15
 Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding but it does have some limitations. This chapter deals with the alternative and more generally useful approach of stratification. We shall again illustrate our argument using the study of the relationship between energy intake and IHD first introduced in Chapter 13 and further analysed in Chapter 14. There, in Table 14.1, we showed the data stratified by 10 -year age bands and demonstrated that the low energy intake group is, on average, rather older. This might explain some, or all, of the increase in IHD incidence rate. The method of direct standardization predicts the marginal rates for energy intake groups with the same standard age distribution. This chapter explores the alternative approach which compares age-specific rates within strata. Table 15.1 extends Table 14.1 by calculating rate ratios within each age band. This demonstrates the main problem with this approach to confounding; holding age constant and. making comparisons within age strata leads to variable and unreliable estimates, because the age-specific rates are based on so few data

This problem is resolved is by combining the age-specific comparisons from the separate strata, but any such procedure carries with it a further modelling assumption, because combining the age-specific comparisons can only be legitimate if we believe that they all estimate the same underlying quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Age	$\begin{gathered} \text { Exposed } \\ (<2750 \mathrm{kcal}) \end{gathered}$			$\begin{gathered} \text { Unexposed } \\ (\geq 2750 \mathrm{kcal}) \end{gathered}$			Rate ratio
	D	Y	Rate	D	Y	Rate	
40-49	2	311.9	6.41	4	607.9	6.58	0.97
50-59	12	878.1	13.67	5	1272.1	3.93	3.48
60-69	14	667.5	20.97	8	888.9	9.00	2.33
Total	28	1857.5	15.07	17	2768.9	6.14	2.45

groups is constant across age-bands, the evidence from the three bands can be brought together to provide a single estimate of the (constant) agespecific rate ratio. Of course the model on which the estimate is based, like all models, is open to question and in later chapters we shall discuss ways in which we can test whether it holds. For the present, we shall be content to believe that the model holds in our example, and that the fluctuation of age-specific rate ratios in Table 15.1 is no more than we would expect given the small numbers of cases in each age band.

Our notation follows naturally from earlier chapters. The age bands are indexed by the superscript t and exposure groups are indexed by subscripts, so that λ_{0}^{t} and λ_{1}^{t} are the rate parameters in age band t for the unexposed and exposed subjects respectively. We shall write the rate ratio parameter as θ, so that the model of constant rate ratio may be written

$$
\frac{\lambda_{1}^{t}}{\lambda_{0}^{t}}=\theta
$$

This is called the proportional hazards model. The parameter θ is called the rate ratio for exposure controlled for age, sometimes abbreviated to the effect of exposure controlled for age. In this chapter we discuss how θ can be estimated.

15.2 The likelihood for θ

When the rate ratio is constant across age bands, we can replace the rate parameters λ_{1}^{t} by $\theta \lambda_{0}^{t}$. In our example, this reparametrization replaces the original six rate parameters, which we assume to be constrained to obey the proportional hazards model, with four parameters which are free to take any positive value. One parameter, namely the rate ratio θ, is our prime interest, and the remaining three are regarded as nuisance parameters.

Since each age band serves as an independent study, it is a simple matter to write down the log likelihood for a stratified comparison. Constructing the log likelihood using the prospective argument, each age band contributes a term which depends upon θ and the appropriate λ_{0}^{t}. The total likelihood is obtained by adding these terms over age bands. For comparing rates between exposed and unexposed subjects, the parameters λ_{0}^{t} are nuisance parameters. As in Chapter 13, replacing these by their most likely value for given θ leads to a profile \log likelihood for θ. With the caveat expressed at the end of section 13.3, this log likelihood can also be justified as a conditional likelihood based on the split of cases within each stratum.

The \log likelihood ratio curve for $\log (\theta)$ in our illustrative example is shown in Figure 15.1. Using a computer, it is a simple matter to find the most likely value, M, and to use the curvature of the \log likelihood ratio to compute a Gaussian approximation. In this case $M=0.8697$

Fig. 15.1. Log likelihood ratio for the common rate ratio.
and $S=0.3080$, and this approximation is shown as a broken line in the figure. The most likely value of the rate ratio is $\exp (0.8697)=2.386$ and confidence intervals can be calculated using the error factor:

$$
\exp (1.645 \times 0.3080)=1.660
$$

The fact that the high energy-intake group is, on average, slightly younger than the low energy-intake group is the reason why the estimate of the rate ratio controlled for age is slightly smaller than the crude rate ratio (2.45). However, the difference is extremely small. This is not unusual; rather large differences between exposure groups in important variables are necessary for the effect of confounding to be appreciable.

Unfortunately it is not possible to calculate the values of M and S by hand using simple formulae. The computer programs which are used to carry out such computations are very flexible and allow more complicated models to be fitted. Accordingly discussion of these will be postponed until Part II and the remainder of this chapter will deal with methods which require only a hand calculator.

15.3 A nearly most likely value for θ

We saw in Chapter 13 that, in an unstratified analysis, both profile and conditional arguments led to the Bernoulli likelihood

$$
D_{1} \log (\Omega)-D \log (1+\Omega)
$$

where Ω, the odds for a case having been exposed, is $\theta Y_{1} / Y_{0}$. The gradient of the curve of \log likelihood versus $\log (\theta)$ is

$$
D_{1}-D \frac{\Omega}{1+\Omega}
$$

which, after substituting $\theta Y_{1} / Y_{0}$ for Ω and rearranging becomes

$$
\frac{1}{Y_{0}+\theta Y_{1}}\left(D_{1} Y_{0}-\theta D_{0} Y_{1}\right)=W\left(D_{1} Y_{0}-\theta D_{0} Y_{1}\right)
$$

where $W=1 /\left(Y_{0}+\theta Y_{1}\right)$. In a stratified analysis, the log likelihood is the sum of contributions of each stratum,

$$
\sum\left[D_{1}^{t} \log \left(\Omega^{t}\right)-D^{t} \log \left(1+\Omega^{t}\right)\right]
$$

and the gradient is similarly constructed by adding up gradient contributions:

$$
\sum W^{t}\left(D_{1}^{t} Y_{0}^{t}-\theta D_{0}^{t} Y_{1}^{t}\right)
$$

where $W^{t}=1 /\left(Y_{0}^{t}+\theta Y_{1}^{t}\right)$ are stratum weights.
The most likely value of θ occurs where the gradient is zero, that is, at

$$
\theta=\frac{\sum W^{t} D_{1}^{t} Y_{0}^{t}}{\sum W^{t} D_{0}^{t} Y_{1}^{t}}
$$

Since calculation of the weights W^{t} involves θ, and this equation cannot be used directly to find the most likely value. However, it can be used iteratively as follows:

1. guess a value for θ, and use this to calculate initial weights;
2. using these, calculate a first estimate of θ;
3. using this new estimate, calculate more accurate weights.

The sequence of calculations may be repeated until there is no change in the estimate. Computer programs for maximum likelihood estimation use similar iterative methods of computation.

In practice, the estimate obtained is not very sensitive to changes in the values of the weights - rather large changes make only a relatively small difference to the estimate. Additionally, it may be argued that it is only really important to achieve the closest approximation to the log likelihood when estimating rate ratios which are fairly close to 1 . These considerations suggest using the weights corresponding to the choice $\theta=1$, and to go no further with the calculations. These weights are the reciprocal of the person-years observations in each age band:

$$
W^{t}=\frac{1}{Y_{0}^{t}+Y_{1}^{t}}=\frac{1}{Y^{t}}
$$

Use of these weights leads to the Mantel-Haenszel estimate of the rate ratio*,

$$
\frac{\sum D_{1}^{t} Y_{0}^{t} / Y^{t}}{\sum D_{0}^{t} Y_{1}^{t} / Y^{t}}
$$

In this expression, each age band makes contributions of

$$
Q^{t}=\frac{D_{1}^{t} Y_{0}^{t}}{Y^{t}}, \quad \quad R^{t}=\frac{D_{0}^{t} Y_{1}^{t}}{Y^{t}}
$$

to the top (numerator) and bottom (denominator) of the estimate respectively. The estimate of the rate ratio for age band t is Q^{t} / R^{t} and the combined estimate of the constant rate ratio is Q / R, where $Q=\sum Q^{t}$ and $R=\sum R^{t}$.
Exercise 15.1. Calculate Q^{t} and R^{t} for each of the three age bands in Table 15.1, and hence calculate the Mantel-Haenszel estimate of the rate ratio. Compare this with the most likely value.

15.4 Calculating p-values and confidence intervals

Approximate p-values are most easily calculated using the score test. Since the \log likelihood for θ for the age-stratified comparison is the sum of contributions from each age band, it follows that its gradient, and hence the score, is the sum of scores for each stratum. Similarly, the curvature is the sum of the curvatures of the separate contribution of each stratum so that the overall score variance is the sum of score variances for each stratum. That is,

$$
\underset{=}{U}=\sum U^{t}, \quad V=\sum \underset{r}{V^{t}}
$$

Thus to carry out the test we first calculate scores and score variances for each stratum separately and then sum these over strata to obtain the total score and score variance. We then compare $(U)^{2} / V$ with the chisquared distribution in the usual way. The contribution of stratum t to the score and score variance are of the same form as given at the end of section 13.2 , namely

$$
U^{t}=D_{1}^{t}-D^{t} \pi_{\varnothing}^{t}, \quad V^{t}=D^{t} \pi_{\varnothing}^{t}\left(1-\pi_{\varnothing}^{t}\right)
$$

where $\pi_{\varnothing}^{t}=Y_{1}^{t} / Y^{t}$, the ratio of exposed to total person years.
Exercise 15.2. For our example, what is the p-value for the null hypothesis that, after controlling for age, the rate ratio is 1 .

[^0]As before, the value of U may be interpreted as the difference between the number of cases who had been exposed and the number expected under the null hypothesis, taking into account the age structures of exposed and unexposed groups.

The calculation of the score variance, V, also allows us to calculate an approximate confidence interval around the Mantel-Haenszel estimate. A Gaussian approximation on the $\log (\theta)$ scale, with

$$
S=\sqrt{\frac{V}{Q R}} .
$$

can be used to calculate an error factor and the approximate confidence interval in the usual way. ${ }^{\dagger}$
Exercise 15.3. Calculate the standard deviation, S, of the \log Mantel-Haenzsel estimate for the energy intake data. Use this to calculate a 90% confidence interval for the rate ratio adjusted for age.
These results are very close to those obtained using a computer program to find the Gaussian approximation to the log likelihood curve. The computer method is better in the sense that, as the quantity of data increases, the approximate interval of support approachs the correct likelihood-based interval, while the Mantel-Haenszel interval remains slightly wider no matter how much data we collect. The discrepancy is rarely important.

© 15.5 The log-rank test

Our example in this châpter has involved stratification by a time scale, age, into three rather broad bands. In clinical follow-up studies time is measured from diagnosis or start of treatment and the incidence of events may vary rapidly, requiring the choice of narrow bands. This, together with the fact that choice of bands may introduce an arbitrary element into the analysis, has led to the popularity of a version of the test in which time is stratified infinitely finely into clicks, with no click containing any more than one event. This test is called the log rank ${ }^{\ddagger}$ or Mantel-Cox test.

Derivation of this test from that of the previous section is straightfor-- ward. The first thing to notice is that clicks which contain no event (i.e. with $D^{t}=0$) make no contribution either to the score, U, or the score variance, V. We therefore need only consider those clicks in which we observe the occurrence of an event in one of the groups $\left(D^{t}=1\right)$. These are are

[^1]Table 15.2. Survival times in two groups of patients

Group	Time (days)
Test treatment	$86,99^{*}, 119^{*}, 123^{*}, 139^{*}, 161^{*}, 185^{*}, 212^{*}, 231,253^{*}$,
$(N=20)$	$262^{*}, 281^{*}, 303^{*}, 355^{*}, 360^{*}, 380^{*}, 392,467^{*}, 499^{*}, 514^{*}$
Control	$73,91,102^{*}, 120^{*}, 135,160^{*}, 194,202^{*}, 209^{*}, 220^{*}$,
$(N=20)$	$252,270^{*}, 296,330^{*}, 347^{*}, 375^{*}, 390^{*}, 414,475^{*}, 485^{*}$

known as informative time points. ${ }^{\S}$ Since each click is very short, we need not consider variation in the time spent by different subjects in the band, and the null probability that a failure was exposed becomes

$$
\pi_{\varnothing}^{t}=\frac{N_{1}^{t}}{N^{t}}=\frac{\text { Number of exposed subjects in study at time } t}{\text { Total } \text { number of subjects in study at time } t} .
$$

Each failure makes a contribution to the score of the difference between the observed number of events in the exposed group, which is either 0 or 1 , and the expected number, which is simply π_{\varnothing}^{t}. The score variance is obtained by adding the contributions

$$
V^{t}=\pi_{\varnothing}^{t}\left(1-\pi_{\varnothing}^{t}\right) .
$$

Exercise 15.4. Table 15.2 shows times between entry to a clinical trial and relapse for patients receiving two methods of therapy. (The data are only illustrative - a real trial with so much censoring would need to be much larger than this!) The times marked with an asterisk represent times at which observation ceased without occurrence of relapse. Construct a table showing the times of occurrence of relapses, the number of patients in each group under study at each of these times, and the corresponding observed and expected relapses in the test group. Use this table to carry out the score test.

15.6 Comparison with reference rates: the SMR

An important special case concerns the comparison of age-specific rates in a study cohort, λ^{t}, with those in a reference population, which we shall denote by λ_{R}^{t}. We have discussed this informally in Chapter 6. A more formal treatment follows as a simple case of the methods discussed above.

The proportional hazards model holds that the ratio of age-specific rates in the study cohort to the reference rates is constant across age bands,

$$
\frac{\lambda^{t}}{\lambda_{\mathrm{R}}^{t}}=\theta
$$

§Since clicks have no duration, we assume that no more than one event occurs at any time point.

If we observe D^{t} failures in Y^{t} person years of observation in each age band of the cohort, the log likelihood contribution is

$$
D^{t} \log \left(\lambda^{t}\right)-\lambda^{t} Y^{t}
$$

and making the substitution $\lambda^{t}=\theta \lambda_{\mathrm{R}}^{t}$ this becomes

$$
D^{t} \log (\theta)+D^{t} \log \left(\lambda_{\mathrm{R}}^{t}\right)-\theta \lambda_{\mathrm{R}}^{t} Y^{t}
$$

Since the reference rates λ_{R}^{t} are calculated from very large populations, they are effectively known constants, and the above log likelihood depends only on one unknown parameter, θ. The second term in the log likelihood does not depend on θ and can be ignored, and the third term may be simplified after noting that $\lambda_{\mathrm{R}}^{t} Y^{t}$ is the expected number of failures obtained by multiplying the age-specific reference rate by the corresponding personyears of observation of the study cohort (see Chapter 6). Denoting this by E^{t}, the log likelihood contribution of one age band becomes

$$
D^{t} \log (\theta)-\theta E^{t}
$$

and summation over age bands leads to the total log likelihood

$$
D \log (\theta)-\theta E
$$

where D, E are the total observed and expected numbers of failures. This is a Poisson \log likelihood, but the rate ratio parameter θ replaces the rate parameter λ, and the expected number of failures E replaces the personyears Y. Thus estimating θ in this case is just the same as estimating a rate. The most likely value is the ratio of observed to expected cases, D / E, and in epidemiology this is called the standardized mortality ratio, or $S M R$. A 90% confidence interval can be calculated using the error factor

$$
\exp \left(1.645 \sqrt{\frac{1}{D}}\right)
$$

An approximate p -value for the null hypothesis $\theta=1$ can be carried out using the score and score variance

$$
U=D-E, \quad V=E
$$

Comparison of rates with reference rates in this way is known in epidemiology as indirect standardization.
Exercise 15.5. In the follow-up study of ankylosing spondylitis patients discussed in Chapter 6, the observed number of deaths from leukaemia was 31 while
the expected number calculated from reference rates was 6.47. Calculate the 90% confidence interval for the common ratio of cohort age-specific rates to reference rates. Also calculate an approximate p -value for the null hypothesis $\theta=1$.

Exercise 15.6. The calculation of the expected number of deaths in the ankylosing spondilitis study was based on person-years classified by both age and calendar period (see Chapter 6). What further modelling assumption is formally necessary to justify the analysis carried out in the previous exercise?

15.7 Comparing standardized rates

We showed in Chapter 14 that standardized rates estimate the marginal rates when the age distributions are corrected to a common standard. These are weighted sums of age-specific rates. In the case of three age bands, the marginal rate is

$$
W^{1} \lambda^{1}+W^{2} \lambda^{2}+W^{3} \lambda^{3}
$$

where $\left(W^{1}, W^{2}, W^{3}\right)$ are the relative frequencies of the three age bands in the standard distribution, and the ratio of two marginal rates, corrected to the same age distribution, is

$$
\frac{W^{1} \lambda_{1}^{1}+W^{2} \lambda_{1}^{2}+W^{3} \lambda_{1}^{3}}{W^{1} \lambda_{0}^{1}+W^{2} \lambda_{0}^{2}+W^{3} \lambda_{0}^{3}}
$$

When the proportional hazards model holds, every term in the numerator of this expression is θ times the corresponding term in the denominator, and it follows that the ratio of marginal rates will also be θ - the relationship between marginal rates is the same as that between the conditional (agespecific) rates. Thus, the ratio of standardized rates can be used as an estimate of θ. However it may not be a very good estimate if the standard age distribution gives high weight to age bands with few failures.

Note that the equivalence demonstrated above between the conditional and marginal comparisons does not hold for all stratification models. For example, if the ratio of the age-specific odds of failure for exposed and unexposed subjects is a constant, θ, for all ages then the ratio of marginal odds is not equal to θ, even when there is no confounding and the age distributions are identical. Thus we cannot always rely on the method of direct standardization if we are interested in comparisons within strata. In Chapter 18 we shall encounter an important example of this.

15.8 Comparison of SMRs

Although the ratio of standardized rates can be used as an alternative estimate of θ, there has been some controversy as to whether the ratio of two SMRs can also be used in this way.

An understanding of the formal model which lies behind indirect standardization clarifies this argument. Calculation of an SMR for an exposed cohort, using reference rates λ_{R}^{t} implies the model

$$
\lambda_{1}^{t}=\theta_{1} \lambda_{\mathrm{R}}^{t}
$$

where θ_{1} is the constant ratio of rates in this cohort to reference rates. Similarly, calculation of an SMR for an unexposed cohort implies the model

$$
\lambda_{0}^{t}=\theta_{0} \lambda_{\mathrm{R}}^{t}
$$

A direct consequence of these two models is that the ratio of rates for the two cohorts is also constant across age. This can be demonstrated by simply dividing the two equations, when λ_{R}^{t} cancels leaving

$$
\frac{\lambda_{1}^{t}}{\lambda_{0}^{t}}=\frac{\theta_{1}}{\theta_{0}}=\theta
$$

Thus if the age-specific rates for both exposed and unexposed cohorts are proportional to the reference rates, the comparison of SMRs is legitimate Since the likelihoods for θ_{1} and θ_{0} are Poisson in form, with expected numbers of failures E_{1} and E_{0} replacing person-years observation Y_{1} and Y_{0}, the likelihood for their ratio, θ, is the same as for the rate ratio in Chapter 13.

This method, however, relies on the assumption that both sets of agespecific rates are proportional to the reference rates. If they are proportional to each other, but not to the reference rates, then the ratio of SMRs will not correctly estimate the rate ratio θ. Because of this additional assumption concerning reference rates, estimation of θ by the ratio of SMRs is not usually to be recommended.

Solutions to the exercises

15.1 The calculations are as follows:

Age	Q^{t}	R^{t}
$40-49$	$2 \times 607.9 / 919.8=1.32$	$4 \times 311.9 / 919.8=1.36$
$50-59$	$12 \times 1272.1 / 2150.2=7.10$	$5 \times 878.1 / 2150.2=2.04$
$60-69$	$14 \times 888.9 / 1556.4=8.00$	$8 \times 667.5 / 1556.4=3.43$
Total	16.42	6.83

The Mantel-Haenszel estimate is $16.42 / 6.83=2.40$ while the most likely value is 2.39 .
15.2 The score is:

$$
U=\left(2-6 \frac{311.9}{919.8}\right)+\left(12-17 \frac{878.1}{2150.2}\right)+\left(14-22 \frac{667.5}{1556.4}\right)
$$

$$
=28-18.41
$$

$$
=9.59
$$

and the score variance is

$$
\begin{aligned}
V & =6 \times \frac{311.9 \times 607.9}{(919.8)^{2}}+17 \times \frac{878.1 \times 1272.1}{(2150.2)^{2}}+22 \times \frac{667.5 \times 888.9}{(1556.4)^{2}} \\
& =1.34+4.11+5.39 \\
& =10.84
\end{aligned}
$$

The chi-squared value (1 degree of freedom) is $(9.59)^{2} / 10.84=8.48$ and - $p<0.005$.
15.3 The standard deviation for the approximation is

$$
S=\sqrt{\frac{V}{Q R}}=\sqrt{\frac{10.84}{16.42 \times 6.83}}=0.311
$$

The error factor for the 90% confidence interval is $\exp (1.645 \times 0.311)=1.67$, and recalling that the Mantel-Haenszel estimate was 2.40 , the confidence limits are $2.40 / 1.67=1.44$ (lower limit) and $2.40 \times 1.67=4.01$ (upper limit).
15.4 The times at which events occurred, the numbers of patients under observation, and the observed and expected relapses in the test group are shown below

t	N_{1}^{t}	N_{0}^{t}	N^{t}	D_{1}^{t}	E_{1}^{t}
73	20	20	40	0	$20 / 40=0.50$
86	20	19	39	1	$20 / 39=0.51$
91	19	19	38	0	$19 / 38=0.50$
135	16	16	32	0	$16 / 32=0.50$
194	13	14	27	0	$13 / 27=0.48$
231	12	10	22	1	$12 / 22=0.55$
252	11	10	21	0	$11 / 21=0.52$
296	8	8	16	0	$8 / 16=0.50$
392	4	3	7	1	$4 / 7=0.57$
414	3	3	6	0	$3 / 6=0.50$

The overall score is

$$
U=3-(.50+.51+.50+\cdots+.57+.50)=-2.13
$$

and the score variance is

$$
V=(.50 \times .50)+(.51 \times .49)+\cdots+(.50 \times .50)=2.49
$$

The score test is $(U)^{2} / V=1.82$ and $p>0.10$. This test is the score test for $\theta=1$ in the proportional hazards model which holds that the ratio of the relapse rates of the two treatments is constant (at θ) regardless of time since entry into the trial.
15.5 The most likely value of θ is the SMR ,

$$
\frac{31}{6.47}=4.791
$$

The error factor is

$$
\exp \left(1.645 \sqrt{\frac{1}{31}}\right)=1.344
$$

s 6 that the 90% confidence interval is from $4.791 / 1.344=3.56$ to $4.791 \times$ $1.344=6.44$.
The score test is

$$
\frac{(31-6.47)^{2}}{6.47}=93.00
$$

and $p<0.001$.
15.6 Follow-up was stratified by both age and calendar period when calculating the expected number of deaths. The model which underlies the above analysis therefore assumes that the ratio of rates in the ankylosing spondilitis cohort to those in the reference population is constant for all ages and for all calendar periods.

15 Comparisons of rates within strata

15.1 The proportional hazards model

In this example, the p.h. model is used to reduce the dimension of the problem from a log-likelihood with $\underline{6}$ parameters for $\underline{6}$ rates

$$
\begin{array}{lll}
\text { stratum(s) - } & \lambda_{s_{1}, 1} & \lambda_{s_{1}, 0} \\
\text { stratum(s)-2 } & \lambda_{s_{2}, 1} & \lambda_{s_{2}, 0} \\
\text { stratum(s)-3 } & \lambda_{s_{3}, 1} & \lambda_{s_{3}, 0}
\end{array}
$$

to one with $\underline{4}$ parameters for $\underline{6}$ rates

$$
\begin{array}{lll}
\text { stratum(s) - } 1 & \theta \lambda_{s_{1}, 0} & \lambda_{s_{1}, 0} \\
\text { stratum(s)-2 } & \theta \lambda_{s_{2}, 0} & \lambda_{s_{2}, 0} \\
\text { stratum(s)-3 } & \theta \lambda_{s_{3}, 0} & \lambda_{s_{3}, 0}
\end{array}
$$

(Note the constant-across-age-bins θ) and from there, by use of either a profile log-likelihood or a log-likelihood based on conditional distributions, to one with the 1 parameter of interest, θ, the (assumed constant over strata) rate ratio.
As we will see, in the case where the Poisson denominators are known (rather than estimates based on sampling), one can also fit the $\underline{4}$ parameter model by an unconditional approach but focus only on the parameter of interest, θ.
JH is curious why C\&H stayed with direct numerical searches for $\hat{\theta}$, rather than showing how the conditioning leads to 3 (stratum-specific) binomials, so that the overall log-likelihood that can be maximized with 'off-the-shelf' GLM software. Maybe they wanted to 'empower' you by showing that as long as you are able to write down the log-likelihood, the rest is just a matter of maximizing it, and that is no longer a big deal. And indeed, a conditioning method is not always available, so we should not count on being able to convert the task to fitting a GLM.

15.2 "The" likelihood for θ

JH put quotes around The, since we need to be a bit more careful here. There are 3 possible likelihoods: 2 of them, the profile and 'conditional' likelihoods, are 1-dimensional, and happen in this case to coincide with each other, and the 3rd just-mentioned one, the 'unconditional' likelihood, which is 4-dimensional.

C\&H use the 1-dimensional likelihood, and in particular the profile version.
They start with the 4-D log-likelihood

$$
L L\left(\theta, \lambda_{s_{1}, 0}, \lambda_{s_{2}, 0}, \lambda_{s_{3}, 0}\right)
$$

obtained as a sum of 6 cell-specific contributions. They then use profiling within each stratum to eliminate the $\lambda_{\text {stratum, } 0}$ so that the 2 cells in a stratum contribute a stratum-specific $L L_{\text {profile }}(\theta)$ and so that the profile likelihood based on all 3 strata is

$$
L L_{\text {profile }}(\theta)=\sum_{i}\left\{D_{s_{i}, 1} \log \left(\Omega_{i}\right)-D_{s_{i}} \log \left(1+\Omega_{i}\right)\right\}
$$

where, in stratum i,

$$
\Omega_{i}=\theta \times\left(Y_{s_{i}, 1} / Y_{s_{i}, 0}\right)
$$

Just as in chapter 13, with unstratified data, this profile log-likelihood is exactly the same as the log-likelihood for 3 binomial observations, each with its own Ω. However, all 3Ω 's are connected by the single parameter of interest, θ, and three constants $Y_{s_{1}, 1} / Y_{s_{1}, 0}, Y_{s_{2}, 1} / Y_{s_{2}, 0}$, and $Y_{s_{3}, 1} / Y_{s_{3}, 0}$, so we can write this as a generalized linear model, with 3 binomial observations,

stratum	$\operatorname{denom}(D)$	$\operatorname{num}\left(D_{1}\right)$	Y.ratio $=\frac{Y_{1}}{Y_{0}}$	$\log (\Omega)=\log \left(\frac{E\left(D_{1} \mid D\right)}{D-E\left(D_{1} \mid D\right)}\right)$
1	6	2	0.513	$\log (\theta) \times 1+X_{0}+\gamma \times X$
2	17	12	0.690	$\log (\theta) \times 1 \times \log (0.513)$
3	22	14	0.751	$\log (\theta) \times 1 \times \log (0.690)$

Here, $X_{0} \equiv 1$ is a regressor, β is the parameter of interest to be fitted, X is the other regressor, and γ is a parameter whose value is known, rather than fitted. In GLM terminology, X is an offset.

Supplementary Exercise 15.1, based on C\&H's 3-age-strata example

i. Create the function \log-likelihood (θ) in R , and maximize it with respect to θ using optimize.
ii. Unfortunately, optimize does not return the curvature (Hessian). But the optim function, which is recommended for 2- and higher dimensional searches, does. Instead of telling optimize the range within which to search, you pass a set of starting values for the parameter vector par.
So, trick the optim into maximizing a 1-parameter function, by including a 'fake' parameter that does not influence the log-likelihood. Use the returned Hessian to calculate the SE for $\hat{\theta}_{M L}$.
Repeat, but focusing on \log-likelihood (β), where $\beta=\log [\theta]$, and compare your results with those of C\&H.
iii. Did C\&H pick a good example where a confounding factor (here age), if ignored, would lead to a very different (and very wrong) answer? Answer by calculating $\hat{\theta}_{M L}$ for the aggregated data (as in Chapter 13, i.e. before they segregated the data by age). Note the difference between aggregating raw data across strata, and aggregating parameter estimates (by summing likelihoods, or by some other weighting) across strata.
iv. Instead of explicitly defining and maximizing the conditional/profile likelihood, which simplifies in this example to a 1-parameter binomial-based likelihood, obtain $\hat{\theta}_{M L}$ using a GLM, for example, in R:
$\mathrm{D} 1=\mathrm{c}(2,12,14)$; $\mathrm{D}=\mathrm{c}(6,17,22) ; \mathrm{X}=\mathrm{c}(1,1,1)$;
Y.ratio=c(311.9/607.9, 878.1/1272.1, 667.5/888.9);
fit=glm(cbind(D1,D-D1)~-1+X,family=binomial,offset=log(Y.ratio)) summary (fit)
beta.hat=log.theta.hat=fit\$coefficients;
theta.hat $=\exp$ (log.theta.hat)
Var.beta.hat $=$ summary (fit) \$cov.unscaled $[1,1]$
c(beta.hat, theta.hat, Var.beta.hat)
and verify that fitting this GLM leads to the same $\widehat{\log (\theta)}=0.8697$ and $S E(\widehat{\log (\theta)})=0.3080$ that $\mathrm{C} \& \mathrm{H}$ report at the bottom/top of page 142/143.
v. What would happen if you used the same p.h. model but fitted all 4 parameters in an unconditional approach? Use this code to see: you have 6 Poisson observations, the link is a $\log \operatorname{link}$, and the $6 \log (y)$'s serve as offsets.
Comment on your results.
D.all6 = c(D1,D-D1) ; Index.category $=c(1,1,1,0,0,0)$;
Y.all6=c (311.9, 878.1,667.5, 607.9,1272.1, 888.9);

Stratum=c $(1: 3,1: 3)$
cbind(Stratum, Index.category, D.all6,Y.all6)
Poisson.fit=glm(D.all6 ~ as.factor(Stratum) + Index.category , family=poisson, offset=log(Y.all6))
summary (Poisson.fit)
\exp (Poisson.fit\$coefficients)
vi. Remember to ask next term's MATH523 (GLM) teacher to explain to you why you get the (dis)agreement you get between the conditional and unconditional approaches to Poisson data.
Also ask the teacher (or try it for yourself) whether you would you get the same odds ratio if you fitted an unconditional (2binomial) model and the conditional (non-central hypergeometric) model to the frequencies $\{\mathrm{a}=3, \mathrm{~b}=2, \mathrm{c}=1, \mathrm{~d}=1\}$? Hint: see page 126 in Statistical Methods In Cancer Research Vol I The-Analysis-Of-Case-Control-Studies-1980, by Breslow and Day.

ML point- (\& interval) Estimates via Newton-Raphson Method From Newton's Method in Wikipedia ...

In numerical analysis, Newton's method (also known as the NewtonRaphson method, named after Isaac Newton and Joseph Raphson) is perhaps the best known method for finding successively better approximations to the zeroes (or roots) of a real-valued function $f(x)$. Newton's method can often converge remarkably quickly, especially if the iteration begins "sufficiently near" the desired root. Just how near "sufficiently near" needs to be, and just how quickly "remarkably quickly" can be, depends on the problem. This is discussed in detail below. Unfortunately, when iteration begins far from the desired root, Newton's method can easily lead an unwary user astray with little warning. Thus, good implementations of the method embed it in a routine that also detects and perhaps overcomes possible convergence failures.
Given a function $f(x)$ and its derivative $f^{\prime}(x)$, we begin with a first guess x_{0}. A better approximation x_{1} is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Newton's method can also be used to find a minimum or maximum of such a function, by finding a zero in the function's first derivative.

In our case, we seek the root of the function $f(\theta)=d \log L / d \theta$, so the iteration takes the form

$$
\hat{\theta}_{\text {new }}=\hat{\theta}_{\text {previous }}-\left.\frac{d \log L / d \theta}{d^{2} \log L / d \theta^{2}}\right|_{\theta=\hat{\theta}_{\text {previous }}}
$$

Exercises in previous years: Using the Newton-Raphson method, repeat Supplementary Exercise 3.1 (Estimation of σ^{2} from grouped data), Exercise 3.2 (Estimation of concentration via a dilution series) via the Newton-Raphson method; Supplementary Exercise 5.1 (Estimation of (constant across timebands) rate parameter λ from censored HIV data).

[^2]15.3 $\theta=$ RateRatio $\rightarrow \hat{\theta}_{\text {Mantel-Haenszel }} \simeq \hat{\theta}_{M L}$ almost!

The key is the form of the θ estimator shown in the middle of page 144.

$$
\hat{\theta}_{M L}=\frac{\sum D_{s_{i}, 1} \times Y_{s_{i}, 0} /\left(Y_{s_{i}, 0}+\hat{\theta}_{M L} Y_{s_{i}, 1}\right)}{\sum D_{s_{i}, 1} \times Y_{s_{i}, 0} /\left(Y_{s_{i}, 0}+\hat{\theta}_{M L} Y_{s_{i}, 1}\right)}
$$

C\&H note that the profile and conditional likelihoods are both the same, and are based on the fitting of 3 binomials with different Ω 's, as above. You can work through their math at the top of page 144. You can also arrive at the estimator by using an estimating equation directly. In this case, we are estimating a single parameter θ and so there is only 1 estimating equation, and as in all generalized models, the first estimating equation is that the sum of the observed y values must equal the sum of the fitted or expected values. In our case, the 3 observed values are $D_{s_{1}, 1}, D_{s_{2}, 1}$ and $D_{s_{3}, 1}$, so the estimating equation is

$$
\sum_{i} D_{s_{i}, 1}=\sum_{i} E\left[D_{s_{i}, 1}\right]=\sum_{i} \widehat{D_{s_{i}, 1}}
$$

Now

$$
\widehat{D_{s_{i}, 1}}=D_{s_{i}} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}
$$

and so our estimating equation is

$$
\sum_{i} D_{s_{i}, 1}=\sum_{i} D_{s_{i}} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}
$$

If we now break up each $D_{s_{i}}$ into its two components, we get

$$
\sum_{i} D_{s_{i}, 1}=\sum_{i} D_{s_{i}, 0} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}+\sum_{i} D_{s_{i}, 1} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}
$$

After re-arranging terms, we get

$$
\sum_{i} D_{s_{i}, 1}\left(1-\frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}\right)=\sum_{i} D_{s_{i}, 0} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}
$$

or

$$
\sum_{i} D_{s_{i}, 1}\left(\frac{Y_{0}}{Y_{0}+\hat{\theta} Y_{1}}\right)=\sum_{i} D_{s_{i}, 0} \times \frac{\hat{\theta} Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}
$$

or as

$$
\hat{\theta}=\frac{\sum_{i} \frac{D_{s_{i}, 1} \times Y_{0}}{Y_{0}+\hat{\theta} Y_{1}}}{\sum_{i} \frac{D_{s_{i}, 0} \times Y_{1}}{Y_{0}+\hat{\theta} Y_{1}}},
$$

or, with $W_{i}=1 /\left(Y_{0}+\hat{\theta} Y_{1}\right)$, as

$$
\hat{\theta}=\frac{\sum_{i} W_{i} \times D_{s_{i}, 1} \times Y_{0}}{\sum_{i} W_{i} \times D_{s_{i}, 0} \times Y_{1}} .
$$

One can also arrive at this as C\&H did, by setting to zero the sums of the 3 derivatives of the profile \log likelihood with respect to $\log (\theta)$, or with respect to θ itself, and finding the root. Either way, the estimating equation is always the 'balancing equation',

$$
\sum_{\text {strata }} \text { observed no. of exposed cases }=\sum_{\text {strata }} \text { fitted no. of exposed cases, }
$$ used above.

Supplementary Exercise 15.2 Follow the iterative re-weighting scheme 1.2.3. described by $\mathrm{C} \& \mathrm{H}$ on the bottom of page 144 to arrive at $\hat{\theta}_{M L}$.

Note: The iterative re-weighting scheme produces the ML point estimate, but does not provide a measure of precision for it. The Newton-Raphson procedure and the optim procedure do, since they use an analytical or numerical version of the second derivative of the log-likelihood.
Note also that if we write the \log-likelihood as a function of $\beta=\log (\theta)$ rather than $\log (\theta)$, and carry out the $\mathrm{N}-\mathrm{R}$ (or optim) procedure on the β scale to obtain a ML point estimate of β, then to get back to the CI on the Rate Ratio scale, you would use the SE on the log scale to get a symmetric (z-based) CI, then convert it a CI for $\theta=\exp (\beta)$

Supplementary Exercise 15.3 See section (c) of section 3.6 of Breslow and Day Vol II. There they say that the ML estimation of the rate ratio ψ from stratified P T data requires iterative calculations, so let's iterate...
We will use B\&D's Example 3.11, with data, shown in Table 3.14, from $J=13$ age-period strata.

Table 3.14 Series of 2×2 tables used in example 3.11. Low exposure (-) means less than 1 year of heavy or moderate arsenic exposure; high exposure (+) means 15+ years

Again interest is in the rate ratio parameter $\psi=\lambda_{j 1} / \lambda_{j 0}$, assumed (for now) to be constant over the J strata.

Thus, for each of the J strata, $O_{j 1} \mid D_{j} \sim \operatorname{Binomial}\left(D_{j}, \pi_{j}\right)$, where

$$
\pi_{j}=\psi \times P T_{j 1} /\left(\psi \times P T_{j 1}+P T_{j 0}\right)
$$

Note the switch of notation, from O_{j+} to D_{j}, and subscripts 1 and 0 for exposed and not.
i. Derive the ML estimating equation (3.15) for $\hat{\psi}_{\text {condn'l }}$,

$$
\sum_{j=1}^{j=J} D_{j 1}=O_{1}=E_{1}=E\left(\sum_{j=1}^{j=J} D_{j 1} ; \psi\right)=\sum_{j=1}^{j=J} D_{j} \psi n_{j 1} /\left(n_{j 0}+\psi n_{j 1}\right)
$$

by obtaining the expression for $d \log L / d \psi$ and setting it to zero.

B\&D say that

In large samples the most accurate estimator of ψ is the maximum likelihood estimate, obtained by setting the overall observed number of deaths D_{2} in the exposed group (index category) overall equal to its expected value.
ii. Use the Newton-Raphson iterative method to find the root of the $d \log L / d \psi$ function, ie

$$
\hat{\psi}^{(k+1)}=\hat{\psi}^{(k)}+\left.\frac{d \log L / d \psi}{d^{2} \log L / d \psi^{2}}\right|_{\hat{\psi}^{(k)}}=\hat{\psi}^{(k)}+\left.\frac{\Sigma_{j} d \log L_{j} / d \psi}{\Sigma_{j} d^{2} \log L_{j} / d \psi^{2}}\right|_{\hat{\psi}^{(k)}}
$$

iii. How does the iteration change if we rewrite the Likelihood, and thus the \log Likelihood, in terms of β, where $\psi=\exp (\beta)$?
iv. Obtain $\hat{\psi}_{\text {condn'l }}$ from a generalized linear model (Binomial) fitted to the 13 binomial observations. The stratified data are available in the BIOS602 website in the 'Inference re Rates -regression methods' resources. Note that one can specify Binomial (rather than Bernoulli) data by using as ' y ' a matrix with 2 columns: the numbers positive and negative, i.e.
glm(cbind('\# +ve' vector,'\#no. -ve' vector) ~..., family=binomial, ...).
v. Obtain $\hat{\psi}_{\text {uncondn'l }}$ from a generalized linear model (Poisson, 14 parameters) fitted to the $(j=1, \ldots, 13) \times(i=0,1)=26$ observations $\left\{O_{j i}, P T_{j i}\right\}$.
Are your estimates in agreement with Breslow and Day's statement (lines $5-6$, page 109) that under the Poisson model, $\hat{\psi}_{\text {condn'l }}=\hat{\psi}_{\text {uncondn'l }}$? Note B\&D's comment that the same will not be true for conditional vs. unconditional estimation of a common rate ratio when the $P T$'s are estimated from J stratified denominator ('control') series, particularly if the strata are sparse.

Supplementary Exercise 15.4: Is there a higher rate of autism in children who have been vaccinated with the MMR (Measles, Mumps, Rubella) vaccine? And, does it matter whether we correct/adjust for age?
Autism cases are shown as dots, and the vaccinated and unvaccinated childtime as darker and lighter areas. Notice that the vaccinated child-years occur at younger ages (average 2.35 years), where (as is shown at bottom) the rates of autism diagnosis are lower - so a simple (age-blind) comparison of the autism density in darker and lighter areas (average ages 2.35 and 4.04 years) would also be a comparison of rates in older versus younger years, and so reflect a mix of the effect of age and the effect of vaccination. 3^{3}

[^3]On the website you will find R code to read in the data Each line is the data for one cell: 72 'cells' in all, i.e., all combinations of (vaccinated/not, year, and age) The last two fields are child-years and no. of cases. The experience inside each cell is from the same Lexis squar ${ }^{4}$, where the child years come from children in a single-age and single year 'bin' or 'rectangle'.
i. Analyze the data using (unconditional) Poisson regression, as the authors did, using a 36 -level variate for 'cell' and a binary indicator (dummy) variate for the 'vaccinated' category ($1=$ 'yes'; $0-$ 'no'). Don't forget to include the (36) offsets [see the simple 3 -strata example above]
ii. Re-arrange the data for a binomial-based analysis: 36 binomial observations, each with its own offset, 1 per age-year cell. Then analyze the data using conditional Poisson regression, i.e. using a binomial model, a binary indicator (dummy) variate for the 'vaccinated' category ($1=$ 'yes'; 0 -'no'), Don't forget to include the (36) offsets [see the simple 3 -strata binomial example above]
iii. Also, use the same 36 -row data frame to calculate RateRatio ${ }_{M-H}$, i.e., the 'almost MLE' Rate Ratio estimate, or what is more popularly known as the 'Mantel-Haenszel' summary estimate.
iv. How close are the 3 estimates?
v. Does it matter in this example that we adjusted for age? (answer by comparing them with the 'crude' RateRatio, which ignores the ages of the children-years).

[^4]
Supplementary Exercise 15.5: Do Oscar Winners Live Longer than Less Successful Peers? A Reanalysis of the Evidence

The aims are to carry out (1) the ' $\mathrm{P}-\mathrm{Y}$ ' analysis described in the 2006 'McGill' re-analysis, and (2) calculate the 'fewer-assumptions involved' Mantel-Haenszel summary ID ratio that the McGill authors calculated but - not to confuse the reader with yet another analysis - omitted from the article. Later on in the course, we will analyze the data with the same (timedependent Cox PH) model that was reported on in the 2006 article.
Under the EPIB634 Resources for regression models for (incidence) rates you will find (a) the Oscar data set ${ }^{5}$ with one data-record per performer (b) a dataset (with approx. 20,000 records) in which each the performer's data-record has been converted (split) into 1-year data-records, and classified according to age, period, AND Oscar-status, (c) a smaller dataset in which the individual performer-years (and numbers of deaths) have been aggregated into 'sex-age-period-Oscar' cells, with 5-year age-bands and 10 year calendar-yearbands ${ }^{6}$]and (d) a file similar to (c), but where all of a performer's performertime is allocated to the 'winners' category if that performer ever won an Oscar, or to the 'nominated' category if (s)he was nominated but never won \square^{7}
In the description of (b) and (c) below, the name of the Oscar-status indicator is shortened to O, with $O=0$ indicating performer-time lived as a nominee, and $O=1$ indicating performer-time lived as an Oscar winner. In the actual dataset to be analyzed, i.e. in (c), $O=0$ corresponds to w.cat=0 and $O=1$ to w. cat=1.

In (b) each (Oscar-status-specific) record documents the experience in each (age, period) 'rectangle ${ }^{8}$ traversed, i.e., the number of years spent in that rectangle, and the Vital status (0 if alive, 1 if dead) at the end of these

[^5]years .9 Because the Lexis program is written for generic transitions ('events') of any type (not necessarily bad ones), this status variable is called lex.Xst, which refers to the status (in our example vital status, 0 alive, 1 dead) at the performer's 'exit' (pardon the pun, but the ' X ' in 'Xst' stands for an epidemiologic 'exit' from the Lexis diagram, and the 'st' stands for status). The other key variable is lex.dur, which refers to the duration or length of the performer's time-slice.
In (c), which is formed by summing the performer-time lex.dur and the lex.Xst over all transits through the same sex-age-period-O cell, the two sums are the total $p-t$ and total deaths in this cell - remember that a sum of 0 's and 1's is a count of the number of 1's.
i. Use dataset version (c) to compare the death rates in the performeryears lived as nominees (reference category, w. cat $=0$) with those lived as winners (index category, w. cat=1), by fitting the following multiplicative (i.e. 'rate ratio') mode ${ }^{10}$ to the numbers of deaths in each sex-age-periodOscar (shortened to s-a-p-O here, in order to fit the equation into one line) 'cell'.
$$
\text { Rate }_{\text {cell }}=\text { Rate }_{\text {ref.cell }} \times M_{s: r e f} \times M_{a: r e f} \times M_{p: r e f} \times M_{O: r e f},
$$
where the ref.cell is a suitably chosen reference 'corner' cell (Clayton and Hills' terminology), and each M (the rate ' \underline{M} ultiplier') is short for Mortality Rate Ratio ($M R R$), - the theoretical, unknown, to be estimated, ratio of the mortality rate in the category ${ }^{11}$ of the determinant in question relative to the reference category of that determinant.
For fitting purposes, you translate the epidemiologic (rate) model above into the following statistical model
$E[\#$ deaths $]=e^{\left\{\log \text { Rate }_{r e f}+\log M_{s} \times s+\log M_{a} \times a+\log M_{p} \times p+\log M_{O} \times O+\log (P T)\right\}}$,

[^6]so that
$\log \{E[\#$ deaths $]\}=\beta_{\text {ref }}+\beta_{s} \times s+\beta_{a} \times a+\beta_{p} \times p+\beta_{O} \times O+\log (P T)$.
Writing out both models lets you match the coefficients from the fitted statistical (R) model with the fitted parameter value(s) of interest in the epidemiological (rate) model. (def'n.: epidemiologist: a student of rates).
ii. Write out the fitted multiplicative model in the same way as Clayton and Hills did in Table 22.7 in their Introduction to Regression chapter of their Statistical Models for Epidemiology textbook. Comment on the MRR for the 'years lived as a winner' vs. 'years lived as a nominee' contrast.
iii. Comment on the fitted effects of gender ${ }^{12}$, age and calendar time, and whether they 'fit' with what you expect, and have seen in other datasets 13
iv. From dataset (c) calculate the total performer-time lived as a nominee (' $P T_{\text {nominee }}$ '), and the total performer-time lived as a winner (' $P T_{\text {winner }}$ '). Compare these with the corresponding values calculated from the 'Redelmeier' version, i.e., from dataset (d). Comment ${ }^{14}$
v. Fit the same multiplicative model fitted in (i) to the data in dataset (d). Compare the fitted ' O ' effect in this dataset - where w.cat is a fixed-from-the-outset variable - with what you found in the (McGill) version - where w. cat is a time-dependent variable. Comment.
vi. How would Mantel have analyzed these data? The R code file in resources includes some that allows you to convert datafile (c) into a form where you can treat sex, age and calendar period as stratifying variables - it puts the 'exposed' PT and deaths in the exposed PT in the same datarecord as those for the un-exposed PT in the same stratum, making it easy to obtain the stratum-specific products, and to obtain the numerator and denominator sums used to calculate the ratio in formula 8.5 - déjà vu - in Rothman2002.

[^7]Use this re-arranged dataset to calculate this Mantel-Haenszel mortality rate ratio. How does it compare with the one obtained from Poisson regression?
vii. Use this same re-arranged dataset to calculate separate Mantel-Haenszel mortality rate ratios for actors and actresses. Based just on the numbers of deaths involved, do you think they are statistically significantly different?

If you wanted to pursue this effect-modification numerically, you could use the formula to obtain the SE of each rate ratio (or rather the SE of the log-rate-ratio). The formula is given in section 3.6(d) of Breslow and Day Volume II. It is quite tedious to do by hand, but quite easy with R or Excel.
viii. Use this same re-arranged dataset to obtain a 'MLE' from the profile (or conditional) 1-parameter likelihood - i.e. 'profile-out' or 'condition-out' all of the other parameters in the unconditional model you fitted in part i, so the focus is just on the rate ratio for the index vs. reference categories of the determinant of prime interest. Hint: this problem has the same structuer as the one in supplementary exercise 15.7.

The original report continues to be cited... just Google 'Oscars longevity'
https://www.health.harvard.edu/press_releases/oscar_winners
See also 'Immortal Time’ Blunders: history, identification, severity

Supplementary Exercise 15.6: BNT162b2 Vaccine Effectiveness against Death from the Delta Variant

The following data were extracted from Table 1 of 'BNT162b2 and ChAdOx1 $n C o V-19$ Vaccine Effectiveness against Death from the Delta Variant' based on a Scotland-wide surveillance platform (Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 [EAVE II] that includes individual-level linked data on vaccination, testing, viral sequencing, primary care, hospital admissions, and mortality among 5.4 million people (approximately 99% of the Scottish population). The New England Journal of Medicine, October 20, 2021.

Age		$\mathrm{P}-\mathrm{Y}$	P	D	$\mathrm{D} / 100,000 \mathrm{PY}^{\dagger}$	VE
16-39						
	Unvaccinated	8669.5	35449	17	0.20	
	Vaccinated* *	567.3	3040	0	0.00	vv.v
$40-59$		9236.8				
	Unvaccinated	1230.3	4803	33	2.68	
	Vaccinated* *	629.8	3318	2	0.32	vv.v
≥ 60		1860.1				
	Unvaccinated	81.4	380	24	29.49	
	Vaccinated*	351.0	1952	24	6.84	vv.v
$===$		432.4				
ALL		$===$	$===$	$==$	$===$	
	Unvaccinated	9981.2	40632	74	xx.xx	
	Vaccinated*	1548.1	8310	26	yy.yy	VV.V
		11529.3				

P-Y: Person-Years of Follow-up; P: No. of Persons ; D: No. of Deaths: VE:
Vaccine Efficacy; *With BNT162b2; Second dose ≥ 14 days before test.

Exercise

In order to apply the methods in C\&H's Ch. 15 to the data given above ...
i. Summarize the key points they make in Section 15.1.
ii. In the first paragraph of section 15.2, what are the 'four parameters, which are free to take any positive value'? (see p. 1 of JH's Notes)
iii. Both the profile and conditional log-likelihoods eliminate three of these, and leave us with the 1-parameter log-likelihood given in line 8 of page 144. That single parameter θ is hidden inside each of the 3Ω 's.

Code this logLik as an R function of $\log \theta$ and plot it, just as $\mathrm{C} \& \mathrm{H}$ do in Figure 15.1. (by the way, take note of the word common in their label on their x-axis. Also take note of how symmetric it is: the more symmetric, the more accurate is the z-based CI for $\log \theta$).
iv. Maximize it using the optimize (or better still the optim) function. (The latter also gives you the curvature, and thus the SE of the fitted value.)
v. Instead of 'rolling your own', use a 1-parameter GLM (binomial) model, similar to that shown in JH's Notes on section 15.2.

```
D1 = c( 0, 2, 24)
D = c(17+0, 33+2, 24+24)
0= log(c(8669.5/567.3, 1230.3/629.8, 81.4/351.0) )
fit = glm( cbind(D1,D-D1) ~ 1 + offset(0),
    family = binomial)
( HR = round(exp(fit$coefficients),2) )
( VE = 100*(1-HR) )
```

vi. Compare them with the results from an (unconditional) GLM (4parameter) Poisson model with (canonical) log link. Comment on any differences.

D $=c(17, \quad 0, \quad 33, \quad 2, \quad 24, \quad 24)$
$P Y=c(8669.5,567.3,1230.3,629.8,81.4,351.0)$
Vaccinated $=\operatorname{rep}(c(0,1), 3)$
Stratum $=\operatorname{rep}(1: 3$, each=2)

\# multiplicative (rate ratio)

\#crude

```
fit = glm(D~ Vaccinated + offset(log(PY)),
    family=poisson)
summary(fit)
round(exp(fit$coefficients),3)
# incl. age
fit = glm(D~ as.factor(Stratum) + Vaccinated +
    offset(log(PY)), family=poisson)
summary(fit)
round(exp(fit$coefficients),3)
```

vii. Present the fitted (unconditional) model in the 2 formats given at the beginning of JH's Notes on Ch 15.1 ${ }^{15}$
viii. Compare the fitted ratio with the ratio of the standardized rates you calculated last week. Which method would you prefer to explain to a journalist? What is gained by the modelling approach, and at what 'cost'? 16
ix. Summarize the new elements learned during this exercise.

Supplementary Exercise 15.7

i. Follow the iterative re-weighting scheme 1.2.3. described by C\&H on the bottom of page 144 to the data in Exercise 15.6.
ii. How many iterations does it take to get the same 'to-2-decimal-places' estimate of θ ?
iii. How good a job does the 1-step Mantel-Haenszel estimator do?
iv. How good a job does the 'approximate interval around the MantelHaenszel estimate' do? (See lines 5-10 of page 146).

[^8]
Supplementary Exercise 15.8

Here are the numbers of coronary disease deaths and person-years of observation (PY) by age and smoking status among British male doctors. The data are taken from Table 3.15, page 112 in Breslow and Day, volume II, who cite the source as Doll, R. \& Hill, A.B. (1966) Mortality of British doctors in relation to smoking: observations on coronary thrombosis. Natl Cancer Inst. Monogr., 19, 205-268.

	Nonsmokers		Smokers		
Age-Group	PY	Deaths	PY	Deaths	PY.Ratio
$35-44$	18790	2	52407	32	2.79
$45-54$	10673	12	43248	104	4.05
$55-64$	5710	28	28612	206	5.01
$65-74$	2585	28	12663	186	4.90
$75-84$	1462	31	5317	102	3.64

Here they are again, but in another layout more suitable for an (unconditional) regression analysis.
i. C\&H's data on CHD in relation to physical activity are a less than ideal example of the need to adjust for age, since the age-distributions are not that different, so the crude and 'somehow-'adjusted ratios won't be that different How age-imbalanced are the PYs in this smoking and CHD example? ${ }^{17}$
ii. $\mathrm{B} \& \mathrm{D}$ say that they computed a $\mathrm{M}-\mathrm{H}$ summary rate ratio estimate of 1.4247. Check their work.
iii. B\&D also used ML to fit an assumed 'common over all age groups' rate ratio of $\exp (0.3545)=1.426$. Again, check their work.
iv. Even though the 2 estimates are extremely close in this instance, B\&D gave a 'one-step' correction of the log of the MH-estimate towards the MLE that agrees with the log of the ML-estimate to 5 decimal places. How good a job does the next-step of the method described by C\&H on the bottom of page 144 do?
v. B\&D used the ML estimate to examine the
'trend with age and obtained heterogeneity and (corrected) trend statistics of $X_{4}^{2}=11.1$ and $X_{1}=10.0$ on four and one

[^9]degrees of freedom, respectively. Thus, most of the heterogeneity in the rate ratio is explained by the linear decrease with age. Rothman and Boice (1979) note that these data are more consistent with an additive effect model than with a multiplicative one. In section 4.4 we show that an even better fit is obtained using a square-root function to relate age and smoking effects.

How might you fit a smooth 'lower RR's at higher ages' model in (a) an unconditional approach, i.e., using a Poisson model for the 10 rows of data (b) a conditional approach, i.e., using a Binomial model for the 5 rows of data?

[^0]: *In fact Mantel and Haenszel did not propose, t thes method but an extremely similar one for case-control studies. We shall discuss this in Chapter 18 .

[^1]: ${ }^{\text {t }}$ This approximation is not widely known, but it would not appropriate to justify it here. It suffices to say that it is adequate for all our purposes.
 ${ }^{\ddagger}$ This nomenclature may seem rather obscure, since the calculation of the test requires neither logarithms or ranks! It arises from an alternative derivation.

[^2]: ${ }^{1} \mathrm{JH}$ included this Newton-Raphson technique in the early years of BIOS601, before he was introduced to the optimize and optim functions in R. He still believes students should know this technique and be able to 'roll their own' maximization routines when needed.

[^3]: ${ }^{2}$ Article and Editorial
 ${ }^{3}$ Just like the contusion in the case of the Belfast Catholic girl \& Protestant boy. Also, ignore the EXERCISE at the bottom of the diagram: it was designed for medical students the year the article appeared.

[^4]: ${ }^{4}$ JH's diagram in the pervious page is a somewhat unconventional way to show the 2 timedimensions: calendar time and children's ages. See Chapter 6 Notes for the conventional way.

[^5]: ${ }^{5}$ For reasons jh can better explain in person, this differs slightly from that analyzed in the Redelmeier article.
 ${ }^{6}$ You are asked to the analyses with (c), which is named aggregated-Lexis-rectangles.txt. Nowadays, with fast computers and lots of live memory / disk storage space for large datasets, you could do the analysis using (b). Since it uses finer subdivisions of age and calendar period, you would get get slightly different answers, and you would probably choose to model age and calendar-time with (functions of) continuous variables, rather than with a very large number of indicator variables - 'dummy' variables, if you insist on that meaningless term - for the finer ageand calendar-period categories.
 ${ }^{7}$ The name of datafile (d), aggregated-Lexis-rectangles-r.txt, has the suffix '-r' to denote it as the 'Redelmeier' allocation of the performer-time.
 ${ }^{8}$ This terminology is from Lexis, who tended to use squares, e.g., 5 -year age bands and 5 -year calendar-year bands: since death rates vary faster over ages than over calendar time, you want to make the age-bands (i.e., the age-matching) quite narrow: thus jh formed rectangles that are 1 (age) year high by 10 (calendar) years wide, so in effect each slice was 1 year long: you could rerun the time-slicing program with other 'cuts.'

[^6]: ${ }^{9}$ If you want to see how these split records were created, you can look at and run the R code shown in the resources. It uses the Lexis package that is available from the R site, and developed by Carstensen (R 'Epi' package http://staff.pubhealth.ku.dk/~bxc/Epi/). See also the survSplit function in the survival package - we used this to split the time in the COMPARE (stents) study. One of the students in bios602 discovered two other options. One is a standalone Windows program, from http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html; the other is the pyears function in the Survival package in R (jh doesn't remember if Survival is part of the default R installation, or needs to be added). Stata users: there is a time-slicing function used in conjunction with survival analyses.
 ${ }^{10}$ One could, and would if need be, refine this model further, e.g. by refining the relationship of rates with age, and allowing for the possibility of different effects of O in males and females...
 ${ }^{11}$ Or level, if we model the variable as an interval variable.

[^7]: ${ }^{12}$ Even though we used the term 'sex' above, one could make a good argument for preferring the term 'gender' in this context: Google 'gender vs. sex'.
 ${ }^{13}$ The effects of gender, age and calendar time are secondary here, but if you do choose to represent age and calendar-time as linear (continuous) variables, make sure you report their effects correctly - they should broadly 'line up' with the fitted effects when using indicator variables.
 ${ }^{14}$ For the principle behind the correct allocation of person-time, and early examples of incorrect P-T allocation, see section 3.1 of Volume II of Breslow and Day's text, available in the resources for the bios602 course. See also the material on 'immortal-time' bias in the 'Regression models for (incidence) rates' resources on the 634 website.

[^8]: ${ }^{15}$ Incidentally. Clayton and Hills have a very insightful chapter called Introduction to Regression Models that is well worth reading.
 ${ }^{10}$ Nothing comes for tree.

[^9]: ${ }^{17}$ Admittedly, here, with a wider age-range, and rate ratios that are lower at higher ages, the use of a common-over-ages rate ratio is less approprite

