METHODOLOGICAL CONTRIBUTION TO CONTROL HETEROSCEDASTICITY IN DISCRIMINANT ANALYSIS STUDIES

<u>R. Glèlè Kakaï</u>¹, R. Palm²

¹Institut National des Recherches Agricoles du Bénin, Bénin ²Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgique

Email : gleleromain@yahoo.fr

Let $Y(\mu, \Sigma)$ denote a multivariate population with mean vector μ and covariance matrix Σ . For two groups, we consider an heteroscedastic model constituted of $Y_1(0,I)$ and $Y_2(m,V)$ where $\mathbf{m} = (m_1, 0, ..., 0)$ ' and V, a diagonal matrix of vector v of p diagonal elements so that $\mathbf{v}_{ii} = \lambda$ (>0) for i=1,...,k and $\mathbf{v}_{ii} = 1$ for i=k+1,...,p ($k \leq p$). This simple model allows, by linear transformations, to extend the results of discriminant analysis studies to a large variety of real world problems. To control the heteroscedasticity of the model, a parameter Γ is considered and defined, for two covariances matrices Σ_1 and Σ_2 , as $\Gamma = -\sum_{i=1}^{2} \ln(|\Sigma_i|/|\Sigma|)$, where Σ is the pooled covariance matrix of the model. In the case of the populations $Y_1(0,I)$ and $Y_2(m,V)$ or their linear transformations, we show analytically that the parameter Γ can be expressed as a function of k and λ . Γ is considered as a measure of heteroscedasticity of the discriminant model and some attractive properties of the function $\Gamma(\lambda, k)$ are given. We discuss also about the choice of m_1 and Γ values for the sampling scheme related to Monte Carlo discriminant analysis studies. Since it is possible to compute Γ on data samples, the results of Monte Carlo studies related to discriminant analysis can be expressed as a function of the heteroscedasticity observed on the data samples.