IMPLEMENTING TWO-STAGE TESTS

<u>M. Vandemeulebroecke[†]</u>

Schering AG, Berlin, Germany, and Otto-von-Guericke-Universität, Magdeburg, Germany

^{\dagger} E-mail: Marc. Vandemeulebroecke@Schering.de

A two-stage test can be viewed as a family of conditional error functions $\bar{\alpha}_{\alpha_2}(p_1)$, specifying the type I error conditional on the p-value p_1 of the first stage. The parameter α_2 is the local level of the test after the second stage, that is, the overall level if the possibility of early stopping is ignored. The test is put into practice by specifying the overall level α , stopping bounds α_1 and α_0 , and the parameter α_2 , that is, one of the functions in the chosen family. After computing p_1 , the test stops with or without rejection of the null hypothesis if $p_1 \leq \alpha_1$ or $p_1 > \alpha_0$, respectively. Otherwise, the null hypothesis is rejected if and only if $p_2 \leq \bar{\alpha}_{\alpha_2}(p_1)$.

The four parameters α , α_0 , α_1 and α_2 are interdependent, and the form of their relationship depends on the test under consideration. Software has been implemented in R to calculate any of the four parameters based on the remaining ones, possibly under side conditions, for four different tests. Graphical visualization routines and the computation of overall p-values are also included. The software is free and can be downloaded from http://www.math.unimagdeburg.de; examples demonstrate its practical use.