STATISTICAL INFERENCE FOR A PREDATOR-PREY DYNAMICAL SYSTEM

<u>J. Cao[†]</u>, G.F. Fussmann, J.O. Ramsay, G. Hooker, D. Campbell

McGill University, Montreal, Canada

[†]E-mail: cao@math.mcgill.ca

Differential equations (DIFE's) are used to model the rate of change of a process defined of time, space, or some other continuum. Gregor F. Fussmann and his colleagues published a set of nonlinear DIFE's that predicts correctly the qualitative dynamical behavior of a predator-prey food chain, that is, extinction, equilibria and cycles. The authors proposed one novel method to estimate parameters θ in these DIFE's from their experimental data. DIFEs with the estimated parameters θ can fit the experimental data well in quantity, even when two out of four components are not observed at all. The idea is to smooth data by a combination of a set of basis functions, penalized by its fidelity to DIFE's. A smoothing parameter λ reconciles the trade-off between fitting the data and fidelity to DIFE's. This process is called the L-splines smoothing. For any given parameters θ , a coefficients vector **c** to basis functions can be estimated by the L-splines smoothing. The dimension of parameter space is reduced by treating the coefficient vector \mathbf{c} as the implicit function of parameters θ . Then the parameters θ can be estimated by maximizing the likelihood function, with the analytic expression for the gradient given by the Implicit Function Theorem. A byproduct of this method is that we can estimate the initial values and other missing data by the L-splines smoothing. The desirable smoothing parameter λ is obtained by minimizing the Stein's unbiased risk estimate for the total prediction error.