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Statistics in Epidemiology: The Case-Control Study 
N. E. BRESLOW 

Statisticians have contributed enormously to the conceptualization, development, and success of case-control methods for the study 
of disease causation and prevention. This article reviews the major developments. It starts with Cornfield’s demonstration of odds 
ratio invariance under cohort versus case-control sampling, proceeds through the still-popular Mantel-Haenszel procedure and 
its extensions for dependent data, and highlights (conditional) likelihood methods for relative risk regression. Recent work on 
nested case-control, case-cohort, and two-stage case-control designs demonstrates the continuing impact of statistical thinking on 
epidemiology. The influence of R. A. Fisher’s work on these developments is mentioned wherever possible. His objections to the 
drawing of causal conclusions from observational data on cigarette smoking and lung cancer are used to introduce the problems of 
measurement error and confounding bias. The resolution of such difficulties, whether by further development and implementation 
of randomized intervention trials or by causal analysis of observational data using graphical models containing latent variables, 
will challenge future generations of statisticians. 

KEY WORDS: Likelihood; Mantel-Haenszel procedure; Matched samples; Observational data; Odds ratio; Relative risk 
regression. 

1. INTRODUCTION 

The sophisticated use and understanding of case-control studies is the most 
outstanding methodologic development of modem epidemiology (Roth- 
man 1986, p. 62). 

My choice of topic for the 1995 Fisher Lecture is based 
on my belief that the contributions made by statisticians 
to the development of case-control methodology over the 
past 50 years have been among the most important of the 
many contributions they have made to public health and 
biomedicine. This view is shared by many epidemiologists. 
Writing in the first 1994 issue of Epidemiologic Reviews, 
which was devoted entirely to applications of the case- 
control method, Armenian and Lilienfeld (1994, p. 3) de- 
clared that the impact of statisticians on the “development 
of epidemiology would be difficult to overstate.” Rothman’s 
quotation, from his influential textbook Modem Epidemi- 
ology, highlights the importance of case-control methods 
in current epidemiologic research. The continuing popular- 
ity of the methodology is evident from the fact that 223 
population-based case-control studies were published in the 
world literature in 1992 (Correa, Stewart, Yeh, and Santos- 
Burgoa 1994). 

I am most grateful to the Committee and to the Organiz- 
ers for the invitation to present the 1995 Fisher Lecture and 
for the opportunity to discuss a subject that has stimulated 
much of my research work. I would like to acknowledge 
Professors L. Moses and B. Efron, my graduate and dis- 
sertation advisors; Professor P. Armitage, who hosted me 
during a seminal postdoctoral year; and above all Professor 
N. Day, who introduced me to case-control studies and with 
whom I have enjoyed a long and fruitful collaboration. It 
is also a pleasure to acknowledge the outstanding contribu- 
tions made to this field, and to my understanding of it, by 
my colleagues and by a score of graduates of the University 
of Washington Biostatistics Program. 

N. E. Breslow is Professor of Biostatistics, University of Washington, 
Seattle, WA, 98195. This article is based on the R. A. Fisher Lecture 
delivered to the Joint Statistical Meetings, Orlando, EL 1995. The work 
was supported in part by U.S. Public Health Service Grant CA40644. 

2. ORIGINS 

The central idea of the case-control study is the compar- 
ison of a group having the outcome of interest to a con- 
trol group with regard to one or more characteristics. An 
early example is Guy’s 1843 comparison of the occupa- 
tions of men with pulmonary consumption to those of men 
with other diseases (Lilienfeld and Lilienfeld 1979). The 
method became popular during the 1920s for the study of 
cancer, notable successes being the associations discovered 
between lip cancer and pipe smoking by Broders (1920), 
between breast cancer and reproductive history by Lane- 
Claypon (1926), and between oral cancer and pipe smoking 
by Lombard and Doering (1928). Because these diseases 
were rare, it was rather impractical to study them in any 
other way; for example, by follow-up of an initially healthy 
population. Increased attention to and criticism of case- 
control methodology followed the publication in 1950 of 
several studies of smoking and lung cancer (Surgeon Gen- 
eral 1964). 

Under the leadership of Harold Dom, statisticians at the 
U.S. National Cancer Institute were stimulated by the ensu- 
ing controversy to investigate the advantages and shortcom- 
ings of the case-control method. A prevailing belief at the 
time was that separate samples of cases and controls did not 
provide relevant quantitative information about the param- 
eters of primary interest-namely, the disease rates. This 
misconception was corrected by Jerome Cornfield (1951), 
who is widely credited with launching the modern era of 
case-control studies. Cornfield demonstrated that the expo- 
sure odds ratio for cases versus controls equals the disease 
odds ratio for exposed versus unexposed, and that the lat- 
ter in turn approximates the ratio of disease rates provided 
that the disease is rare. Formally, if D denotes disease (1 
for cases, 0 for controls) and X denotes exposure (1 for 
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exposed, 0 unexposed), then (Miettinen 1972; Schlesselman 1978). These developments 
further solidified relative risk as a meaningful parameter for 
epidemiologic study. 

By the end of the decade, the desiderata for case-control 
studies that could yield credible results with implications 
for possible public health action were fairly well under- 
stood. The main points, as summarized by Dorn in his 1959 
Cutter Lecture at Harvard (Dorn 1959), were as follows. 
The study should (a) be conducted in a defined population, 
(b) include all incident cases occurring during a specified 

Pr(X = llD = 1)Pr(X = 01D = 0) 
Pr(X = llD = O)Pr(X = OID = 1) 

- - Pr(D = 11X = 1)Pr(D = OIX = 0) 
Pr(D = 1(X = O)Pr(D = O(X = 1) 

Pr(D = 1IX = 1) 
Pr(D = 1IX = 0) ’ 

N N (1) 

The exposure odds ratio, now widely known as the relative 
risk, is thus understood to approximate the disease rate ra- 
tio. Cornfield further demonstrated that if the disease rate 
in the general population is known, then it may be com- 
bined with the case-control data to yield separate estimates 
of disease rates for exposed and unexposed. He was well 
aware of the need for the case and control groups to be 
“representative of these same groups in the general popu- 
lation” (Cornfield 1951, p. 1273) for his calculations to be 
valid. 

The disease rates to which Cornfield referred were preva- 
lence rates-simple proportions of individuals having the 
disease, as would be obtained in a cross-sectional sample. 
For studies of disease etiology, however, it is preferable to 
study incidence rates and to estimate the (ratios of) proba- 
bilities of disease development during a specified time pe- 
riod for individuals who are disease free at its start. Other- 
wise, one runs the risk of confusing the effects of exposure 
on the disease incidence rate with its effects on the case fa- 
tality rate (Neyman 1955). We now know that even without 
the rare disease assumption, the exposure odds ratio that is 
estimable from a case-control study approximates the ra- 
tio of instantaneous disease incidence rates, provided that 
the controls are sampled proportionately with the incident 
cases throughout the study period (see Sec. 5). 

Cornfield’s demonstration did not quiet all the critics, 
one of the most vociferous being R. A. Fisher (1957a,b; 
1958a,b). Fisher raised the issue of association versus cau- 
sation that clouds the interpretation of any observational 
study. In his famous constitutional hypothesis, he suggested 
that the smoking and lung cancer association could be ex- 
plained by the confounding effects of a genotype that pre- 
disposed both to smoking and to lung cancer. Data on twins 
were used to substantiate his assertion that smoking behav- 
ior was influenced by genetics. Cornfield and colleagues 
(1959) responded to these charges and others in a lengthy 
review that is well worth reading for its insights regard- 
ing causal inference. A centerpiece of their argument was 
a simple calculation showing that for a confounding fac- 
tor to explain a relative risk of a given magnitude, say $, 
this factor had to be $ times more prevalent among the ex- 
posed than among the unexposed. Because the lung cancer 
relative risk was approximately 10 for cigarette smokers 
versus nonsmokers and increased to 20 for heavy smokers, 
the existence of such a confounding factor seemed quite 
implausible. This calculation was later formalized into the 
concept of the confounding risk ratio, which measures the 
possible extent of confounding on the observed relative risk 

- - -  
time period, (c) utilize objective measures of exposure to 
putative risk factors; (d) use multiple control groups, (e) be 
replicated in different populations, and (f) be verified by a 
cohort study. This last point suggests that Dorn was still not 
entirely convinced by the theoretical arguments of his col- 
leagues that the case-control approach was as valid as the 
prospective approach that he had pioneered. I return to his 
concerns, and to those of Fisher, in the concluding section. 

3. THE MANTEL-HAENSZEL ERA 

Epidemiologists who have done case-control studies during the past 20 
years . . . have stood on the shoulders of giants. And, lest we epidemiolo- 
gists lose sight of one major root of our discipline, we should remember 
that all of these men are, or were, statisticians (Cole 1979, p. 15). 

The statisticians to whom Cole refers are Cornfield and 
Dorn and their colleagues Mantel and Haenszel, who in 
1959 published their landmark paper in the Journal of the 
National Cancer Institute. This paper clarified the relation- 
ship between case-control (or retrospective) and cohort (for- 
ward or prospective) studies with the observation that “a 
primary goal is to reach the same conclusions in a retro- 
spective study as would have been obtained from a forward 
study, i f  one had been done” (Mantel and Haenszel 1959, 
p. 733). Anticipating the development of the nested case- 
control study (see Sec. 5), Mantel and Haenszel suggested 
that one might adopt the case-control approach even to the 
sampling of subjects already ascertained in a cohort study, 
to collect additional data items. Clearly, the only concep- 
tual difference between cohort and case-control studies was 
that the latter involved sampling from the cohort rather than 
complete enumeration of it. 

’lbo statistical procedures were introduced for the con- 
trol of confounding by stratification of the data into a se- 
ries of 2 x 2 tables. The first was an adjusted chi-squared 
test that elaborated on earlier work by Cochran (1954). The 
second was a summary relative risk estimator intended to 
weight the individual odds ratios by both precision and 
importance. Referring to Table 1 for basic notation, the 
Mantel-Haenszel (MH) summary relative risk estimator is 
defined by the simple formula &H = C, R,/ C ,  Si, where 
R, = A,D,/N,  and Si = B,C,/Ni. The recommended pro- 
cedures were eventually adopted for routine use by epidemi- 
ologists, who benefited from seeing their data arranged in 
tabular form and from making comparisons of individual 
and summary relative risks that alerted them to possible 
heterogeneity. The paper had enormous impact. By the end 
of 1994, it had received more than 4,000 citations, being 
one of the 200 most cited papers in the scientific literature 
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Table 7 .  Notation for a Series of 2 X 2 Tables 

Observed frequencies Expected values 

Exposure Case D = 7 Cont D = 0 Total Case D = 7 Cont D = 0 

since 1945. It continues to receive citations at the rate of 
about 250 per year, more today than during the 1970s and 
1980s (Institute for Scientific Information, personal com- 
munication, Philadelphia). 

Mantel and Haenszel presented no variance formula for 
their estimator and referred to work by Cornfield (1956) for 
calculation of interval estimates. It took 25 years to develop 
a simple, robust formula. Part of the problem was the fact 
that the estimator was useful, and was being used, in two 
rather different asymptotic environments: I, a small num- 
ber of tables with large frequencies, and 11, a large number 
of tables with small frequencies, such as arise from finely 
stratified or matched studies. Building on earlier work by 
Hauck (1979) and Breslow (1981) for asymptotics I and 
I1 a variance estimate that encompassed these two situa- 
tions and intermediate ones was developed independently 
by Robins, Breslow, and Greenland (1986) and by Phillips 
and Holland (1987). The key observations are as follows. 
First, E(RJ = $J3(Si), where $% denotes the true odds 
ratio in table i. Assuming a common value for the $,, 
and denoting R = xi R, and S = x, S,, &H is thus 
the solution of the unbiased estimating equation R - $S 
= 0. Second, under paired binomial sampling, the variances 
of the individual contributions to this estimating equation 
satisfy 

N?Var(Rz - $Sz) 

L 

Finally, with ,6 = log($) denoting the log relative risk, 

Table 2. Regression Coefficients and Standard Errors 

Variable CML* M-H procedure 

Constant odds ratio 

Intercept ,924 f ,132 ,9034~ .152 

Odds ratio regression model 

Intercept 4.440 f 5.009 4.896 f 4.967 
Female sex -.591 f 1.001 -.764 f ,976 
White race -2.625 f 1.056 -2.595 f 1.01 5 
Age (yr) -.021 f ,079 -.028 f ,077 
Hospital status 1.060 f ,888 1.221 f ,758 

* Conditional maximum likelihood. 
Source: Liang. Beaty, and Cohen (1986). Reprinted with permission. 

Combining the last two equations yields the variance esti- 
mator 

Alternative computing formulas have been given by Robins, 
Greenland, and Breslow (1986). 

When homogeneity of the odds ratio is in doubt, it is sen- 
sible to model the relative risk as a function of covariables 
associated with each stratum; for example, log$i = zip. 
Davis (1985) and Liang (1985) each suggested estimating 
equations for the regression coefficients ,O of the form 

C W i ( $ i ) ( R i  - $ i S i ) Z i  = 0, (3) 
i 

where the wi are appropriately selected weights (wi 
= $,7’” for Liang). Cologne and Breslow (1990) rec- 
ommended basing the variance of the resulting estimator 
on (2) and demonstrated through simulations that this ex- 
tended MH procedure maintained good efficiency relative 
to maximum likelihood when the binomial sampling model 
held. 

A major advantage of the MH procedure is that the equa- 
tions (3) are unbiased and the corresponding estimate is 
consistent, even when the observations within strata are de- 
pendent and the binomial sampling model fails (Liang 1985, 
1987). In that case, one uses a “sandwich”-type empirical 
variance estimator (Huber 1967). The approach is ideal for 
case-control studies of familial aggregation where Ai and 
Bi represent the number of family members of the case 
and of the control who are affected by the same disease as 
the case. Liang, Beaty, and Cohen (1986) gave an exam- 
ple involving chronic obstructive pulmonary disease. They 
tested 79 first-degree relatives of 28 cases and found 33 
who had impaired pulmonary function. The number affected 
was only 15 among 77 relatives of 28 controls matched on 
sex, age, and hospital status (inpatient vs. outpatient). Fam- 
ily members of cases had a 2.5-fold greater disease preva- 
lence overall than those of controls, and there was some 
evidence for a stronger association among blacks (see Ta- 
ble 2). Note the increased variance when the possible de- 
pendence is taken into account by the extended MH pro- 
cedure. Donner and Hauck (1988) used an estimate of the 
intrafamilial correlation in a related procedure designed to 
augment efficiency. 
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Some statisticians may have concluded that the Mantel- 
Haenszel era ended with the introduction of logistic regres- 
sion. They would be wrong. As Kahn and Sempos rightly 
remarked in their 1989 textbook Statistics in Epidemiology, 
“when a method is as simple and free of assumptions as the 
M-H procedure, it deserves to receive a strong recommen- 
dation, and we do not hesitate to give it” (Kahn and Sempos 
1989, p. 156). 

4. LIKELIHOODS AND LOGITS 

4.1 Inference on Odds Ratios 

The aspect of R. A. Fisher’s work that has had the 
greatest impact on modem approaches to the analysis of 
case-control data is his development of likelihood inference 
based on explicit probability models (Fisher 1922). The cen- 
trality of likelihood is emphasized in the 1993 text Sta- 
tistical Models in Epidemiology (Clayton and Hills 1993), 
in which chapter headings include “Likelihood,” “Approx- 
imate Likelihoods,” “Likelihoods for the Rate Ratio,” and 
“Likelihoods for the Odds Ratio.” Fisher (1935) himself in- 
troduced likelihood inference for the odds ratio in a 2 x 2 
table in his classic paper on the logic of inductive infer- 
ence. There he considered rates of criminality among same- 
sex twins of known criminals according to whether the 
twins were monozygotic or dizygotic. The key feature of 
his analysis was the use of the conditional distribution of 
the paired binomial data given the marginal totals, which 
he considered to be ancillary in the sense that they sup- 
plied no information about the parameter of interest but did 
indicate how precisely that parameter could be estimated. 
The resulting distribution, whose onIy parameter is the un- 
known odds ratio $, is known today as the extended hyper- 
geometric distribution (Harkness 1965). For the setup in 
Table 1, 

Cornfield ( 1956) approximated exact confidence limits 
for $i based on (4) by taking Ai to be normally distributed 
with mean ai, the fitted value determined by the marginal 
totals and the unknown +i as the solution to the quadratic 
equation 

(5) 

and asymptotic variance 

V a r i  ( ai ) 

= (-+ 1 1 +- 1 - +  )-’. (6) ai Nli  -ai ti - Ai Noi - t i + &  

The procedure was extended to interval estimation of the 
common odds ratio from a series of tables by Gart (1970). 
Exact confidence limits for the common value, which in- 
volve the convolution of the distributions (41, are now avail- 

able in commercial software that implements the network 
algorithm of Mehta, Patel, and Gray (1985). 

My own work with Fisher’s distribution has involved 
relative risk regression models of the form logQi = z i p  
(Breslow 1976). The conditional maximum likelihood 
(CML) estimate of p is obtained from the conditional like- 
lihood equations 

A favorite example is a case-control study of childhood can- 
cer and in utero irradiation conducted in the Oxford region 
(Stewart and Kneale 1970). Data for more than 6,000 chil- 
dren who had died from cancer during 195C1964 at ages 
&9 years, and for an equal number of controls, were ar- 
ranged in a series of 120 2 x 2 tables stratified by year of 
birth and the age at death of the case. Exposure was posi- 
tive if the mother reported that she had received pelvic ir- 
radiation during pregnancy. The regression analysis showed 
clearly that age had no effect on the relative risk, thus con- 
tradicting a claim that the “radiogenic” cases had a more 
peaked age distribution than the “idiopathic” cases (Kneale 
1971). But there was clear evidence for a decline in rela- 
tive risk with calendar year of birth, which was consistent 
with the declining dose levels of medical irradiation. What 
seemed less clear was whether the decline might have at- 
tenuated with time. Although the addition of a quadratic 
term in birthyear significantly increased the likelihood, I 
wondered whether possible overdispersion, in the form of 
excess scatter of the individual relative risk estimates about 
the regression line, had been adequately accounted for. 

An opportunity to investigate this question presented it- 
self during recent work with Clayton on approximate infer- 
ence procedures for generalized linear mixed models (Bres- 
low and Clayton 1993). We included in the linear predictor 
a random birth year effect, assumed to have a normal dis- 
tribution with mean zero and variance c~’. The evidence for 
overdispersion was equivocal, with 6 = .15 f .lo. Inclu- 
sion of the independent random error terms in the model 
had little effect on the statistical significance of the fixed, 
quadratic term, thus confirming the original conclusion re- 
garding the inadequacy of a simple linear model in birth 
year. Further analysis using essentially the same model, but 
with an autoregressive correlation structure specified for 
the random effects to stochastically smooth the regression 
curve, showed a flattening of the relative risk during the 
mid 1950s. This seemed considerably more plausible than 
the upturn predicted by the parametric model (Fig. 1). 

4.2 The “Breslow-Day” Test of Odds 
Ratio Homogeneity 

The conditional likelihood score test for homogeneity of 
the odds ratio against global alternatives of heterogeneity 
takes the form 

(7) 
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Figure 1. Relative Risks of Childhood Cancer in the Oxford Region for Children Exposed to In Utero Irradiation Versus the Nonexposed, by Year 

of Birth. The logarithms of the fitted relative risks are plotted for the fixed effects model as filled squares ( W) and for the autoregressive random 
effects model as asterisks (*). The curved line (-) represents the fitted relative risks in a fixed effects model with linear and quadratic terms for 
year of birth. (Source: Breslow and Clayton 1993, Fig. 4.) 

Under asymptotic model I, an asymptotically equivalent 
statistic replaces the exact conditional means and vari- 
ances with the approximations (5, 6) and the CML estimate 
with the “asymptotic” maximum likelihood (AML) estimate 
based on the unconditional likelihood. This asymptotic ver- 
sion is simply the standard chi-squared goodness-of-fit test 
in disguise. In my IARC monograph with Day on case- 
control studies (Breslow and Day 1980), the rather casual 
and incorrect assertion was made that one could substitute 
&H for the iterative AML estimate. When using an inef- 
ficient estimator in such statistics, it is necessary to adjust 
the scores for the parameters to be tested, here represent- 
ing heterogeneity in the odds ratios, by subtracting off their 
regression on the score(s) for the remaining parameter(s), 
here the common odds ratio (Neyman 1959). Using these 
principles, the correct form for the heterogeneity test was 
derived by Tarone (1985) as 

where A ~ , M H  denotes the fitted frequencies estimated from 
the quadratic equation ( 5 )  with $ ~ i  = ~ M H  and v a r i ( A i , ~ ~ )  
is the variance obtained by substituting these frequencies 
into (6). Fortunately, the MH estimator is so nearly efficient 
that the correction term in (8) is frequently negligible. Sim- 
ulation studies report comparable properties for the uncor- 
rected and corrected versions of the test (Jones, O’Gorman, 
Lemke, and Woolson 1989). Rather unfortunately, the mis- 

take has made its way into the computer packages, and 
one sees increasing reference in the epidemiology litera- 
ture to the asymptotically invalid “Breslow-Day” test for 
homogeneity of the odds ratio (Cytel Software Corporation 
1995). I hope that the matter will be rectified soon and that 
Tarone’s statistic becomes the standard of the future. Liang 
and Self (1985) developed a homogeneity test for the sparse 
data (asymptotics 11) situation. 

4.3 Logistic Regression 

Log odds ratio regression models concern the effects of a 
single binary risk factor on disease risk. Multiple categori- 
cal risk factors may be accommodated, but only by consid- 
ering each factor after stratification to control for effects of 
the others, and only by considering each level of exposure 
separately relative to baseline. Methods to evaluate the si- 
multaneous effects of multiple quantitative risk factors on 
disease rates began to be developed during the 1960s, stim- 
ulated by the requirements of several large cohort studies of 
cardiovascular disease, particularly the Framingham study. 
Once again it was Cornfield who led the way with an appli- 
cation of Fisher’s (1936) linear discriminant to the analy- 
sis of the Framingham data (Cornfield, Gordon, and Smith 
1961). The goal was not simply to discriminate between 
two populations; rather, it was to summarize, in a simple 
mathematical form, the risk of developing disease during a 
specified time period as a function of one or more exposure 
variables measured for each person at the start. Cornfield 
noted that if the multivariate distributions of exposure X 
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among persons with and without disease were normal, with 
separate means but a common covariance matrix, then the 
probability of developing disease for an individual with val- 
ues X = x was given by the logistic response curve 

The parameters (a,  p) are simple functions of the moments 
of the normal exposure distributions and of the marginal 
(prior) probability of disease development. Cornfield pro- 
posed to estimate them by the corresponding sample quan- 
tities; that is, by the linear discriminant. 

Cox (1966) recommended instead that one estimate the 
parameters by maximum likelihood using only the logistic 
specification (9), which involves fewer assumptions. By al- 
lowing the exposure distribution in the control population 
to be completely arbitrary, Day and Kerridge (1967) noted 
more formally that the full likelihood based on the joint dis- 
tribution of (Dl X) could be factored into the product of (a) 
the conditional likelihood, specified by the logistic model, 
and (b) the marginal likelihood of the exposures, and that 
both pieces could be maximized separately. Thus they con- 
firmed that logistic regression, as we know it today, was 
efficient in the modem, semiparametric sense. 

A key feature of the logistic model for case-control stud- 
ies is that the regression coefficients p have a relative risk 
interpretation (Seigel and Greenhouse 1973). Formally, 

Pr(D = 1IX = xl)Pr(D = OIX = xo) 
Pr(D = OIX = xl)Pr(D = 1IX = X O )  

= e x P [ ( x l  - Xo)Pl,  

so that ( X I  - X O ) ~  represents the log relative risk for a 
subject with exposures x1 versus one with exposures X O .  

The only complication is that the likelihood for case-control 
sampling contains terms of the form Pr(X1D) rather than 
Pr(D1X). Anderson ‘(1972) noted the difficulty and solved 
the problem for a discrete exposure distribution taking K 
values x 1  , . . . , X K  , as follows. Suppose that one samples n1 
cases and no controls for a total sample size of n = no + n 1  , 
and observes n 1 k  cases and n 0 k  controls with X = X k .  

Denote the probabilities specified by the logistic model (9) 
by p ; k  = 1 - p &  = Pr(D = 1IX = X k ) ,  and the marginal 
probabilities of exposure by q i  = Pr(X = x k ) .  Using the 
fact that Pr(X1D) = Pr(DIX)Pr(X)/Pr(D), and assuming 
that the marginal disease probabilities Pr(D = i) = 7ri are 
known, the case-control likelihood is proportional to 

But instead of involving free parameters as in the Day- 
Kerridge formulation, the parameters are constrained by 
the fixed marginal probabilities of disease: c k p I k q i  = 7ri 

for i = 0, l .  
Anderson solved the constrained estimation problem us- 

ing the classical theory of Atchison and Silvey (1958). He 
discovered that the estimates and covariance matrix for the 
relative risk coefficients p were identical to those of ordi- 
nary logistic regression involving maximization of L; alone. 
He also discovered that the algebra was eased if one could 

assume that the marginal disease probabilities 7ri were equal 
to the relative frequencies ni/n of cases and controls, and 
furthermore that the assignment of any specific values to 
the 7ri left the relative risk estimates and their variances 
unchanged. 

Anderson’s approach via constrained maximum likeli- 
hood estimation was not strictly valid for continuous expo- 
sure variables, because the number of nuisance parameters, 
the q i ,  increased with the sample size. Prentice and Pyke 
(1979) constructed a proof of his results that applied more 
generally. Their starting point was another factorization of 
the likelihood 

f l  K 

where now 

represents the probability that a randomly chosen member 
of the case-control sample has exposures X k  and likewise, 
with Y = a + l o g [ ( n 1 7 r 0 ) / ( n o m ) I ,  

is the probability that a sample member with X = x k  is a 
case. The parameters are now constrained by the require- 
ments that the marginal probabilities of being a case or a 
control are fixed by design: x k p i k q k  = ni/n for i = 0 , l .  

Prentice and Pyke (1979) demonstrated that the solution 
to the unconstrained maximization problem, with (T ,  b) the 
ordinary logistic regression coefficients based on L1 and 
rjk = n + k / n  the sample X distribution, actually satisfied the 
constraints and thus yielded the desired estimates. They fur- 
ther showed that the estimating equations derived from L 1  

were unbiased and, using estimating equation theory, con- 
firmed that the usual covariance matrix for fl remained valid 
under case-control sampling. Because the intercept was a 
free parameter, it did not matter that the xi’s were unknown. 
Carroll, Wang, and Wang (1995) recently extended the basic 
Prentice-Pyke results regarding validity of fitting “prospec- 
tive” logistic regression models to case-control data to re- 
lated procedures for robust estimation of regression coeffi- 
cients, correction of measurement error, and partially miss- 
ing data. 

While this work was in progress, a parallel and in some 
respects deeper investigation of methods for binary re- 
sponse models with outcome dependent sampling was un- 
derway in econometrics (Cosslett 198 1; Manski and Ler- 
man 1977). Here one refers to “choice-based” rather than 
“case-control” samples, because the outcomes involve eco- 
nomic choices rather than cases of disease. Auxiliary data 
on the marginal choice probabilities 7ri were generally as- 
sumed to be available, which facilitated the study of quanta1 
response models other than the logistic. An important point 
emphasized in the social science literature, and somewhat 
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neglected by biostatisticians and epidemiologists, is the sen- 
sitivity of maximum likelihood estimates to misspecifica- 
tion of the population model. If one posits a linear logistic 

’ model for the disease rates in the population but the true 
model is quadratic, for example, then the regression coef- 
ficient estimated from the case-control sample may differ 
substantially from the coefficient that one would estimate 
from a cohort study of the same population (Scott and Wild 
1986; Xie and Manski 1989). When the marginal disease 
rates in the population are known, it often is preferable 
to use an inefficient but more robust estimate that weights 
the usual likelihood contributions by the inverse sampling 
fractions, which of course differ greatly between cases and 
controls (Manski and McFadden 1981). Table 3 shows prop- 
erties of the weighted and unweighted estimators in a linear 
logistic model where the exposure variable has a standard 
normal distribution and where the true model for the log 
relative risk is the quadratic -5.1 + 2.02 + .3z2. Due to 
the curvature, the optimal p when fitting the linear equa- 
tion to the population is 2.8 rather than 2.0. Relative to 
this value, the weighted likelihood estimator clearly out- 
performs “maximum likelihood.” 

5. MATCHING AND NESTING 

I was introduced to the case-control design in 1972 dur- 
ing collaborative work at IARC on a study of esophageal 
cancer among Singapore Chinese (DeJong, Breslow, Hong, 
Sridharan, and Shanmugaratnam 1974). This was a typi- 
cal hospital-based interview study, with two control groups, 
that focused on ethnicity, diet, alcohol, and tobacco as pos- 
sible risk factors. Of particular interest were questions relat- 
ing to the temperature at which various beverages were con- 
sumed. We were well aware that differential “recall bias” in 
the interview responses of cases and controls was a strong 
possibility for this item. D. R. Cox’s (1970) text covering 
logistic regression had recently appeared. Having had some 
previous experience with this methodology in a clinical set- 
ting (Breslow and McCann 19711, I jumped at the chance 
to apply the technique to the case-control study. In retro- 
spect, the enthusiasm seems rather naive, because we sim- 
ply ignored the apparent problems posed by the outcome- 
dependent sampling. 

One aspect of our analysis that did bother me was its fail- 
ure to account for the pair matching of controls to cases on 
age, gender, hospital ward (for one of the control groups), 
and time of diagnosis. Such matching was widely used to 
select “comparable” controls, but there was little appreci- 

Table 3. Properties of Weighted (W) and Unweighted (U) Estimators 

no = nl = 100 no = nl = 200 

W U W U 

Bias .14 -.20 .01 -.26 
Mean squared error .35 .21 .12 .14 
Standard deviation .45 .21 .33 .24 
Coverage of 95% intervals .89 .a5 .92 .75 
Coverage of 99% intervals .97 .94 .98 .87 

Source: Scott and Wild (1386). Reprinted with perrnlsslon. 

ation among epidemiologists for the complexities that it 
introduced for rigorous statistical analysis. Special proce- 
dures for matched case-control designs with binary expo- 
sures were available (Miettinen 1970; Pike and Morrow 
1970), but a general treatment was lacking. The problem 
occupied my attention on my return to Seattle in 1974 and, 
with the help of colleagues and students, we developed a so- 
lution based on stratified logistic regression (Breslow, Day, 
Halvorsen, Prentice, and Sabai 1978). 

Suppose that the population at risk is so finely strati- 
fied that each case occupies a single stratum, and that the 
matched controls are drawn from the same stratum as the 
case. With S denoting the stratum, the population model is 

.XP(.j + X P )  

1 + exp(cwj + xP) ’ 
Pr(D = 11s = j ,  X = x) = 

This involves a separate parameter for each matched set and 
allows inclusion of possible interactions between exposures 
and matching variables among the explanatory variables x. 
Following Fisherian principles, the stratum parameters aj 
are eliminated by conditioning on an appropriate ancillary 
statistic, in this case the unordered set of exposures for 
the case and controls in each stratum. Thus the conditional 
likelihood that the exposures xJ0 are those of the case and 
(xjl, . . . , x j ~ )  are those of the M controls in stratum j, as 
observed, given the set of M + 1 exposures, is proportional 
to 

Pr(X = xj0lS = j ,  D = 1) 

Crn=o Pr(X = xjrnlS = j ,  D = 1) 

x I-Irn=l Pr(X = xjrnls = j ,  D = 0) 

x nhzm Pr(X = xjhlS = j, D = 0) 

Writing Pr(XJD) = Pr(DJX)Pr(X)/Pr(D) in the usual 
fashion, the marginal probabilities drop out, and we are left 
with 

M 

for inference about P. Note that the terms exp(xj,P) are 
the relative risks for each subject relative to someone with 
a standard (X = 0 )  set of exposures. These arguments are 
easily generalized to situations with a variable number of 
controls per case, and even to matched sets with an arbitrary 
number of cases and controls (Breslow et al. 1978). The 
conditional likelihood (10) also arises from the stratified lo- 
gistic regression model for a cohort study, by conditioning 
on the number of cases that occur in each stratum. This fur- 
ther strengthens the notion that one is estimating the same 
parameters in cohort studies and case-control studies. With 
pair matching, (10) is formally identical to a likelihood for 
simple logistic regression on the diflerence in exposures be- 
tween case and control (Holford, White, and Kelsey 1978). 

With this new tool in hand, I was greatly relieved to dis- 
cover that the results of the Singapore study were little af- 
fected by the choice of conditional versus unconditional 
likelihood analysis (Table 4, columns 2 and 3). The infla- 
tion of the regression coefficients (Table 4, column 4) when 
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Table 4. Regression Coefficients 4 Standard Errors for the original risk set. Here too the initial motivation was 
~~ 

Conditional: Unconditional: 
Variable likelihood single 0: 

Ethnic groupa 1.27 f 3 3  1.42 f 36 
Chinese wineb 5 1  f .29 .54 f .28 
CigarettesC .ll f .10 . I1  f .09 
Temperatu red .79 f .16 .76 f .I5 

~~ 

Unconditional: 
multiple 0:j 

1.62 f .25 
.68 f .27 
.I6 f .09 
1.12 f .I5 

al = Teochew and Hokkien. 0 = Cantonese and other. 
bl = Consumer, 0 = Nonconsumer. 
‘Per pack of 10. 
dNumber of beverages (0-3) drunk “burning hot.” 

Source: Breslow 1982. 

one tries to explicitly estimate the stratum parameters aj 

is somewhat greater than the factor M / ( M  + 1) = 1.25 
predicted by results for a single binary exposure (Breslow 
1981). It well illustrates the problems of likelihood infer- 
ence with large numbers of parameters. The fact that the 
original analysis that ignored the matching agreed with the 
new, correct analysis was, of course, fortuitous and sug- 
gested that the matching variables were not strongly asso- 
ciated with the exposures. Unmatched analyses of matched 
data generally yield conservative estimates of relative risk 
(Armitage 1975; Breslow and Day 1980, table 7.12). 

Prentice and Breslow (1978), in a paper that further clar- 
ified the conceptual foundations of the case-control study, 
derived the conditional likelihood ( 10) from failure time 
considerations. One starts with a large (voire infinite) pop- 
ulation that is followed forward in time. For an individ- 
ual with exposures x ,  the disease incidence rate at time t 
is specified as X(tlx) = Xo(t)exp(xp)  (Cox 1972). At the 
time t j  of occurrence of the jth disease case, A4 controls 
are sampled at random from the population. Conditioning 
on the unordered set of exposures for the case and con- 
trols then leads to (10). This derivation helps to explain 
why, with “incidence density sampling” (Miettinen 1976) 
where controls are sampled at the times of occurrence of 
the cases, the exposure odds ratio approximates the ratio of 
instantaneous disease rates and thus why the odds ratio is 
useful even for the study of common diseases (Greenland 
and Thomas 1982). 

Although these conditional likelihood arguments were 
developed in the context of sampling from an infinite pop- 
ulation, there is no reason why they cannot be applied also 
to sampling from an actual finite cohort. As noted earlier, 
this idea was already implicit in the 1959 Mantel-Haenszel 
paper. Mantel (1973) explicitly proposed sampling from a 
defined cohort, using an independent toss of a biased coin 
to decide whether or not each control would be included in 
the final sample. Motivated by a desire to reduce the com- 
putational burden, he termed the result a “synthetic” case- 
control study. Thomas was the first to propose sampling 
from the risk sets formed during a Cox regression analy- 
sis (Liddell, McDonald, and Thomas 1977). Figure 2 is a 
schematic of the risk sets in a cohort study. The basic idea 
is to replace each of them by a reduced risk set consisting 
of the case and a random sample (without replacement) of 
the remaining risk set members. Thomas proposed using the 
conditional likelihood (10) for inference, which of course 
has exactly the same form as Cox’s (1975) partial likelihood 

primarily computational. But it quickly became clear that 
the real value of such nested case-control sampling, as it 
came to be called, was for selection of individuals on whom 
additional data could be collected. The technique is particu- 
larly valuable when stored sera or other biological materials 
are available for a large cohort, but expensive laboratory as- 
says are needed for quantitative exposure assessment. 

Although the intuition underlying the nested case-control 
study is strong, and the use of the likelihood (10) is rendered 
plausible by the results for matched studies, more formal 
justification has taken time to develop. Oakes (1981) led the 
way with his derivation of (10) as a partial likelihood, but 
these arguments were still regarded as incomplete. Only re- 
cently have rigorous proofs appeared of the asymptotic con- 
sistency and normality of relative risks estimated by partial 
likelihood under nested case-control sampling (Goldstein 
and Langholz 1992). The most interesting of these proofs 
develop the theory in terms of marked point processes (Bor- 
gan, Goldstein, and Langholz in press). Besides confirming 
the asymptotic properties of the relative risk estimates, this 
approach also neatly solves the problem of how to use the 
nested case-control sample for estimation of the baseline 
cumulative incidence function. 

Estimation of absolute risk functions as well as relative 
risk functions is in principle possible from a nested case- 
control sample, because one knows the sampling probabili- 
ties. If data from the full cohort are available, then the stan- 
dard estimator of &(t) = s,” Xo(u) du in the Cox model is 

where Rj denotes the full risk set at the time t j  of occur- 
rence of the j th case and is the partial likelihood esti- 
mate. Suppose that Rj contains Nj subjects including the 
case and that M controls are sampled for the reduced risk 
set 7?j. Borgan and Langholz (1993) and Borgan et al. (in 

t 

Figure 2. Definition of Risk Sets. Each horizontal line (-) denotes 
the observation period for a single subject as a function of time or age. 
Lines that terminate in a bullet (a) correspond fo cases diagnosed at 
that time, whereas those that terminate with a bar (I) are noncases. The 
risk sets defined at each time of diagnosis contain those subjects whose 
observation period intersects the corresponding vertical line. (Adapted 
from Langholz and Clayton 1994, Fig. 1). 
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Figure 3. Estimates of the Cumulative Relative Mortality Function: M = 1 (- . -); M = 5 (. . .); M = 100 (-); Breslow and Langholz crude 
estimator, M = 5 (---). (Source: Borgan and Langholz 1993; reprinted with permission of the International Biometric Society) 

press) proposed the estimator 

which weights the contribution from by the inverse ra- 
tio of its size to that of the full risk set. They showed us- 
ing martingale theory that (1 2) is essentially unbiased, just 
as (1 1) is. Figure 3 shows the cumulative (relative) lung 
cancer mortality function for the Montana smelter workers 
considered by Breslow and Langholz (1987), who had ear- 
lier suggested a rather badly biased analog of (12) in which 
the cases were removed from the reduced risk sets. The 
new estimator with matching ratio A4 = 100 is essentially 
equivalent to the full cohort estimator (1 1). Comparing the 
results for it with those for smaller values of A4 confirms 
that a practical methodology now exists for estimating base- 
line cumulative hazard functions from nested case-control 
studies. 

Prentice (1986) introduced the case-cohort design as an 
alternative method of sampling from a defined cohort. Here 
a random subcohort is sampled from the entire cohort at the 
outset of the follow-up period, and exposure information is 
processed for members of the subcohort. Cases occuring 
outside the subcohort are ascertained, and their exposure 
information is processed at the time of diagnosis. This de- 
sign offers substantial advantages over nested case-control 
sampling in situations where multiple disease endpoints are 
to be evaluated, because unaffected members of the sin- 
gle subcohort may serve as controls for the disease cases 

of each type. The choice between the two designs is less 
clear when only a single disease endpoint is to be studied. 
One drawback of the case-cohort design is the necessary 
assumption that exposure assessments, such as laboratory 
assays on stored biologicals, are not affected by the pas- 
sage of time. Langholz and Thomas (1991) showed that 
the nested case-control design may have greater efficiency 
than the case-cohort design when there is moderate random 
censoring or staggered entry into the cohort. Methods of 
“refreshing” the subcohort so as to avoid such efficiency 
loss are available. (See Lin and Ying 1993 and Barlow 
1994 for further discussion and methods of analysis of case- 
cohort data.) 

6. MORE INFORMATIVE SAMPLING 

Case-control studies are used to study rare diseases be- 
cause they are very efficient as compared to cohort studies 
of the size needed to produce the same number of cases. 
The method concentrates resources where there is the great- 
est amount of information, namely on the cases. Further 
improvements in efficiency are possible by utilizing more 
complex sampling schemes to maximize the variation in 
the exposures of the cases and controls that are ultimately 
analyzed. White (1982) proposed a “two-stage” sampling 
design for studying the effects of a rare exposure on a rare 
disease, with cohort sampling at the initial stage. Breslow 
and Cain (1988) considered a two-stage case-control design. 
Table 5 illustrates the basic idea with hypothetical data from 
a two-stage study of lung disease and factory employment. 
At Stage I, 500 cases and 500 controls are drawn at ran- 
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Table 5. Fictitious Data From a Two-Stage Case-Control Study 

Stage I (NJ 

Exposure Cases Controls 

Factory workers 40 20 
Employed elsewhere 460 480 
Total 500 500 

Stage II  (nlk) 

Cases (i = 1) Controls (i = 0) 

Factory Elsewhere Factory Elsewhere 
Exposure (i = 1) (i = 2) (i = 1)  (i = 2) 

Smokers (k  = 1) 30 37 10 42 
Nonsmokers ( k  = 2) 10 133 10 128 
Totals (no) 40 170 20 170 

Source: White (1982). Reprinted wllh permission. 

dom from the community and classified as to whether or 
not they are employed in the factory. Information on smok- 
ing is essential to adjust the relative risk estimates, but the 
investigators can afford to interview only about half of the 
1,000 subjects. In view of the rarity of the exposure, the 
investigators elect to interview all of the exposed cases and 
controls at Stage I1 but only a subset of the unexposed cases 
and controls. This is more efficient than randomly select- 
ing the cases and controls at Stage I1 without considering 
the information already available for them. It means, how- 
ever, that the relationship between exposure and disease is 
distorted for those who have complete data. The statistical 
challenge is to combine the information available at both 
stages of sampling in the most efficient way so as to esti- 
mate an adjusted relative risk. 

More generally, suppose that N 1  cases and NO controls 
are classified into J strata on the basis of an initial, possi- 
bly crude measure of exposure. Let N i j  denote the num- 
bers of cases (i = 1) and controls (i = 0) in the jth 
stratum. At Stage 11, nij subjects are sampled from the 
Nij  in each of the 2 J  disease x stratum cells. Additional 
measurements are taken for these subjects, yielding a p -  
dimensional vector X of explanatory variables that takes 
values X j k ,  j = 1,. . . , J ,  k = 1,. . . K, and that may include 
information obtained at either stage. Let n i j k  denote the 
number of cases or controls in stratum j with X = X j k .  

A key assumption is that the probability of disease de- 
velopment in the population depends on the stratum only 
through X: 

where X j k  now includes the constant term. But the actual 
likelihood for the two-stage data is proportional to 

1 J  

(Holubkov 1995; Scott and Wild 1991). With Sj 
= log[Pr(S = j lD  = l) /Pr(S = j l D  = O ) ] ,  define 

to be the probability that a Stage I subject in stratum j is a 
case, and similarly define 

n 1 j T O  e x p ( - 6 j  + x j k p )  
P l j k  = 1 - POjk = 

n0j7r1 + n l j 7 r 0  e x p ( - 6 j  + X j k p )  

to be the probability that a Stage 11 subject in stratum j 
with exposures X = X j k  is a case. 

These definitions allow one to factor the likelihood (14) 
into terms involving (6, p) and terms involving the marginal 
stratum and exposure distributions, just as in Section 4. 
But with the more complicated design, the unconstrained 
solution does not generally satisfy the constraints, namely 
that the marginal probabilities of being a case or a con- 
trol in stratum j at Stage I1 are fixed by design (Schill, 
Jockel, Drescher, and Timm 1993). Breslow and Holubkov 
(1995) concentrated the Lagrangian that arises from the 
constrained estimation problem and reduced it to the so- 
lution of the (p + J) equations 

(15) 

and for j = 1,. . . , J ,  

K 
( n l j  - T j ) n o j n + j k P l j k  = 0, (16) 

Tj  - nU + ‘ n o j n l j  - T j ( n 0 . j  - n + j p o j k )  
k = l  

where Tj = N l j  - N + j P l j .  A linearized, asymptotically 
equivalent set of equations leads to a more easily computed 
variance than that given by Aitchison and Silvey (1958) for 
constrained likelihood estimation and facilitates demonstra- 
tion of asymptotic normality even when the exposures are 
continuous. Less efficient pseudolikelihood estimates result 
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if one replaces (16) by Tj = 0, sets T’ to 0 in (13, and solves 
the resulting equations either separately (Breslow and Cain 
1988) or jointly (Schill et al. 1993), this latter solution re- 
sulting from unconstrained maximization of (14). 

Two-stage designs have many potential applications. One 
is to case-control studies with validation subsampling to 
correct for measurement error (Carroll, Gail, and Lubin 
1993). In this case S denotes a surrogate available for all 
subjects, whereas X denotes error-free exposures measured 
for the validation subsample. The assumption of nondif- 
ferential measurement error needed to justify calling S a 
surrogate, namely Pr(S = jJX = x j k , D  = 0 )  = Pr(S 
= j ( X  = x j k , D  = l), is equivalent to the assumption 
(13) of conditional independence between D and S given 
X. Thus Equations (15) and (16) provide a fully efficient 
solution to the measurement error problem when the sur- 
rogate is discrete. Carroll et al. (1993) developed a pseudo- 
likelihood approach for the general problem of validation 
subsampling that allows for the possibility of differential 
measurement error and eliminates the requirement for dis- 
crete data at the first stage. However, this approach requires 
specification of a parametric model for the distribution of 
the error-prone measurements S given X and D. Robins, 
Rotnitzky, and Zhao (1994) provided the basic machinery 
needed to develop semiparametric efficient estimators for 
many of these problems. 

An ingenious analog of the two-stage design that is ap- 
plicable with nested case-control sampling was recently de- 
vised by Langholz and Borgan (1995). Here the object is to 
use the Stage I (stratum) information available for all mem- 
bers of the risk set to select those members for the reduced 
risk set. Because estimation of relative risk depends on the 
contrast in exposures between cases and controls, efficiency 
is enhanced by selecting them to be as different as possible 
vis-a-vis the exposures. Changing notation, suppose now 
that Nil members of the risk set R(ti) are in stratum j .  
Then one deliberately chooses the controls so that exactly 
Mij members of the reduced risk set e(ti) are in stratum 
j. When there are only two strata and a single control per 
case, so that Mil = Miz = 1, this means sampling the con- 
trol from the opposire stratum as the case. To correct for the 
biased sampling, one weights the partial likelihood contri- 
butions of case and control by the ratio Nij /Mi’, depending 
on their stratum. In practice this is easily accomplished by 
including log(Nij/Mij) as an ofset in the regression equa- 
tion. The procedure is called counter-matching. 

7. LIMITATIONS AND CHALLENGES 

Statistics has gained a place of modest usefulness in medical research. It 
can deserve and retain this only by complete impartiality, which is not 
unattainable by rational minds . . . I do not relish the prospect of this sci- 
ence being now discredited by a catastrophic and conspicuous howler. For 
it will be as clear in retrospect, as it is now in logic, that the data so far 
do not warrant the conclusions based on them. (Fisher 1957b, p. 298, on 
smoking and lung cancer.) 

Statisticians have contributed immensely to the develop- 
ment of the modern case-control study. Their conceptualiza- 
tion in terms of sampling from a fictitious or actual cohort 

study illuminates the close relationship between these two 
principal methodologies of analytic epidemiology. The role 
of matching in study design, and methods to account for it 
in the analysis, are now much better understood. Logistic 
and other relative risk regression procedures based on likeli- 
hood concepts provide epidemiologists with modem statis- 
tical tools for model validation and outlier detection (Hos- 
mer and Lemeshow 1989). Semiparametric methods such as 
the generalized additive model (Hastie and Tibshlrani 1990) 
allow them to visualize their data in new ways, leading to 
new insights and hypotheses. 

But despite these technical advances, the fundamental 
problems of drawing causal inferences from observational 
data persist. Fisher remained skeptical of the claim that 
cigarette smoking caused lung cancer even in the face of 
what the medical community regarded as overwhelming ev- 
idence. His extreme viewpoint is best understood by recall- 
ing that he was both the geneticist, well aware of the influ- 
ence of heredity on disease, and the statistician, who had 
perfected randomization as the method of drawing causal 
conclusions in experimental settings. He also took sharp ex- 
ception to what he regarded as the hysterical reaction of the 
public media to an unproven hypothesis. 

I hope that most of us, as statisticians with rational minds, 
agree today that Fisher was seriously mistaken about the 
hazards of cigarette smoking. Regrettably, his prominent 
position on this issue may have helped delay much-needed 
educational programs and regulatory action. In this country, 
lung cancer surpassed breast cancer as a cause of mortality 
in women some 7-8 years ago. Fisher’s observation of low 
lung cancer rates among smoking women in the mid-1950s 
simply reflected a delay in the epidemic due the fact that 
women started smoking later than men and that decades 
were required for the multistep carcinogenic process to 
start affecting women in large numbers. His emphasis on 
the genotype was relevant, not as a cause of lung cancer 
per se, but rather through interactions with cigarette smok- 
ing. For example, evidence is accumulating that individuals 
with high oxidative or low detoxification capacity vis-a-vis 
known carcinogens in cigarette smoke, due to genetic poly- 
morphisms in well-characterized enzyme systems, may be 
at particularly high risk (Kawajiri, Nakachi, Imai, Watan- 
abe, and Hayashi 1993; Nazar-Stewart et al. 1993). 

Although Fisher’s position on this particular association 
was wrong, his concern about negative public reaction to 
dubious scientific claims was well founded. The public is 
increasingly weary and skeptical of the multitude of contra- 
dictory reports of health hazards emanating from epidemi- 
ology. A recent Science news article noted that, although 
epidemiologists themselves generally discount isolated re- 
ports of weak associations, with relative risks under two 
or three, such studies are published by the “journal load” 
and many receive prominent media coverage (Taubes 1995). 
Given the pressure on young faculty at universities and re- 
search institutes to publish, and given a funding mechanism 
that discourages large, long-term team projects, the plethora 
of “false alarms” will undoubtedly continue. 
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Treatment Disease Outcome Latent Exposure (s) Measurements 

Known Exposures and Covariates 
Figure 4. A General Model for Measurement Error. The labels I, 11, 

and 111 denote submodels (see text). (@ 1992 Oxford University Press. 
Reprinted with permission.) 

The limitations of case-control methodology are well 
known (Austin, Hill, Flanders, and Greenberg 1994). They 
include selection bias, most often caused by high rates of 
nonparticipation that render the controls nonrepresentative 
of the population at risk; measurement error, particularly 
differential “recall bias” among cases and controls; and con- 
founding, the ever-present possibility that the observed as- 
sociation is the result of “hidden variables” that embody 
the true causal relationships. The random-digit dialing pro- 
cedure widely used for control selection may often yield 
a control sample in which the lower socioeconomic strata 
are underrepresented. Despite Dorn’s (1959) recommenda- 
tion for objective exposure assessment, the overwhelming 
majority of case-control studies continue to rely on a ques- 
tionnaire as the primary data collection instrument. For ex- 
ample, of the 223 studies published in 1992 that were men- 
tioned in Section 1, 150 (67.4%) used a questionnaire as the 
only source of exposure data and another 35 (15.7%) com- 
bined questionnaire responses with more objective mea- 
surements (Correa et al. 1994). Although the bias toward 
the null that typically affects relative risk estimates in the 
presence of nondifferential error in the measurement of ex- 
posures is well known, the fact that measurement error in 
potential confounders can render them useless for adjust- 
ment purposes is not so well known (Greenland and Robins 
1985). 

What can and should we as statisticians do to overcome 
these difficulties? I was quoted in the previously mentioned 
Science article (Taubes 1995) as saying that multiple regres- 
sion analyses, of the type to which much of this article has 
been devoted, are of little help in solving these problems 
and may even give some investigators a false sense of secu- 
rity that they have done so. Regression analysis works well 
for adjusting relative risk estimates for the effects of known 
confounders that are measured without error, but reality 
often lies elsewhere. More complex models and analyses 
that account for the measurement error are required. The 
most hopeful situation is where error-free measurements 
are available for some subjects, as in a validation substudy. 
The efforts of Carroll and Robins and their colleagues have 
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Latent 
Factors 

Observed 
Response 

Figure 5. A Graphical Model of a Randomized Intervention (Instru- 
mental Variable) Study U represents both observed and unobserved 
factors that may confound the association of actual treatment and re- 
sponse. (@ 1995 Elsevier Science B K Reprinted with permission.) 

been mentioned already as examples of how to proceed in 
this case. Many others could be cited. When there is no 
“gold standard,” but replicate measurements with indepen- 
dent errors are available for some subjects, structural equa- 
tion approaches are available (Clayton 1992; Plummer and 
Clayton 1993). Figure 4 shows one scenario requiring spec- 
ification of three different models: I, a model for disease D 
as a function of the true exposures, whether (2) or not ( 6 )  
directly measurable; 11, a model for error-prone measure- 
ments X as a function of true exposures < and covariables 
2; and 111, an exposure model that specifies the distribution 
of 6 as a function of 2. Of course, such models typically 
involve strong parametric assumptions that need to be eval- 
uated carefully. 

Finally, what can we do in the face of the association 
versus causation dilemma? My own position on this issue 
is close to what has been termed the “classical epidemiol- 
ogy school.” One considers the available epidemiologic data 
in conjunction with those from whole animal experiments 
and the laboratory in an attempt to arrive informally at a 
judgment as to whether the association is causal. Bradford 
Hill’s (1971) criteria regarding the strength of the associa- 
tion, consistency in different settings, presence of a dose- 
response trend, timing, biological plausibility, and so on are 
relevant to this approach. One must admit, however, that 
these criteria have not been as successful in sorting out the 
signal from the noise as one might have hoped some 30 
years ago, in part because they have not been applied uni- 
formly. If we are to make further progress, other approaches 
may be needed. 

Today, the randomized intervention or prevention trial is 
very much in vogue as a method of demonstrating risk fac- 
tor effects. Due to the limited variation in many life-style 
factors within individual cultures, there is little opportu- 
nity with case-control or cohort studies to observe relative 
risks of sufficient magnitude to overcome the measurement 
error and confounding biases. The proposed solution is ran- 
domized encouragement to change unhealthy behaviors, or 
randomization of preventive medications. Such trials can be 
very effective when they work, in the sense that there are 
clear differences in outcome between the randomized treat- 
ment groups. Interpretation of a negative result is much 
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