-94-007-1171-6
Google: something that happens at a given place and time | a phenomenon located at a
single point in space-time; the fundamental observational entity in relativity theory | In
the Unified Modeling Language, an event is a notable occurrence at a particular point in
time. Events can, but do not necessarily, cause state transitions from one state to another
... | An event in computer software is an action which can be initiated either by the user,
a device such as a timer or Keyboard (computing), or even by the operating system. | &

events). | An occurrence. | A runtime condition or change of state within a system. | A
thing which happens, like a button is pressed. Events can by low-level (such as button or
keyboard events), or they can be high level (such as when a new dataset is available for
processing). | A means by which the server notifies clients of changes of state. An event
may be a side effect of a client request, or it may have a completely asynchronous cause,
such as the user’s pressing a key or moving the pointer. In addition, a client may send an
event, via the server, to another client.

6In epidemiology, some authors reserve the word “occur” for an event (Google: happen;
take place; come to pass; “Nothing occurred that seemed important”) But, both in epidemi-
ology and in lay use, it is and can also be used for a state ( to be found to exist; “sexism
occurs in many workplaces”; “precious stones occur in a large area in Brazil”). Miettinen
[European J of Epi. (2005) 20: 11-15] makes this point in his reply to one of the several
authors who commented on his article Epidemiology: Quo vadis? ibid, 2004; 19: 713-718.

Walker’s commentary was devoted to teaching me that the concept of occurrence
has to do with outcome events only; that it thus does not encompass outcome
states; and that etiologic occurrence research therefore does not encompass the
important study of causal prevalence functions. As I now consult The New
Oxford Dictionary of English (1998 edn), I find as the meanings of ‘occurrence’
(as a mass noun) these: ‘the fact or frequency of something happening’ and ‘the
fact of something ezisting or being found . . .,” as in ‘the occurrence of natural

Population An aggregate of people, defined by a membership-defining...

— event — “cohort” ( closed population i.e., closed for exit)
or

— state —one is a member just for duration of state — Open population
(open for exit) / dynamic / turnover

e Prevalence (of a state) : The existence (as opposed to the inception or
termination) of a particular state among the members of the population.

e Prevalence Rate: the proportion of a population that is in a particular
state.

e Population-time: The amount of population experience in terms of the
integral of population size over the period of observation.

e Incidence: The appearance of events of a particular kind in a population
(of candidates over time)

— Incidence density (ID): The ratio of the number of events to the
corresponding population time (candidate time). If we subdivide
time into very short spans, ID becomes a function of time, ID(¢);
otherwise ID refers to the average over the entire span of time.

— Hazard: limiting case of ID as we narrow the span of time. More
commonly used w.r.t. closed population, with a natural “¢y.”

— Force of morbidity/mortality (Demography).

e Case: Medicine — episode of illness, (“a case of gonorrhea”). Epidemi-
ology — a person representing a case (in medical sense) of some state or

event

e Incident cases: Cases that appear (as against those that exist or prevail).

e Cumulative Incidence (CI): The proportion of a cohort (of candidates)
experiencing the event at issue over a particular risk period if time-specific
incidence density is considered to operate over that period.

gas fields.” And in my Perspective article I find ‘state’ or ‘prevalence’ occurring
as many as eight times, ‘event’ or ‘incidence’ no more than nine times. The
verb ‘occur,” I might need to add, means ‘happen; take place; exist or to be
found to be present . . . )’ as in ‘radon occurs naturally in rocks . . .’ [italics

added by JH]

7 Google: an occurrence or instance of something; “a case of bad judgment”’; “another in-
LI

stance occurred yesterday”; Merriam-Webster: noun, Middle English cas, from Anglo-French,
from Latin casus fall, chance, from cadere to fall. 1 a: a set of circumstances or conditions b
(1): a situation requiring investigation or action 6 a: an instance of disease or injury <a case of
pneumonia> .


https://link-springer-com.proxy3.library.mcgill.ca/book/10.1007%2F978-94-007-1171-6
https://link-springer-com.proxy3.library.mcgill.ca/book/10.1007%2F978-94-007-1171-6
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— The relation between ID and CI|°|can be expressed mathematically
as

T
CIT - C]()HT =1- exp{ —/ ID(t)df}
0

— As a function of ¢, the complement, 1—CIy_,, is called the “Survival”
function, S(t), since it is the proportion of the cohort that, at time
t, remains (continues, “survives”) in the initial state.

o Risk: The probability that an event (untoward) will occur.

e Case Fatality Rate: (Rothman 1986, p31) The cumulative incidence of

death among those who develop an [acute] illness [e.g., SARS, influenza,
COVID-19]. The time period for measuring the case fatality rate is often
unstated. [°]
In 2020, whether the denominator is limited to recognized cases, or in-
cludes all cases no matter where recognized or not, became contentious.
Thus, we saw the emergence of a new term, which estimates the propor-
tion of deaths among all infected individuals. [infection fatality ratio
(IFR). See also footnote to Q28 in 2021 version of Measurement Error
Notes.

1.3 The binary probability model

JH presumes they use this heading as a shorthand for ‘the probability model
for binary responses’ (or ‘binary outcomes’ or binary random variables)

... to “predict the outcome” : JH takes this word predict in its broader mean-
ing. If we are giving a patient the probability that he will have a certain
future event say within the next 5 years, we can talk about predictin the
outcome: we are speaking of prognosis; but what if we are giving a woman
the probability that the suspicious finding on a mammogram does in fact rep-
resent an existing breast cancer, we are speaking of the present, of whether

8 So fundamental JH puts it in red

9From Miettinen’s Terms and Concepts: Case-fatality rate (synonyms: fatality rate,
death rate) — Concerning cases of an illness in general, or recognized cases of it (ones with
rule-in diagnosis about the illness), the proportion in which the illness is fatal; that is, such
that the outcome of the course of the illness is fatality from it. (Cf. ‘Survival rate.”)
Note: For the concept to be truly meaningful, it commonly is to be specific to particulars
of the case (broadly at least) and to the choice of treatment; and it also is to be conditional
on absence of intercurrent death from some other, ‘competing’ cause.

10The term ‘Risk Prediction’ has led to further confusion. Risk is by definition anout the
future, and is a probability. It is the probability that (a future) Y=1. The Y is unknown,
but the Risk may be well or poorly ’known’.

a phenomenon already ezists, and we use a prevalence proportion as an esti-
mate of the diagnostic probability. Note that prevalence and incidence refer
to aggregates.

THE RISK PARAMETER

Risk typically refers to the future, and can be used when speaking to or about
one person; we don’t have a comparable specialized term for the probability
that a state exists when speaking to or about one person, and would therefore
just use the generic term probability.

THE ODDS PARAMETER

The sex-ratio is often expressed as an odds, i.e., as a ratio of males to fe-
males. If the proportion of males is 0.51, then the male:female ratio is 51:49
or (51/49):1, i.e., approximately 1.04:1. This example is a good reason why
C&H should have used a more generic pair of terms than failure and survival
(or success and failure).

In betting on horse races (at least where JH comes from), odds of 3:1 are
the odds against the horse winning; i.e., the probability of winning is 1/4@
When a horse is a heavy favourite so that the probability of winning was 75%,
the “bookies” would give the odds as “3:1 on.”|'?|

RARE EVENTS

One of the tricks to make events rare will be to slice the time period into
small slices or windows.

Death, the first of the two only sure events (taxes is the other) is also rare -
in the short term!

Also, it would be more correct to speak of a rare events, since disease is often
used to describe a process, rather than a transition. And since most transitions
are rapid, the probability of a transition (an event) occurring within a given
short sub-interval will usually be small.

If the state of interest being addressed with cross-sectional data is uncommon
(or rare), then yes, the prevalence odds and the prevalence proportion will be
very close to each other.

Supplementary Exercise 1.1. If one rounds probabilities or risks or preva-
lences (7’s), or their corresponding odds, 2 = 7/(1 — 7), to 1 decimal place,
at what value of 7 will the rounded values of m and Q be differerent? Also,

HThink of the 3:1 as the ‘bookie’ putiing $3 in an envelope, and the better butting $1,
and when the race result is known, the bookie or the bettor taking the envelope with the
$4.

12Now the bookie puts in 1 and the bettor 3


https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-covid-19
https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-covid-19
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why use lowercase 7 for proportion, and uppercase §2 for odds?

1.4 Parameter Estimation

Should you be surprised if the estimate were 7 were other than D/N? Consult
Google or Wikipedia on “the rule of succession,” and on Laplace’s estimate of
the probability that the sun will rise tomorrow, given that it has unfailingly
risen (D = 0) for the past 6000 years, i.e., N = 365 x 6000.

Supplementary Exercise 1.2. Suppose one has 2 independent observations
from the model

Elylz] = 8 x  [‘no intercept’ model].

The y’s might represent the total numbers of typographical errors on = ran-
domly sample pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The S in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2
units of weight in total for a sample of x = 1 page, and y = 8 units for a
separate sample of x = 2 pages. The [ in the model represents the mean
weight per page of the document. We gave this ‘estimation of 3’ problem to
several statisticians and epidemiologists, and to several grade 6 students, and
they gave us a variety of estimates, such as B = 3.6/page, 3.33/page, and
3.45!

How can this be? [If it still works] You might run the applet ‘2 datapoints and
a model’ https://jhanley.biostat.mcgill.ca/2DatapointsAndAModel

1.5 1Is the model true?

I wonder if they were aware of the quote, attributed to the statistician George
Box that goes something like this

“all models are wrong; but some are more useful than oth-

”

ers
Box also said

Statisticians, like artists, have the bad habit of falling in
love with their models.

http://en.wikiquote.org/wiki/George_E._P._Box

2 Conditional probability models
2.1 Conditional probability

JH is surprised at how few textbooks use trees to explain conditional proba-
bilities. Probability trees make it easy to see the direction in which one is
preceeding, or looking, where simply (and often arbitrarily chosen) algebraic
symbols like A and B can not; they make it easier to distinguish ‘forward’
from ‘reverse’ probabilities. try to order letters so it is A — B not B — A.

How to calculate probabilities

Probability Calculations

Basic Rules

Q d Probabilities add to |

Prob(event) =

A and B 1 - Prob(complement)
K !! > B

ADDITION FOR"EITHER A ORB"

If mutually exclusive

"PARALLEL" P(A or B) = P(A) + P(B)
If overlapping
P(A or B) = P(A) + P(B) - P(A and B)
A _— B

Wall Street Journal Not \
Not B

"l figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

MULTIPLICATION FOR"A AND B" OR"A THEN B"

If independent
"SERIAL" P(A and B) = P(A) - P(B)

If dependent
P(A and B) = P(A) - P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

Figure 1: From JH’s notes for EPIB607, introductory biostatistics for epidemiology

Trees show that the probability of a particular sequence is always a fraction
of a fraction of a fraction .. , and that if we start with the full probability
of 1 at the single entry point on the extreme left, then we need at the right
hand side to account for (‘conserve’) all of this (i.e., the ‘total’) probability.

STATISTICAL DEPENDENCE AND INDEPENDENCE

JH likes to say that with independence, one doesn’t have to look over one’s
shoulder to the previous event to know which probability to multiple by. The
illustrated example on the gender composition of 2 independent births, and of
a sample of 2 persons sampled (without replacement) from a pool of 5 males
and 5 females, show this distinction: in the first example, when one comes to
the second component in the probability product, Pr(y2 = male) is the same


https://jhanley.biostat.mcgill.ca/2DatapointsAndAModel
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whether one has got to there via the ‘upper’ path, or the ‘lower’ one.

Examples of Conditional Probabilities...

PERSONS PERSONS
Develop Develop

GENDER: 2 BIRTHS GENDER: 2 from 5M&5F

1st  2nd 1st  2nd Smoke? Lung Ca.? Lung Ca.? Smoke?
YES YES
YES YES
—
No NO
- YES YES
NO | m— NO
NO NO
Testing Dx Tests... Dx Tests In Practice...
SMOKERS: 1 M &1 F SMOKERS: Husband & Wife Disease Test Test Disease
m F H w +
YES YES +
YES YES
—
— — - -
_ NO — NO +
YES YES r
= —
NO — NO — —
NO NO
0. J. SIMPSON 0. J. SIMPSON
Murdered DNA DNA Murdered
wife? Match? Match? wife?
YES YES
YES YES
— —
NO — NO
- YES YES

Figure 2: JH examples of independence/dependence [2 panels on left] and
‘forward’/‘reverse’ probabilities [3 panels on right]

2.2 Changing the conditioning: Bayes’ rule

The panels on the right hand column of JH Figure 2 shows 3 examples of
‘forward’ probabilities (on the left) and ‘reverse’ probabilities (on the right).

The difference between ‘forward’ and ‘reverse’ probabilities distinguishes fre-
quentist p-values (probabilities) from Bayesian posterior probabilities.

Probability[data | Hypothesis| # Probability|Hypothesis | datal
or, if you prefer something that rhymes,
Probability| data | theta] # Probability| theta | datal.

Two striking — and frightening — examples of misun-
derstandings about them are given on the next page.

The True Title of Bayves’s Essa;

Today’s students are told that the Bayes essay was published after
his death under the title “An Essay toward solving a Problem in
the Doctrine of Chances”. But when he spoke in Montreal at the
end of 2013, Stephen Stigler gave us the inside story on the very
concrete reason the person who published it, Richard Price, had for
being interested in this work, and why it was advertised elsewhere
under a very different title: ‘A method of calculating the ex-
act probability of all conclusions based on induction’ Read
about Stigler’s fascinating detective work in his captivating arti-
cle Statistical Science 2013, Vol. 28, No. 3, 283-288 (Resources
website) or here:

http://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/
StiglerBayesTitle.pdf

A M-BE T B 0D
OF CALCULATING
THE EXACT PROBABILITY

O F

All Conclufions founded on InpucTion.

By the late Rev. Mr. Tnomas Baves, F.R.S.

Communicated to the Royal Socicty in a Letter to

JOHN CANTON, M.A F.R.S

A ND
Publifhed in Vol. LIII of the Philofophical Tranfations.

L1I. An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
Myr. Bayes, F. R. §. communicated by Mr.
Price, in @ Letter to John Canton, 4. M.
F.R.S. Read at the ROYAL SOCIETY Dec. 23, 1763

Withan APPENDIX by R.Price.

Dear Sir,

Read Dec. 23, J Now fend you an effay which I have

175 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

Figures 1 and 3 from Stigler 2013

LONDON:
Printed in the Yzar M.DCC. LX1V,


http://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/StiglerBayesTitle.pdf
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U.S. National Academy of Sciences under fire over plans for new
study of DN A statistics: Confusion leads to retrial in UK

[...] He also argued that one of the prosecution’s expert witnesses, as well as
the judge, had confused two different sorts of probability.

One is the probability that DNA from an individual selected at random from
the population would match that of the semen taken from the rape victim, a
calculation generally based solely on the frequency of different alleles in the
population. The other is the separate probability that a match between a
suspect’s DNA and that taken from the sceme of a crime could have arisen
simply by chance — in other words that the suspect is innocent despite
the apparent match This probability depends on the other factors that
led to the suspect being identified as such in the first place.

During the trial, a forensic scientist gave the first probability in reply to a
question about the second. Mansfield convinced the appeals court that the
error was repeated by the judge in his summing up, and that this slip — widely
recognized as a danger in any trial requiring the explanation of statistical
arguments to a lay jury — justified a retrial. In their judgement, the three
appeal judges, headed by the Lord Chief Justice, Lord Farquharson, explicitly
stated that their decision “should not be taken to indicate that DNA profiling
is an unsafe source of evidence.”

Nevertheless, with DNA techniques being increasingly used in court cases,
some forensic scientists are worried that flaws in the presentation of their
statistical significance could, as in the Deen case, undermine what might oth-
erwise be a convincing demonstration of a suspect’s guilt.

Some now argue, for example, that quantified statistical probabilities should
be replaced, wherever possible, by a more descriptive presentation of the con-
clusions of their analysis. “The whole issue of statistics and DNA profiling has
got rather out of hand,” says one. Others, however, say that the Deen case
has been important in revealing the dangers inherent in the ‘prosecutor’s
fallacy’. They argue that this suggests the need for more sophisticated cal-
culation and careful presentation of statistical probabilities. “The way that
the prosecution’s case has been presented in trials involving DN A-based iden-
tification has often been very unsatisfactory,” says David Balding, lecturer
in probability and statistics at Queen Mary and Westfield College in Lon-
don. “Warnings about the prosecutor’s fallacy should be made much
more explicit. After this decision, people are going to have to be
more careful.”

I3NATURE p 101-102 Jan 13, 1994.
14ijtalics by JH. The wording of the italicized phrase is imprecise; the text in bold wording
is much better .. if you read “despite” as “given that” or “conditional on the fact of”

“The prosecutor’s fallacy”: Who’s the DNA fingerprinting
pointing at?

Pringle describes the successful appeal of a rape case where the primary
evidence was DNA fingerprinting. In this case the statistician Peter
Donnelly opened a new area of debate. He remarked that

“forensic evidence answers the question

What is the probability that the defendant’s DNA profile
matches that of the crime sample, assuming that the
defendant is innocent?

while the jury must try to answer the question

What is the probability that the defendant is innocent, [in
the light of ALL of the OTHER EVIDENCE and] assum-
ing that the DNA profiles of the defendant and the crime
sample match? ”

Apparently, Donnelly suggested to the Lord Chief Justice and his fellow judges
that they imagine themselves playing a game of poker with the Archbishop of
Canterbury. If the Archbishop were to deal himself a royal flush on the first
hand, one might suspect him of cheating. Assuming that he is an honest card
player (and shuffled eleven times) the chance of this happening is about 1 in
70,000.

But if the judges were asked whether the Archbishop were honest, given that
he had just dealt a royal flush, they would be likely to place the chance a bit
higher than 1 in 70,000 *.

The error in mixing up these two probabilities is called the “the prosecutor’s
fallacy,” and it is suggested that newspapers regularly make this error.

Apparently, Donnelly’s testimony convinced the three judges that the case
before them involved an example of this and they ordered a retrial.

[* Comment by JH: This is a very nice example of the advantages of Bayesian
over Frequentist inference .. it lets one take one’s prior knowledge (the fact
that he is the Archbishop) into account.

The book ‘Statistical Inference” by Michael W. Oakes is
an  excellent  introduction to this topic and the limita-

tions of frequentist inference.] See also https://nautil.us/
the-flawed-reasoning-behind-the-replication-crisis-237493/

15New Scientist item by David Pringle, 1994.01.29, 51-52; cited in Vol 3.02 Chance News
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2.3 Examples

2.3.1 Example from genetics

Bayes Theorem : Haemophilia

Brother has haemophilia => Probability (WOMAN is Carrier) =
New Data: Her Son is Normal (NL) .

Update: Prob[Woman is Carrier, given her son is NL] = 7?

1 . PRIOR [ prior to knowing status of her son ]

WOMAN

0.5 0.5

NOT CARRIER CARRIER

/ LIKELIHOOD \

[ ProbsonisNLI PRIOR ] Son

2. 1.0
0.5 0.5
0.0
NL H NL H

L observed data —!

3. Products of PRIOR

0.5
WOMAN 0.25

e

POSTERIOR Given that Son is NL

and LIKELIHOOD

0.67
Probs. 0.33
Scaled to WOMAN
add to 1 I
NOT CARRIER CARRIER

Figure 3: simpler [older] example — nowadays, direct tests mean women don’t have to wait to

have a son to be probabilistically sorted into definite/possible carriers.

Women

Non-Carrier| ST | R

INL

Carrier]

Posssible Haemophilia Carriers (based on their family history)

Figure 4: At the outset, each woman had a 50:50 chance of being a
haemophilia carrier. Accumulating information from their sons in-
creasingly ‘sorts’ or segregates them by moving their probability of being
a carrier to 100% or towards 0%.

Probabilities: Diagnostic and Screening Tests
TI'y https://jameshanley.shinyapps.io/FromPreTestToPostTestProbabilities/,

while noting that what JH calls

e detection rate is called sensitivity in medicine, and power in statistics

e false alarm rate is alpha (medical people call it the false positive rate, but focus on
its complement, 1-alpha, and call it specificity)

e pre-test probability is sometimes referred to as the prior probability or ‘prevalence’

JH borrowed the nomogram from Fagan (p. 12, below). Fagan
put the pre-test probability on the right and worked from right
to left; his middle column has the Likelihood ratios (LR +ve >
1 and LR~ < 1); his post-test probabilities are on left. In JH’s
nomogram, pre-test is at bottom, then LRs, and then post-test.

Here is an older introduction to terminology/concepts in
medical diagnosis nttps://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/
PrimerMedicalDecisionMaking.pdf

See also the very interesting ‘When doctors meet numbers’ https://jhanley.biostat.
mcgill.ca/bios601/CandH-ch0102/Berwick1981WhenDoctorsMeetNumbers . pdf

This link https://jhanley.biostat.mcgill.ca//bios601/CandH-ch0102/ has several
newer articles under PERFORMANCE AND INTERPRETATION OF DIAGNOSTIC
TESTS. The one by Steurer — where he tries to improve matters by proving a user-friendly
explanation of the Likelihood ratio — is of note.

SCREENING for HIV https://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/

MeyerPaukerHIVscreening.pdf Can we afford the False Positive Rate? MDs tell Pres.
Reagan: ‘5/15 +ve results will be in people who are not infected.’
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2.4 Some cool interactive covid infographics from the
British Medical Journal

posted by Andrew Gelman on May 14, 2023

JH agrees that the BMJ Covid-19 test calculator is easier to use
than the (Likelihood-Ratio-based) Fagan tools we still use. But
one played around with it, would one learn the formula/basis
for the predictive values? As is evident in the (1981) study of
When Doctors Meet Numbers, this calculation is not easy to do
in one’s head, but the Likelihood Ration (LR) ‘bridge’ does sim-
plify it somewhat, albeit at the cost of having to transfer at the
end from the posterior odds to the posterior probability.

The comments at the end of the blog are valuable as well.

The tool is available at

https://sandpit.bmj.com/graphics/2020/c19test/| —

S W Covid-19 test calculator
How to interpret test results

Pre-test probability
The likelihood a person
has covid-19 based on
their characteristics

Test sensitivity
The proportion of

If 100 people were tested with these values

@ Have covid-19

True positive

patients with covid-19
who have a positive test

Adjust these values to
update graphic below

Test specificity
The proportion of 5 %

patients without covid-19
who have a negative test

@ Do not have covid-19

False positive

[+1+1+) o,
L 98%
0000000
0000000 [+
Test O&?&?&’é’é} Probability
positive OO‘%DC? © of having
© (+) covid-19
5 people who test person who tests positive iftestis
positive have covid-19 does not have covid-19 .
positive
They are appropriately told They are told they need to self-isolate
to self-isolate when they would be safe to go out
False negative True negative
O,
05298 20
029283 gce2e N
Test 8o°g %Qcﬁ Probability
negative © of having
covid-19
2 people who test negative 1 people who test negative iftesti
have covid-19 do not have covid-19 irtes .IS
negative
They are told they do not need to self-isolate They are told they do not need to
so they go out and infect more people self-isolate and are safe to go out
Disclaimer: This infographic is not a validated clinical decision aid. This information is provided without any representations, conditions, or warranties that it is accurate or
up to date. BM] and its licensors assume ibility for any aspect of treatment admil jth the aid of this ion. Any reliance placed on this information
is strictly at the user's own risk. For the full disclaimer BMJ's t itions: http: j P gal-i © 2020 BM) Publishing Group Ltd.
—


https://statmodeling.stat.columbia.edu/2023/05/14/some-cool-interactive-covid-infographics-from-the-british-medical-journal/
https://sandpit.bmj.com/graphics/2020/c19test/
https://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/Berwick1981WhenDoctorsMeetNumbers.pdf
https://sandpit.bmj.com/graphics/2020/c19test/

BIOS601: Notes, Clayton&Hills. Ch 1(Probability models); 2 (Condn’l prob. models; Bayes rule, Diagnostic probabilities, etc. ) v. 2023.09.01.

2.4.1 Twins: Excerpt from an article by Bradley Efron

MODERN SCIENCE AND THE BAYESIAN-FREQUENTIST CONTRO-
VERSY

Here is a real-life example I used to illustrate Bayesian virtues to the
physicists. A physicist friend of mine and her husband found out, thanks
to the miracle of sonograms, that they were going to have twin boys. One
day at breakfast in the student union she suddenly asked me what was the
probability that the twins would be identical rather than fraternal. This
seemed like a tough question, especially at breakfast. Stalling for time, I
asked if the doctor had given her any more information. “Yes”, she said,
“he told me that the proportion of identical twins was one third”. This
is the population proportion of course, and my friend wanted to know the
probability that her twins would be identical.

Bayes would have lived in vain if I didn’t answer my friend using Bayes’
rule. According to the doctor the prior odds ratio of identical to noniden-
tical is one-third to two-thirds, or one half. Because identical twins are
always the same sex but fraternal twins are random, the likelihood ratio
for seeing “both boys” in the sonogram is a factor of two in favor of Identi-
cal. Bayes’ rule says to multiply the prior odds by the likelihood
ratio to get the current odds: in this case 1/2 times 2 equals 1; in
other words, equal odds on identical or nonidentical given the sonogram
results. So I told my friend that her odds were 50-50 (wishing the answer
had come out something else, like 63-37, to make me seem more clever.)
Incidentally, the twins are a couple of years old now, and “couldn’t be
more non-identical” according to their mom.

Supplementary Exercise 2.1. Depict Efron’s calculations using
a probability tree.

Supplementary Exercise 2.2 Use a probability tree to deter-
mine the best strategy in the Monty Hall problem http://en.
wikipedia.org/wiki/Monty_Hall_problem

Supplementary Exercise 2.3 A man has exactly two children:
you meet the older one and see that it’s a boy. A woman has
exactly two children; you meet one of them [don’t know if its the
younger /older] and see is a boy. What is the probability (a) of the
man’s younger child being a boy, and (b) [be careful!] what is
the probability of the woman’s “other” child being a boy?

For many years JH insisted that the answer to (b) is 1/3. Early in 2023, he came across
extensive writings on this (poorly-posed) problem. See Gardner (1959) and vos Savant
(1997).
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Supplementary Exercise 2.4

Refer to the article https://jhanley.biostat.mcgill.ca/bios601/
CandH-ch0102/BBCNewsAmandaKnoxAndBadMathsInCourt . pdf

Specifically look at the highlighted section ”why are two tests better than

one?” and in particular, the statement that

“The probability that the coin is fair — given this outcome
— is about 8%”

This statement and the subsequent one involving the phrase “Now the prob-
ability for a fair coin” both seem to come out of nowhere.

Questions:

e Is this a well posed problem, or does one need to specify more context in
order to do the calculations?

e Are they using a p-value somehow?

e (After you have first thought about it for a while) read the rele-
vant portion of pages 61-62 and pages 85-86 of the book chapter


http://en.wikipedia.org/wiki/Monty_Hall_problem
http://en.wikipedia.org/wiki/Monty_Hall_problem
https://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/BBCNewsAmandaKnoxAndBadMathsInCourt.pdf
https://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/BBCNewsAmandaKnoxAndBadMathsInCourt.pdf

BIOS601: Notes, Clayton&Hills. Ch 1(Probability models); 2 (Condn’l prob. models; Bayes rule, Diagnostic probabilities, etc. ) v. 2023.09.01.

http://ebookcentral.proquest.com/lib/mcgill/reader.action?
docID=991081&ppg=74 Math Error Number 4: Double Experiment: the
test that wasn’t done (Amanda Knox case) and find out what informa-
tion was missing from the BBC article. Then verify the 92:8 posterior
odds given in the chapter. Repeat the calculation, but assuming only a
5% prior probability that the coin is biased and a 95% probability that
it is fair. Comment.

Supplementary Exercise 2.5

Refer to the Economist article ‘Problems with scientific research: HOW SCI-
ENCE GOES WRONG’ https://jhanley.biostat.mcgill.ca/bios601/
CandH-ch0102/HowScienceGoesWrong . pdf

It has a very nice graphical explanation of why some many studies get it
wrong, and cannot be reproduced — the topic of the Reproducibility Project
in Psychology referred to on same page.

One reason is that even if all studies were published, regardless of whether the
p-value was less than 0.05 (a common screening/filtering criterion) or greater
than 0.05, then, of all the hypotheses tested, only a small percentage of the
hypotheses are ‘true’. Thus many or most of the ‘positive’ tests (published
results) will be false positives. It is just like when using mammography to
screen for breast cancer: in maybe 4 of every 5 women referred for biopsy, the
biopsy will come back negative.

1. Represent the information in their Figure as a tree. Then present the
same information in a different tree, with data on left, and hypothesis on
the right (rather than the conventional ‘theta — data’ direction) — as JH
has done in the three rightmost instances in Figure 2 on page 6 above.

2. What percentage of positive tests would be correct/not if, instead, 1 in
2 of the hypotheses interesting enough to test were true?

3. Come up with a general formula for what in medicine is called the ‘positive
predictive value’ of a positive medical test.

4. Try to simplify it so that the characteristics of the test (o and J) are
isolated in one factor, and the testing context (the 1 in 10 or 1 in 2, etc)
is in another. Hint: use odds rather than probabilities, so that you are
addressing the ratio of true positives to false positives, and the ratio of
true hypothesis to false hypotheses. And use the Likelihood Ratio

5. On the same Resources web page is another (but longer) attempt to
explain these concepts graphically to left brain and right brain doc-
tors. https://jhanley.biostat.mcgill.ca/bios601/CandH-ch0102/
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RightSideLeftSide.pdf. JH was impressed with this, and wanted to
share it with the Court for Arbitration in Sport, when explaining the
interpretation of positive doping tests. But he found that the ‘teaser’
sentence immediately following the title

Can you explain why a test with 95% sensitivity might identify
only 1% of affected people in the general population?

is misleading, and so he make his own diagram (available on request).

Ezxercise: Revise this misleading phrase.

see http://shinyapps.org/apps/PPV/

Supplementary Exercise 2. How many offspring do I need to test?
Background

A researcher is trying to develop a strain of “transgenic” mice, by introducing
an altered gene (transgene) into the genome. In order to breed true, the
animals must be made to be homozygous, i.e., to have two copies of the
introduced gene (+ +) . Molecular biology techniques can detect whether
the transgene is present in an individual animal (without having to sacrifice
the animal), but cannot distinguish a hemizygote, with one copy of the gene
(+ -), from a homozygote (+ +). This difference can only be detected by
breeding strategies. But, time and resources are pressing.

A copy of the transgene is injected into the pronucleus of a newly fertilized ovum, prior to
fusion with the male pronucleus. Thus all animals that develop from these zygotes can have at
most one copy of the gene, from the ovum. After birth, screening is performed to detect these
“positive” animals, called founders. After sexual maturation, all founders are bred to normal
“wild type” (WT) animals, to ensure that the transgene has been incorporated in such a way as
to be heritable. Pairs of positive (hemizygous) animals in this F1 generation are then bred to
each other. By Mendelian genetics, the distribution of F2 offspring should be 1:2:1, homozygous
transgenic : hemizygous transgenic : homozygous normal. The homozygous normal animals are
not used. The question is, how to tell the homozygous transgenic mice (the desired ones) from
the hemizygous transgenic ones? Note that the mix in this reduced population is 1 homozygous
transgenic to 2 hemizygous transgenic.

E2 breeding:

All ’positive’ F2 animals (i.e. all homozygous and hemizygous animals) are bred to wild type.
Possible F3 genotypes are as follows: (by Mendelian genetics)

e Hemizygous (which com<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>