Theoreticat Consiaeration.

Suppose the whole liquid to have been well mixed and spread out in a thin
layer over NV units of area (in the hemacytometer the usual thickness is ‘01 mm.
and the unit of area };sq. mm.).

Let the particles subside and let there be on an average m particles per unit
area, that is Nm altogether. Then assuming the liquid has been properly mixed
a given particle will have an equal chance of falling on any unit area.

i.e. the chance of its falling in a given unit area is 1/N and of its not doing so

1-1/N.

Consequently considering all the mN particles the chances of 0,1, 2, 3.
particles falling on a given area are given by the terms of the bmomlal

mN
{(1 —llV> +%} , and if M unit areas be considered the distribution of unit
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N
areas containing 0, 1, 2, 8... particles is given by M {(1 —W> +1_V}m .

Now in practice N is to be measured in millions and may be taken as
infinite.



Let us find the limit when N is infinite of the general term of this expansion.
The (r + 1)th term is: '
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But when we proceed to the limit YW and ¥ N N

e all negligeably small compared to m so that the expression reduces to
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That is to say that the expansion is equal to

—M{1+m+2,+ + + }

Hence it is this distribution with which we are concerned.

The 1st moment about the origin, O, taken at zero number of particles is
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Hence the mean is at m.

The 2nd moment about the point O is
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= (m + m?) x total frequency.



Hence the second moment-coefficient about the mean
Me=m + m? —m?=m,

By similar* methods the moment-coefficients up to u; were obtained, as
follows :

' =m.

g =M.

g = M.

s = 3m? + m.

s = 10m? + m.

e = 16m? 4+ 25m? + m.
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Hence. | Bi= e m
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and BZ:%‘_:’=3+E'

It will be observed that the limit to which this distribution approaches as m
becomes infinite is the normal curve with its B,, Bs, B;, etc., all equal to 0, and
B: =38, B,=15, ete.

Further, any binomial (p +¢)* can be put into the form (p + ¢)™9, and
if ¢ be small and ng not large it approaches the distribution just given.

Thus if 1000 (% + 135 be expanded the greatest difference between any

2 r
of its terms and the corresponding term of 1000 e~ (l +5 +%+ v % + )

* The evaluation of the moments about the point O will be found to depend on the expansion of 7*
in the form
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~ Then if we form the series for n+1 from this it will be found that the following relations hold
between a;, a,, a, eto, and the corresponding coefficients for n+1, 4,, 4,, 4, ete.

=1‘%

4, =a,+n,
dy=as+(n- 1) a1,
dp=ap+(n—-p+1)a,,.
From these equations we can write down any number of moments about the point O in turn, and
from these may be found the moments about the mean by the.ordinary formulae.
The moments may also be deduced from the point binomial (p +¢)*%¢ when ¢ is small and n Iarge
and ng=m, i.e. p=1, ¢=0, ng=m. We have
W' =ng=m,
o =npg =m,
py =npg (p-g)=m,
gy =npq {143 (n-2)pg}=m (1+3m)=3m?+m.



is never as much as 1, being about ‘8 for the term 1000 ¢~ % which is 1755

against 1763 from the binomial.
"2 "
Diagram I compares 1000 ¢~* (1 +5+ g—’ + ot ;,- + ) with the binomial

1000 (43 + 5%) which of course differ, but not by very much.
Diagram I. Comparison of the exponential and binomial expansions.
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In applying this to actual cases it must be noted that we have not taken into
account any “interference” between the particles; there has been supposed the
same chance of a particle falling on an area which already has several particles as
on one altogether unoccupied. Clearly if m be large this will not be the case, but
with the dilutions usually employed this is not of any importance.

It will be shewn that the actual distributions which were tested do not diverge
widely from this law, so we will consider the probable error of random sampling on
the supposition that they follow it.

We have seen that u,=m.

Hence the standard deviation = y/m.




So that if we have counted M unit areas the probable error of our mean (m) is

67449 \/ -

If we are working with a heemacytometer in which the volume over each square
is godpp mm. there will be 40,000,000 m particles per c.c. and the probable error

will be 40,000,000 x ‘67449 x %

Suppose now that we dilute the liquid to ¢ times its bulk, we shall then have
%particles per square, and if we count M squares as before, our probable error

for the number of particles per c.c. in the original solution will be 40,000,000
. m 1 . . mq
X ‘67449 g\/ "x g That is 40,000,000 x 67449 \/ .

That is we shall have to count g¢M squares in order to be as accurate as before.

So that the same accuracy is obtained by counting the same number of
particles whatever the dilution, or, to look at it from a slightly different point of
view, whatever be the size of the unit of area adopted.

Hence the most accurate way is to dilute the solution to the point at which
the particles may be counted most rapidly, and to count as many as time permits:

then the probable error of the mean is 67449 «/ % where m is the mean and M

is the number of unit areas counted over, squares, columns of squares, microscope
fields, or whatever unit be selected.

But owing to the difficulty of obtaining a drop representative of the bulk of
the liquid the larger errors will probably be due to this cause, and it is usual to
take several drops: if two of these differ in their means by a significant amount

compared with the probable error (which is 67449 ;\/ m‘]_‘;m” where m,, m, are

the means and M the number of unit areas counted), it is probable that one at
least of the drops does not represent the bulk of the solution.



