
Statistical models for data from the alternating sequence design.

NOTES, 2025.07.15

This is a very ‘niche’ topic, but I liked it for its many teaching points, and also for the
way, in the simpler case, Claire Weinberg was able to trick GLIM (or any glm software
today) into fitting a (very natural and clever) random e↵ects model.

I remember Sholom Walcholder, who was a classmate of hers at U Washington, telling
me that Claire was very proud of showing how the beta-geometric model behaved as the
successive cycles unfolded, and how frustrated she was at Sholom for not having looked
at or taken a keener interest in her paper!)

But I suspect that niche / esoteric nature also made it harder to publish in mainstream
statistical journals. Indeed, as I now go back over the various versions of this manuscript,
I find that eventually we went to a speciality medical journal.

I don’t seem to have kept copies of the reviews we got, but it seems we eventually gave
up.

One other thing that hampered us was the availability of real data. The area of assisted
reproduction is quite competitive, and quite ‘commercial’ and so authors are not inclined to
share data (or for that matter, to commit to a protocol that keeps them from experimenting
as they go).

I was the one who came upon this topic, and then brought in as collaborators experts
in random e↵ects modelling (RP), MCMC methods (ND), and gynaecology/obstetrics
(MHM).

If people wish to ‘rejuvenate’ this project, I would be delighted to hear from them, or just
to see them take it further on their own.

Sincerely,

James Hanley
webpage: https://jhanley.biostat.mcgill.ca | email: james.hanley@mcgill.ca
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SUMMARY

In the 'alternating sequence design' used to compare success rates with assisted reproductive

technologies, women or couples are randomized to receive either the standard or experimental

treatment in the first cycle, and  -- if they do not become pregnant-- crossed between standard and

experimental treatments after each successive cycle. Norman and Daya (Fertility and Sterility, 2000)

have shown that, in the presence of heterogeneity of fertility, and an effective treatment, the overall

efficacy of the experimental treatment is overestimated by this design. They advised that in order to

achieve an accurate estimate of efficacy, the trial should be run for at least three cycles and all data

from even-numbered cycles be excluded from the analysis, which should then be restricted only to

odd-numbered cycles. In this paper, we describe approaches that make use of the data from all

cycles to produce estimates that are both less biased and more precise. The methods are

generalizations of those applicable to the 'constant sequence' design, where naive methods that do

not take account of the heterogeneity produce underestimates of treatment efficacy.
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1. INTRODUCTION

Two different experimental designs have been used to evaluate the efficacy of assisted reproductive

technologies (Daya  et al. 1993). One is the parallel-design or 'constant-sequence' randomized trial,

in which the experimental treatment is administered for one or -- if unsuccessful -- more cycles to a

fraction (usually one half, randomly chosen) of the eligible patients, and the control treatment for

the same number of cycles to the remaining fraction. The other is the 'alternating-sequence' design,

in which some of the women or couples are randomized to receive the standard, and the others to

receive the experimental treatment in the first cycle. Those who do not become pregnant are crossed

to the opposite treatment after each successive cycle.

The relative merits of these two designs have been keenly debated (Daya 1993; Khan et al. 1996; te

Velde 1998; Cohlen et al. 1998; Daya 1999, Norman and Daya 2000). Some of the arguments

focus on efficiency and sample sizes: if the experimental therapy is effective, the alternating design

results in more pregnancies than the constant sequence design, and is more attractive to couples.

Others have to do with possible biases in the resulting estimates of efficacy. The first suggestion of

bias came from comparisons of results of actual trials that used the two different designs to evaluate

the same procedure (Khan et al., 1996). The authors noticed that, relative to those seen in parallel

trials, treatment effects of the more effective treatment were higher in -- i.e. overestimated by --

crossover trials. Subsequent Monte Carlo evaluations (Cohlen et al., 1998), simulating patients

from a heterogeneous subfertile population, indicated that while results from parallel trials appeared

to slightly underestimate efficacy, the alternating sequence design did indeed seem to slightly -- but

in their opinion not materially -- overestimate it.  Thus, they advised that "because of its practical

advantages and because more pregnancies are achieved, a crossover design should be the first

choice in infertility research"

The clearest understanding of the exact origin,  nature and extent of the biases of estimates from

these two designs is found in the calculations of Norman and Daya (2000). As shown in the first

row of Table 1, they assumed a heterogeneous population, where fecundability i.e., the per-cycle
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probability of getting pregnant, varied from couple to couple. To simplify matters, they assumed

that with the less effective (Control) treatment,  80% of couples had, at each cycle, a 10% probability

of becoming pregnant and the remaining 20% of couples had a 40% probability, i.e.,

0.1 for 80% of couples
fecundability =

0.4 for 20% of couples

Thus the overall average fecundability is 16%, and the standard deviation is 12%. They further

assumed that the more effective experimental therapy had a constant 'relative risk' or Efficacy ("E")

of 2, i.e., that at each cycle, a couple's probability of becoming pregnant was doubled. Using

expected, rather than random numbers of pregnancies at each cycle, they showed that the estimates

of the efficacy of the more effective treatment from both designs are biased -- the parallel design

underestimates (apparent efficacy: E =1.83, calculations not shown here but discussed later) and

the alternating sequence design overestimates (apparent efficacy E = 2.10, middle column Table 1).

However, they noted that the bias in the alternating design is limited to the data from even-numbered

cycles.

-- Table 1 about here --

Despite the greater bias in the parallel design, Norman and Daya limited discussion of their

concerns to -- and aimed their cautions at proponents of -- the alternating sequence design. They

suggested a compromise between patient preference for this design and the statistical bias: "The

objective of obtaining an accurate estimate of the effect of treatment, but also allowing all subjects to

have the opportunity to receive the experimental treatment in at least one cycle, can now be achieved

with the alternating-sequence design trial. The proviso is that the trial should run for at least three

cycles and all data from the even-numbered cycles would have to be excluded from the analysis,

which would be restricted only to the odd-numbered cycles." They concluded by advising that

"When multiple cycles of treatment are undertaken to evaluate the efficacy of infertility therapy, the

alternating-sequence design with restriction of the analysis to only the odd-numbered treatment

cycles provides an unbiased estimation of the treatment effect".
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This bias-avoiding strategy is unlikely to be an acceptable option for most investigators, patients

and ethics review committees, and prompts the obvious questions: must we discard 'biased' cycles

and compensate for the decreased precision by increasing the numbers of couples enrolled? if we

know the form of the bias, why can't we remove it statistically?

The purpose of this paper is to do just that. We describe two approaches; both use only the

'aggregated by cycle' data. They draw on, and adapt when necessary, a dispersed statistical literature

that -- unfortunately -- does nor seem to have 'crossed over' into fertility research. For illustration,

we will first use the same simulated data used by Norman and Daya (Table 1).

2. PREAMBLE: HOMOGENEOUS FECUNDABILITY

Let pC denote a selected woman's fecundability i.e., her per-cycle probability of getting pregnant,

with the standard treatment (t=0). For now, assume that there is no variation in pC across women,

i.e., that Var[ pC ] = 0. Let pE denote this woman's fecundability with the experimental treatment

(t=1). The comparison between pE  and pC  can be expressed in different ways by selecting

different forms for the function g in the regression equation  g[ pE  ] = g[ pC  ] + β × t. For

example, β is the absolute difference in fecundability if we select g[ ] to be the identity function;

exp[β] is the fecundability ratio if g is the ln function, or the fecundability odds ratio if g is the logit

function. For this paper, we, like Norman and Daya use the fecundability ratio scale, whereas

Cohlen et al used the odds ratio scale.

Suppose that one such woman, alternating from the experimental treatment in cycle 1, became

pregnant on this treatment in the 5th cycle.

Cycle: 1 2 3 4 5

Treatment: Experimental Control Experimental Control Experimental

Outcome: — — — — +

Probability(+) : pE pC pE pC pE

Probability(Outcome): 1 - pE 1 - pC 1 - pE 1 - pC pE

+ or — denotes whether woman did or did not become pregnant in that cycle
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The observed data can be modeled as a sequence of independent Bernoulli trials with alternating

probabilities of success. The likelihood is the product of the probabilities of the 5 individual

outcomes; it can also be re-arranged and written as a product of two binomial-like likelihoods,

corresponding to sC = 0 successful cycles, preceded by uC = 2 unsuccessful ones, when the success

probability is pC ; and sE  = 1 successful cycle, preceded by uE  = 2 unsuccessful ones, when the

success probability is pE  , i.e.,

L  ∝  (1 - pC )2   ×   (1 - pE    )2 pE

If pC and pE  are constant from woman to woman, so that all woman-cycles within the same

treatment condition are exchangeable, then the likelihood based on the data from several such

women can again be written as the product of two binomial-like likelihoods

L  ∝  (1 - pC ) UC  pC SC   ×   (1 - pE  )UE  pE SE

where UC = Σ uC  and UC and SC and SE are the TOTAL numbers of unsuccessful and successful

cycles on C and E respectively, i.e., summed over all women and all cycles. They lead to simple

closed-form MLE point estimators of  pC and pE , namely the total numbers of pregnancies divided

by the total numbers of cycles, and likelihood-based interval estimates for any of the comparative

parameters defined by g[ ] above.

3.1 HETEROGENEOUS FECUNDABILITY

In reality, fecundability with the standard treatment does vary across the source population of

women, i.e., var[pC] > 0. We denote this variation by the probability distribution function f[pC]. In

their example, Norman et al. took pC to have a 2-point distribution.

IF the latent  pC 's  and pE 's  of the n women studied could be known, the likelihood would simply

be

L  ∝  Π { (1 - pC ) uC  pC sC   ×   (1 - pE  )uE  pE sE  }
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with the product, Π, taken over the n women studied. However, since these 'parameters' are not

known, the likelihood also involves the parameters of f[ ]. Although it is easy to write the likelihood,

it involves an n-dimensional integral over the latent fecundability values for each woman, and so ML

estimators of the model parameters, and of the relevant comparative parameter, no longer have a

closed form.

Not counting the inefficient method produced by Norman and Daya, two broad data-analysis

approaches can be used. The first of these, the subject of this paper, uses the row-by row data

summaries in Table 1, i.e., it uses the data, aggregated over women, for each treatment in each cycle,

to estimate an efficacy ratio. This approach does not incorporate woman-specific and woman-cycle-

specific covariates. In section 3, we describe two such methods to estimate a fecundability ratio,

assumed to be common over women, from aggregated data. One method makes no assumptions

about the form of f[ ]. The other is based on a specific parametric model for f[ ]   -- the beta-

geometric. Using only standard software for generalized linear models, Weinberg and Gladen were

able, using a helpful re-parametrization, to obtain the ML estimates of its parameters from data with

the same structure as those generated by the constant-sequence design. Here, we propose an ad-hoc

modification to their method that allows us to accommodate data from the alternative-sequence

design.

The second broad approach uses as the unit of analysis the (Bernoulli)  data from each separate

woman-cycle. This much more general approach will be described in a separate paper.

3.2  METHODS

Unspecified-form for  f[p]:   Let E denote the ratio of pE to pC for all values of pC.  Table 2 gives,

for each of the first three cycles, for any distribution f[pC], and any legitimate E, the expected

'numerators' and 'denominators' defining the proportion of those entering the cycle who become

pregnant in that cycle. The extension to cycles 4 and beyond is obvious, although the algebra

becomes tedious. Of note is the fact that the two success proportions in cycle 'k' involve the first k
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moments of the distribution of pC. Other authors (e.g., Lau, 1996) have also noted this in the

simpler, constant-condition or constant-sequence, situation. Thus, each cycle adds two new data

points and one new parameter, so that the total of 2K datapoints from K cycles can be modeled by

K + 1 parameters. Thus, if K is 3 or more, the remaining K-1 degrees of freedom can be used to

assess the fit of the model.

-- Table 2 about here --

Since it is difficult to fit the K+1 parameters (E, and the moments p1 to pK) using standard

statistical software,  we obtained MLE's of the parameters by numerically finding the roots of the

derivatives of the log likelihood. We used Mathematica (program  available from

http://www.epi.mcgill.ca/hanley/ software/alt_seq.html) to do so. From the information matrix, we

obtained the standard error for the estimate of E. The results of this procedure, applied to the data in

Table 1, are shown in Table 3. Like the procedure of Norman and Daya, this method correctly

'recovers' E. But -- because it uses data from all cycles -- it produces smaller standard errors. Thus,

this increased precision can be achieved without having to forego accuracy, even if higher order

moments (of order 3 or more in our example) -- of decreasing magnitudes, since p is bounded by 0

and 1 -- are omitted (i.e., set to zero in the likelihood).

-- Table 3 about here --

There are considerable practical technical difficulties in fitting such a high-order nonlinear model;

moreover, the number of parameters (moments) relative to the numbers of observations is large, and

the software is inaccessible to most end-users. In order to provide a method that could be

implemented in  mainstream statistical packages, we modified the generalized linear model

suggested by Weinberg and Gladen(1986), which is based on a specific, but natural, distributional

form for f[p].

Adaptation of Weinberg and Gladen's 'Beta-Geometric' Generalized Linear Model:  Before

describing our adaptation, we revisit the simpler parallel design considered by Weinberg and
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Gladen(1986). They were concerned with fecundability, measured over as many as 12 cycles, in

smokers relative to non-smokers, i.e., with data analogous in structure to that for the 'constant-

sequence' experimental design. They took f[p], the fecundability distribution in non-smokers, to be

a Beta distribution, with the location and shape governed by the two traditional parameters a and b.

These parameters correspond to µp = a/(a+b) and  σp2 = ab/((a+b)2(a+b+1)). They showed that

in those (previously unsuccessful) couples who enter cycle k, the -- now conditional -- distribution

of p is shifted towards zero but remains a Beta distribution, now with parameters a and b + (k-1).

By re-expressing the parameters a and b, they further showed that the mean probability   p of

success in this cycle among those who enter this cycle, which we denote as p[cycle],  is related to the

number of previously unsuccessful cycles (cycle -1) via  the simple reciprocal link:

1 / p[cycle]  =  c + d (cycle - 1).

The parameter c is the expected number of cycles to become pregnant for couples with a per-cycle

probability of p[1]  i.e.,  c = 1 / p[1]. The parameter d measures the spread of the initial distribution

of p (if there is no heterogeneity, the number of  cycles to pregnancy reduces to the same geometric

random variable for each couple). Thus, the parameters of this specialized model can be fit to the

datapoints (successes in cycle/number who undergo cycle) in any  software which allows binomial

regression with an inverse (i.e.,  power~1) link. Using indicator variables and product terms,

Weinberg and Gladen extended the model to fit two separate Beta distributions for the probabilities

among smokers (Ismoking=1) and non-smokers(Ismoking=0), via a single equation i.e.,

1 / p[cycle, group]  =  c1 + d1 (cycle - 1) +  (c2 - c1)Ismoking +  (d1 - d2 )(cycle - 1)Ismoking  .

Consider now the alternating-sequence design, where the initial distribution of pC in the source

population is again Beta[a,b]. Conditionally on entering the different cycles, the expected

proportions who become pregnant in these cycles  do not follow the simple inverse linear patterns

above. But they do have a predictable, if slightly imperfect mathematical, pattern: As an example,

Figure 1 shows the inverses of the expected proportions under an initial Beta[3,15] distribution of

pC, and a constant fecundability-ratio E=2. The parameter values a=3 b=15 used to generate the

- 8 -



sequences of proportions yield a mean[ pC] = 1/6 = 0.17 and a SD[pC] = 0.085, somewhat 'tighter'

than the SD of 0.12 in the 2-point distribution used by Norman and Daya. These values correspond

to the values c=(a+b)/a = 6 and d = 1/a = 1/3 in Weinberg and Gladen's representation.

The pattern in Figure 1 matches that seen earlier in Table 1: the ratios of the inverse proportions

(and thus the proportions themselves) are constant at E=2 in odd-numbered cycles, and greater than

2 in even-numbered cycles -- but to a decreasing extent with increasing cycles. This pattern

suggests, as a pragmatic approximating model, the following generalized linear model,

 1 / p[cycle, condn]  =  c1 + d1 (cycle - 1) +  (c2 - c1)I +  (d1 - d2 )(cycle - 1)I  + g1 z  + g2 I z .

As before, the indicator I indicates the experimental condition. The regressor

1/(cycle-1) in even-numbered cycles
z   =

0 otherwise.

and the corresponding regression coefficients  g1 and g2 allow decreasing 'corrections' for the even-

numbered cycles (to conserve degrees of freedom, one may wish to use opposite signs, and a single

g for z). The model can again be fit using any Bernoulli regression software that allows the

reciprocal link. The estimate of E is obtained from the ratio  c1 / c2  since c1 = 1 / p[1] and

c2 = 1 / (E × p[1]); the parameter estimates c1 and c2  can (in the absence of a subgroup where

pC=0) be interpreted as the average number of cycles to become pregnant for a (random) couple

with 'average' fertility, if they remained on treatment 1(C) or 2(E) throughout. In the example, the

best fit  of the above equation to the 5 sets of proportions in Table 1 yields  c1 = 6.01 cycles  and c2

= 3.01 cycles, to give, to 2 decimal places, E = (1/c2) / (1/c1) = 1.99 (see Table 4).

4. EFFICACY ESTIMATES FROM A CLINICAL TRIAL

We compared the various estimates in the context of the sample sizes, fertility rates, and logistical

constraints encountered in practice. We did so by applying them to data from a study that evaluated

whether a second generation protocol improved the success rate with donor insemination that used

frozen semen (Brown et al., 1988). This is an important contemporary issue, since the time-window
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needed to screen semen for HIV infection now precludes the use of fresh semen. Earlier, in 1984, in

what seems to have been the first documented use of the alternating sequence design, the same team

had achieved a fecundability rate of only 5.0 pregnancies per 100 cycles with a first-generation

protocol, versus 18.9 per 100 using fresh semen (Richter et al., 1984]).

The alternating sequence design was again used in the second-generation protocol. Again, for each

woman, the semen was from her matched donor for the first six cycles, and if pregnancy was not

achieved by then, the donor was changed. The data for the first six cycles are shown in Table 6.

However, as is obvious from the tabulated denominators for fresh and frozen semen cycles, the

same practical difficulties were encountered as those mentioned in the first study: "Cryopreserved

semen was frequently substituted in a cycle scheduled to be fresh because the donor was not

available". Detailed information on which sequence was actually followed by each woman is no

longer available (S. Shapiro, personal communication, 2002). .

The estimates of the relative efficacy of frozen semen are given at the bottom of Table 6. Those

produced by the proposed methods are closest to the null, suggesting that these methods removed

some of the bias induced when one ignores the heterogeneity of fecundability.  Possibly by chance,

given its poor precision, the estimator advocated by Norman and Daya was furthest form the null,

further than both the crude and the Mantel-Haenszel estimates. The estimate from the Generalized

Linear Model applied to the  'aggregated-by-cycle' data  was the closest to the null, but had a higher

SE,  possibly because of the large number of parameters (6) fitted to the 12 datapoints.

5. DISCUSSION

The alternative sequence design allows investigators to recruit greater sample sizes to compare the

performance of assisted reproductive technologies. The two statistical options we have presented

allow clinical trials to benefit from the full efficiency of these larger sample sizes, but without

sacrificing statistical accuracy. Norman and Daya's method of avoiding bias squanders the

statistical advantage of this design. Given that most contemporary trials in this area are already
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based on fewer than 25 pregnancies over all cycles, one cannot afford to decrease precision any

further by omitting data from even-numbered cycles.

The degree of bias in efficacy estimates from a naive analysis is a function of two factors, the

degree of heterogeneity in p and the difference in treatment efficacy; both must be substantial in

order to produce a serious bias. Norman and Daya's concerns, and resulting advice, were based on

an extreme 2-point distribution of p, and a treatment efficacy that doubled the p=40% in the high

fertility subgroup to a 'biologically nearly impossible' p = 80%. Even then, the bias from using the

aggregated-by-cycle data was less than the imprecision induced by the sample sizes used in

practice. And, with the same E=2, the bias was much smaller when Norman and Daya took a more

conservative 2-point distribution where f[0.025] = 0.8 and f[0.1] = 0.2, so that p is closer to zero,

with mean[p] = 0.04, SD[p]=0.03. Moreover, if, rather than increasing p, an experimental treatment

-- such as frozen semen -- reduces it, the degree of bias in the naive estimate of E is also less,

because of the smaller impact of the differential removal of the most fertile at the end of each odd-

numbered cycle. These 'low-bias' conditions would also apply if this design were used for

comparisons of contraceptive methods, where in contrast, the probability of an unwanted pregnancy

is already low with most methods.

Some investigators place a high premium on avoiding even small biases. Others may wish to

accommodate the actual sequence of treatments received, intended or otherwise. For example, in the

study by Brown et al. there were unavoidable deviations from the planned alternating-sequence

protocol. Yet others may use variations on the alternating design: for example, in Ecochard et al.

(2000), half the patients received one treatment for the first two cycles and the competing treatment

for the next two cycles, whereas the other half followed the opposite sequence. For data from these

more complex designs, investigators will probably wish to use random effects models for binary

(Bernoulli) data that allow one to model the cycle-by-cycle sequence of outcomes for each woman

using a full regression approach that makes use of all of the individual level data for each woman
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(any baseline covariates, the cycle-by-cycle treatment indicators and any other available cycle-

dependent covariates).

Contrary to misconceptions, the alternating sequence design is not  a full crossover study. Nor does

it carry the full statistical efficiency usually associated with self-matched comparisons. Thus, the

sample size and power calculations/projections are best done by analogy with unmatched designs.

Another misconception is that the outcomes of an individual woman's 'multiple' cycles in the same

woman are not statistically independent.  Conditional on the (unmeasurable) p (and thus on  E×p)

which is specific to that woman, the cycles do constitute independent Bernoulli trials with

alternating probabilities.

The approaches we have described are also applicable to data analyses for the parallel- or 'constant-

sequence' randomized trial design. Since this competing design has the same data structure as

Gladen and Weinberg's example of pregnancy rates in smokers and non-smokers, their 'Beta-

Geometric' Generalized Linear Model is immediately applicable without modification. The method

based on moments is also applicable. Applied to Norman and Daya's 'constant-sequence' example

(and the 'data' in their Table 1), both of our methods recover estimates closer to the true E=2,

whereas a naive analysis produces an attenuated E=1.83.

In their main example, Norman and Daya assume that treatment increases pC a constant-fold, i.e., by

the same multiple, E , for all values of  pC . Just as they do, we too find it difficult to imagine that a

treatment which improves p by 2-fold, from 0.1 to 0.2, with also raise the per-cycle success

probability from 0.4 by the same factor to 0.8. Although, following clinical trial practice, we have

used 'relative risks' (i.e., ratios of proportions) as measures of efficacy, it is preferable to allow an

unrestricted range of p, and of the efficacy measure E, , by using the also more biologically

plausible 'constant OR' model.

Norman and Daya claim that "the assumptions of a constant drug efficacy is not necessary". In an

appendix, they purport to show algebraically that, for any distribution of fertility f[pC], and for any
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value of drug efficacy, E(pC), where the efficacy is a function of fertility, "the outcome rates in the

odd cycles in an alternating sequence are unbiased", i.e., that "the results will hold true regardless of

the relationship between efficacy and fertility." In fact, the ratio from alternate cycles will not

continue to be unbiased in the event that the treatment effect is variable in different fecundability

groups. This is illustrated in Table 6 by slightly perturbing Norman and Daya’s simulated example

so that the risk ratio in the low fecundability group is 2.5, while the risk ratio in the high

fecundability group remains at 2. This is closer to what happens in reality where there is likely to be

a greater relative shift in the low fecundability groups, compared to the high fecundability groups.

The true average risk ratio across the population is thus 2.5 × 0.8 + 2 × 0.2 = 2.4. However, from

Table 6 we can see that this estimate is not obtained even in the first cycle. This is because the

aggregate ratios at each cycle are the ratios of the expected probabilities of successes rather than the

expectation of the ratios of the success probabilities,  i.e.

Σ p . E[p] . f[p]
Σ p. f[p]   ≠  Σ f[p]. E[p]

Further, it appears that the odd cycles will tend to underestimate the true risk ratio while the even

cycles tend to overestimate it. If the study continues to a point when only women in the low

fecundability group remain, then the ratio approach the true ratio of 2.5 in both odd and even cycles

This contrary finding is an additional impetus to consider a general regression model that allows

not just between-individual heterogeneity, and covariates at the woman-cycle level, but also more

flexibility in the specification of the comparative parameter. We will report on our experiences with

random effects models for binary data in a subsequent paper.
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Table 1: Cycle-specific ratios of expected pregnancy proportions if the alternating sequence design
is applied to a population of 2000 which is heterogeneous with respect to spontaneous fecundity
[20% with higher, 80% with lower fecundity]. The course of the 1000 randomly allocated to
undergo the 'control'  treatment in the first cycle is tracked in bold. The entries at each cycle are the
expected numbers of couples from the higher- and lower fecundity subpopulations who attempt to
(and, in parentheses, the numbers who do) become pregnant. Table adapted from Figure 2 and
Table 2 of Norman and Daya*.

Treatment Received in the Indicated Cycle
Control Experimental

Sub-population (fecundity) Sub-population (fecundity)

Cycle High Low Combined Ratio Combined High Low

1 200
(80)

800
(80)

1000
(160)

16% 2.00

1000
(320)

32%

200
(160)

800
(160)

2 40
(16)

 640
(64)

680
(80)

11.8% 2.43

840
(240)

28.6%

120
(96)

720
(144)

3 24
(9.6)

 576
(57.6)

600
(67.2)

11.2% 2.00

600
(134.4)

22.4%

24
(19.2)

576
(115.2)

4 4.8
(1.9)

 460.8
(46.1)

465.6
(48.0)

10.3% 2.10

532.8
(114.9)

21.6%

14.4
(11.5)

518.4
(103.7)

5 2.9
(1.2)

 414.7
(41.5)

417.6
(42.6)

10.2% 2.00

417.6
(85.2)

20.4%

 2.9
(2.3)

414.7
(82.9)

1-5 271.7
(108.7)

 2891.5
(289.2)

3163.2
(397.8)

12.6% 2.10*

3390.4*
(894.8)

26.4%*

 361.3
(289.0)

3029.1
(605.8)

Calculations were carried out on a spreadsheet and thus differ slightly from those of Norman
and Daya. (* N & D also made an error in calculating an overall denominator of 3444.4 for the
'experimental' cycles,  and thus an overall rate of 26.0% and an overall ratio of 2.06.
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Table 2: The expected numerators, denominators, and success probabilities for each of the first
three cycles, as a function of the efficacy, E, and the (absolute) moments of the distribution of p, the
fecundability under the standard ["control" (C)] treatment. For simplicity, the subscript "C" is
omitted . The results hold for any distribution of p, The course of those randomly allocated to
undergo the 'control'  treatment in the first cycle is tracked in bold.

Intervention

Cycle Control Experimental

1  p . f[p]
1   = p1

Σ E . p . f[p]
1   = E . p1

2
Σ p . (1 - E . p).f[p]
Σ      (1 - E . p).f[p]

=  p1  - E . p2
1   - E . p1

 E . p . (1 - p) . f[p]
           (1 - p) . f[p]

=  E . p 1   - E . p 2
1 - p1

3
 p . (1 - p) . (1 - E . p) . f[p]
     (1 - p) . (1 - E . p) . f[p]

=  p1    - p2  - E . p2  + E . p3
1  -  p1   - E . p1  + E . p2

Σ E . p . (1 - p) . (1 - E . p) . f[p]
Σ           (1 - p) . (1 - E . p) . f[p]

=  E . p1   - E . p2 - E2. p2 + E2. p3
1  -  p1  - E . p1 + E . p2

Cycle 1 starts with denominators of 1 (100%) in each group; it is assumed that there are no
dropouts [i.e. women/couples who haven't yet gotten pregnant do not abandon the study] or that
dropouts are 'at random' and unrelated to their values of p. Σ denotes summation or integration over
the possible values of p. The symbols p1 to p3 are the first 3 moments of the distribution of p, the
fecundability with standard treatment.

In general, p would have a continuous distribution. However, without loss of generality, and in order
to simplify the presentation, we have taken p to be a discrete random variable, and use summation,
Σ, rather than integration, over the distribution of p.
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Table 3: Maximum Likelihood Estimates(SE) of the efficacy parameter E, as a function of the
number of data cycles used, and the number of moments used in the estimation; comparison with
method of Norman and Daya. 'Data' from Table 1.

Method based on moments Norman and Daya

Numbers of moments estimated (odd-numbered cycles)

Cycles used 1 2 3 4 5 Cycles
used

Estimate
(SE)

1 2.00
(0.17)

1 2.00
(0.17)

1, 2 2.33
(0.18)

2.00
(0.13)

1, 2, 3 2.18
(0.14)

2.06
(0.12)

2.00
(0.12)

1, 3 2.00
(0.15)

1, 2, 3, 4 2.28
(0.15)

2.01
(0.11)

2.02
(0.11)

2.00
(0.11)

1, 2, 3, 4, 5 2.18
(0.13)

2.07
(0.11)

2.01
(0.10)

2.00
(0.10)

2.00
(0.11)

1, 3, 5 2.00
(0.14)
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Figure  1: Motivation for adapting the Weinberg-Gladen model: shown are the reciprocals of the
success probabilities at each cycle, under the alternating sequence design. Smaller dots: control
condition; larger dots: experimental condition. Probabilities were generated under a (null)
Beta[3,15] distribution of  a first-cycle probabilities, and an 'efficacy' of E=2. Success probabilities
themselves are shown at left. Cycle-specific ratios are 2,  2.18, 2,  2.13 and 2. Deviations of the
reciprocals in even-numbered cycles from the virtually linear pattern of the reciprocals in odd-
numbered cycles are a decreasing function of cycle.
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Table 4 Fits of adapted Weinberg-Gladen generalized linear model to Norman and Daya 'data' (a)
Single Model for both treatments (b) Model fit separately for each treatment

(a) Single Model

Parameter              Estimate (SE)

INTERCEPT               6.32   (0.45)
Cycle -1                1.02   (0.30)
(Expt'l) Treatment     -3.16   (0.48)
Treatment*(Cycle -1)   -0.50   (0.32)
Z (see footnote 1)      1.15   (0.98)
Treatment*Z            -1.33   (1.01)

(b) Separate models2

                Control     Expertimental  Ratio(SE of ln Ratio)

INTERCEPT       6.33 (0.45)   3.15 (0.14)      2.00(0.082)
Cycle -1        1.02 (0.30)   0.52 (0.10)
Z               1.15 (0.98)  -0.18 (0.23)

-------
1. Z = 1/(cycle-1) if even-numbered cycle, 0 otherwise

2. The ratio estimate, from the single model, is 6.32/(6.32-3.16);
   since the covariance between the 6.32 and (6.32-3.16) is
   virtually zero, the variance of the ratio can be simplified by
   fitting separate models for control and experimental cycles.
   The variance of ln ratio can therefore be computed as
   [ (0.45/6.33)2 + (0.14/3.15)2 ]1/2 =  0.08
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Table 5: Pregnancies and Fecundability in Cycles of Insemination with Fresh and Frozen Semen,
Together with Estimates of Efficacy. The course of the patients who underwent insemination with
fresh semen in the first cycle is tracked in bold. Data from Table 1 of Brown et al (1986).

Fresh semen Frozen semen
Number of Number of

Cycle Patients Pregnancies Fecundability Patients Pregnancies Fecundability
1 163 57 0.350 125 18 0.144
2 69 18 0.261 130 12 0.092
3 73 20 0.274 87 8 0.092
4 59 12 0.203 69 9 0.130
5 51 12 0.235 50 1 0.020
6 51 12 0.235 28 2 0.071

1-6 466 131 0.281 489 50 0.102

Efficacy (SE),
estimated from ...  Frozen

 Fresh

"Crude":  50/489 = 0.102  ÷  131/466 = 0.281 0.36(0.14)

Odd-numbered cycles [ 27/262 ÷ 89/287 ] 0.33(0.18)

Mantel-Haenszel Risk Ratio [strata: cycles] 0.37(0.15)

Method I [4 moments] 0.39(0.15)

Adaptation of beta-binomial [2.88/7.00*] 0.41(0.24)1

(SE) is the SE of the ln of the ratio (in some cases, back-calculated from SE of ratio itself)

1 See footnote 2 to Table 4..

Deviance / df = 0.95; Chi-square goodness of fit statistic = 5.3 (6 df).
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Table 6: Simulated example with varying risk ratio in each fecundability group; otherwise, same
setup as in Table 1.

Treatment Received in the Indicated Cycle
Control Experimental

Sub-population (fecundity) Sub-population (fecundity)

Cycle High Low Combined Ratio Combined High Low

1 200
(80)

800
(80)

1000
(160)

16% 2.25

1000
(360)

36%

200
(160)

800
(200)

2 40
(16)

 600
(60)

640
(76)

11.8% 2.79

840
(276)

32.9%

120
(96)

720
(180)

3 24
(9.6)

 540
(54)

564
(63.6)

11.2% 2.43

564
(154.2)

27.3%

24
(19.2)

540
(135)

4 4.8
(1.9)

 405
(40.5)

409.8
(42.4)

10.3% 2.57

500.4
(133)

26.6%

14.4
(11.5)

486
(121.5)

5 2.9
(1.16)

 364.5
(36.45)

367.4
(37.61)

10.2% 2.48

367.4
(93.429)

25.4%

 2.9
(2.32)

364.5
(91.125)

1-5 271.7
(108.7)

 2709.5
(270.6)

2981.2
(379.3)

12.7% 2.45

3271.8
(1016.625

)

31.1%

 361.3
(289.0)

2910.5
(727.625)
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BACKGROUND
Two experimental designs to evaluate efficacy of assisted
reproductive technologies [Daya  et al. Fertility and Sterility, 1993;59:6–7].

Parallel-design or 'constant-sequence' randomized trial
Experimental treatment administered for one or -- if
unsuccessful -- more cycles to a fraction (usually 1/2,
randomly chosen) of the eligible women/couples
'Control' or 'standard' treatment for the same number of
cycles to the remaining fraction.

'Alternating-sequence' design
1/2 of women/couples randomized to receive standard,
and the other 1/2 the experimental treatment in 1st cycle.
Those who do not become pregnant are crossed to the
opposite treatment after each successive cycle.
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     "Parallel" Alternating Sequence
Eligible Patients

R

Control Exptl.

Eligible Patients

R

1

2

3

4

5

Control Exptl.
cycle

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not

Preg.
Not
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Relative merits of 2 designs
Daya 1993; Khan et al. 1996; te Velde 1998;  Cohlen et al. 1998; Daya 1999, Norman & Daya 2000

Arguments
- efficiency & sample sizes
- attractiveness of alternating design to couples
- possible biases in the resulting estimates of efficacy

• Comparisons of results of trials that used different
designs to evaluate same procedure [Khan et al., 1996]

relative to those seen in parallel trials, effects of more effective
treatment higher in -- i.e., overestimated by -- crossover trials

• Monte Carlo evaluations [Cohlen et al., 1998]

simulated patients from heterogeneous subfertile popln.

- results from parallel trials appeared to be unbiased
- alternating seq. design did indeed seem to slightly -- but in their

opinion not materially -- overestimate the treatment efficacy.
advice:  "practical advantages ; more pregnancies achieved

=> crossover design should be first choice in infertility research"
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Nature & extent of biases in estimates from 2 designs

Calculations/assumptions by Norman and Daya [2000].

• Heterogeneous population

... with the less effective treatment, at 1st (each) cycle ...

prob[becoming pregnant] % of couples

10% 80%
40% 20%
------

 overall ave. 16%.

• The more effective therapy had 'relative risk' of 2, i.e. at
each cycle, probability[becoming pregnant] DOUBLED.

 • Expected  number of pregnancies at each cycle
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adapted from Figure 2 and Table 2 of Norman and Daya ... .

Treatment Received in the Indicated Cycle

Control Experimental

Sub-population (fecundity) Sub-population (fecundity)

Cycle High Low Combined Ratio Combined High Low

1 200
(80)

800
(80)

1000
(160)

16% 2.00

1000
(320)

32%

200
(160)

800
(160)

2 40
(16)

 640
(64)

680
(80)

11.8% 2.43

840
(240)

28.6%

120
(96)

720
(144)

3 24
(9.6)

 576
(57.6)

600
(67.2)

11.2% 2.00

600
(134.4)

22.4%

24
(19.2)

576
(115.2)
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4 4.8
(1.9)

 460.8
(46.1)

465.6
(48.0)

10.3% 2.10

532.8
(114.9)

21.6%

14.4
(11.5)

518.4
(103.7)

5 2.9
(1.2)

 414.7
(41.5)

417.6
(42.6)

10.2% 2.00

417.6
(85.2)

20.4%

 2.9
(2.3)

414.7
(82.9)

1-5 271.7
(108.7)

2891.5
(289.2)

3163.2
(397.8)

12.6% 2.10*

3390.4*
(894.8)

26.4%*

 361.3
(289.0)

3029.1
(605.8)
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Norman and Daya ... SUMMARY

Estimates of the efficacy of more effective treatment from
both designs are biased   (true relative risk = 2)

   Parallel Alternating seq.
estimates under- over-
apparent relative risk: 1.83 2.10

bias limited to data from
even-numbered cycles.

Despite the greater bias in the parallel design, Norman and
Daya limited discussion of their concerns to -- and aimed
their cautions at proponents of -- the alternating design.

8



Norman and Daya ... ADVICE
Compromise
"The objective of obtaining an accurate estimate of the effect
of treatment, but also allowing all subjects to have the
opportunity to receive the experimental treatment in at least
one cycle, can now be achieved with the alternating-
sequence design trial.
The proviso is that the trial should run for at least
three cycles and all data from the even-numbered
cycles would have to be excluded from the analysis,
which would be restricted only to the odd-numbered
cycles."
"When multiple cycles of treatment are undertaken to
evaluate the efficacy of infertility therapy, the
alternating-seq. design with restriction of the analysis
to only the odd-numbered treatment cycles provides
an unbiased estimation of the treatment effect".
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Our Opinions / Questions / Suggestions / Plan
• Bias-avoiding strategy unlikely to be an acceptable to most

investigators, patients and review committees.
• Must we discard 'biased' cycles and compensate for the

decreased precision by increasing numbers of couples?
• If know what causes bias, why not remove it statistically?

10



2 approaches (use only the 'aggregated by cycle' data)

-1- no assumptions re form of heterogeneity;

strong assumptions re how a particular woman's
fecundability with Exp'tl Tx is related to her
fecundability with Standard Tx.

-2- specific parametric model for heterogeneity;

no connection b/w a particular woman's fecundability
with Exp'tl Tx  & that same woman's fecundability with
Standard Tx

11



PRELIMINARIES
pC a woman's average per-cycle probability of getting

pregnant with Standard ("Control") Tx.
f[pC] distribution of p across source population

In Norman at al.'s example, pC ~  2-point distribution
pC

(per-cycle success prob.)
f[pC]
(%)

0.10 80
0.40 20

summary
0.16 <---  mean
0.12 <---  SD

12



PRELIMINARIES ...
Suppose (as did Norman & Daya) that ...

Exp'tl Tx increases each pC a constant-fold

i.e., by same multiple, θ ('Efficacy') in each fertility 'stratum'. *

pE  = θ × pC       ....... for all values of pC

we drop the subscript C for next few slides..
-------
* N+D later relaxed this assumption, making θ a function of pC

difficult to imagine that a treatment which improves p 2-fold, from 0.1 to 0.2,
with also raise the per-cycle success probability from 0.4 by same factor to 0.8.

13



Cycle-specific fecundability as fn. of  and moments
For any distribution of p, the expected numerators, denominators, and success

probabilities for each of the first 3 cycles, as a function of the efficacy, θ, and
the (absolute) moments, p1 to p3 , of the distribution of pC (p for short)

Intervention
Cycle Control Experimental

1  p . f[p]
1

=>  p1

 θ . p . f[p]
1

θ . p1   <=
2  p . (1 - θ . p).f[p]

      (1 - θ . p).f[p]

=>  p1  - θ . p2
1   - θ . p1

  . p . (1 - p) . f[p]
           (1 - p) . f[p]

  . p 1  -  . p 2
1 - p1

  <=

3  p . (1 - p) . (1 -  . p) . f[p]
     (1 - p) . (1 -  . p) . f[p]

=>  p1   - p2 -  . p2 +  . p3
1  -  p1  -  . p1 +  . p2

 θ . p . (1 - p) . (1 - θ . p) . f[p]
           (1 - p) . (1 - θ . p) . f[p]

 θ . p1   - θ . p2 - θ2. p2 + θ2. p3
1  -  p1  - θ . p1 + θ . p2

 <=

It is assumed that either there are no dropouts [i.e. women/couples who haven't yet gotten pregnant do not abandon
the study] or that dropouts are 'at random' and unrelated to their values of p.

14



Unspecified f[pC] ;  pE  = θ × pC  for all values of pC

• Extension to cycles ≥ 4 is obvious, but algebra tedious!

• propn.'s in cycle 'k' involve 1st k moments of distrn. of pC.

• Each addnl. cycle....
=> 2 new data points introduce 1 new parameter.
=> K cycles --> 2K datapoints;  K+1 parameter model.
=> Thus, if K ≥ 3 --> remaining K-1 df to assess model fit.

• Unable to fit g.l.m. to 2K datapoints & K+1 parameters.

• Fit model numerically by maximizing Log Likelihood.
Mathematica   --> MLE   --> I matrix   --> SE for fitted E.
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I.  Fitting unspecified f[pC] , with  pE  = θ × pC  V -  pC

MLE of θ (SE of ln estimate), as fn. of # data cycles used, and # moments  fitted

Method based on moments Norman and Daya

Numbers of moments estimated (odd-numbered cycles)

Cycles used 1 2 3 4 5 Cycles
used

Estimate
(SE of ln est)

1 2.00
(0.086)

1 2.00
(0.086)

1, 2 2.33
(0.077)

2.00
(0.066)

1, 2, 3 2.18
(0.066)

2.06
(0.060)

2.00
(0.060)

1, 3 2.00
(0.070)

1, 2, 3, 4 2.28
(0.064)

2.01
(0.055)

2.02
(0.055)

2.00
(0.056)

1, 2, 3, 4, 5 2.18
(0.059)

2.07
(0.054)

2.01
(0.052)

2.00
(0.052)

2.00
(0.053)

1, 3, 5 2.00
(0.065)
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Parametric model for heterogeneity

• Technical difficulties in fitting high-order nonlinear model.

• Large # of parameters rel. to # of observations.

• Instead... use a known distributional form for f[p].

17



Before we choose distrn. of (pC,pE) across couples....
Likelihood contribution: 1 couple; fixed but ? value of (pC,pE)
Cycle: 1 2 3 4 5
Treatment: Exp'tl Control Exp'tl Control Exp'tl
Outcome: — — — — +

Probability(+) : pE pC pE pC pE
Probability(Outcome): 1 - pE 1 - pC 1 - pE 1 - pC pE

• Likelihood:  Π probs. of 5 observed outcomes (Bernoulli).
• Exploit equivalence of geometric and binomial likelihoods

- rearrange the 5 cycle by cycle contributions above as:
0 successes in 2 trials when prob[+] =  pC

1 success    in 3 trials when prob[+] =   pE.

18



II. Weinberg & Gladen's 'Beta-Geometric' GLM
• Beta distrn. for 'unexposed' population (e.g., non-smokers)

2 parameters α and β ---> E[p] = α/(α+β); var[p] = αb/((α+β)2(α+β+1)).

• In (previously unsuccessful) couples who enter a particular cycle,
the -- now conditional -- distrn. of p is again a beta distrn, but shifted
towards zero by an amount that depends on spread of initial distrn.

• Re-express parameters α and β in terms of 2 equivalent ones γ and δ

p[cycle] = (conditional) mean p in those who enter this cycle

1 / p[cycle]  =  γ + δ (cycle - 1) .

• γ : expected # cycles to become pregnant if  per-cycle probability is p[1]

• δ: spread of the initial distribution of p
δ = 0  -->  # cycles to pregnancy same (geometric) distrn for each.
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II.  Weinberg & Gladen's 'Beta-Geometric' Model
In those couples were previously unsuccessful in
u = k - 1 previous cycles, the—now conditional—
distribution of p at cycle k in this selected subgroup is
shifted towards the left i.e., towards zero, but remains a

 Beta distribution, now with parameters {  ,  + u }.

Expected probability of success among those who
enter cycle k  is related to number of previously
unsuccessful cycles u via the simple reciprocal link:

1 / E[ p[k] ] = ( +  + u)/ ( + )/ + (1/ )   u

=     +       u.

20



II. Fitting Weinberg & Gladen's 'Beta-Geometric' GLM
2 parallel arms: 'Control' Tx (t = 0 )  & Exp'tl Tx (t = 1)

Data structure: # successes cycle k  / # who undergo cycle k, each Tx

Model: Binomial regression with inverse (i.e.,  power-1 ) link.

2 groups Usual indicator variables and product terms

Fit two separate Beta distributions for expected probabilities
among smokers ( t =1) & non-smokers(t = 0), via  single equation:

1 / E[ p[k, t] ]  =  ( 0 + 0 u  )  (1 - t)   +  ( 1   2  u )  t

21



The alternating-sequence design...

• In source pop'lns:  pC ~ Beta[αC, βC] pE  ~  Beta[αE, βE].
• For distributions in cycle k ( > 1) ...

- need to be able to calculate the expected probability of
success given the numbers of previous cycles,  uC  and
uE  respectively, where the standard and experimental
treatments had been unsuccessful.

- Unless one postulates the full bivariate form of the
counterfactual probabilities for each woman, it is not
possible to specify these subsequent probability
distributions exactly.
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Strategy used by Cohlen et al....
At cycle k, odds of success in group who were unsuccessful on opposite
treatment at cycle k-1 is shifted up/down by odds ratio in 1st cycle.

Odds Reciprocal of Probability

k Control Experimental Control Experimental

1
αC
βC

αE
βE

αC +βC
αC

αE +βE
αE

2
αE

βE + 1 × αC βE
αE βC

=  αC

 βC + βC
βE

αC

βC + 1 × αE βC
αC βE

=  αE

βE + βE
βC

αC +βC
αC

+ βC
αC βE

 × 1

αE +βE
αE

+ βE
αE βC

 × 1

3 αE

βE + βE
βC

 +1
 × αC βE
αE βC

=  αC

 βC + βC
βE

 +1

αC

βC + βC
βE

 +1
 × αE βC
αC βE

=  αE

 βE + βE
βC

+1

αC +βC
αC

+ βC
αC βE

 × 1

+ 1
αC

 × 1

αE +βE
αE

+ βE
αE βC

 × 1

+ 1
αE

 × 1
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Odds Reciprocal of Probability

k Control Experimental Control Experimental

4 αE

βE + βE
βC

 + 2
 × αC βE
αE βC

=  αC

 βC + 2 C

E
 + 1

αC

βC + βC
βE

 + 2
 × αE βC
αC βE

=  αE

 βE + 2 E

C
+1

αC +βC
αC

+ βC
αC βE

 × 2

+ 1
αC

 × 1

αE +βE
αE

+ βE
αE βC

 × 2

+ 1
αE

 × 1

Control Tx: equivalent to adding 1 to denominator of the odds for every
previously unsuccessful cycle with this Tx, and adding an amount
( βC / βE ) for every previously unsuccessful cycle with Exp'tl Tx.

Exp'tl Tx: equivalent to adding 1 for every previously unsuccessful cycle
with this treatment, and ( βE / βC ) for every previously
unsuccessful cycle with the Control Tx.
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Generalized linear model [Cohlen]:
Control Tx:

1 / E[ p[k, C] ]  = C + C

C
 +  1

C
   uC  +  C

C E
  uE

=   0 + 0,C uC   +    0,E  uE

Exp'tl Tx:

.......
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Modification factor that involves both    and  
For Control Tx:

Instead of φ = ( βC / βE ) , use the initial failure ratio
φ = [ βC/(αC + βC)] / [ βE/(αE + βE)],

to modify uE before adding it to denominator of the odds

Control Tx Exp'tl Tx
αC

βC + uC + (1/φ) × uE
 αE

βE + uE + φ × uC

Generalized linear model [McGill version]:

1 / E[ p[k, t] ]  =
( 0 + 0,C uC + 0,E  uE )  (1 - t) + ( 1 + 1,E uC + 1,C  uE )  t
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Fitting...

Only 4 free parameters..
 δ0,E and δ1,C (non-linear) functions of other 4 parameters.

Eliminate 2 redundant ones... numerically maximize log Lik.

Simpler  approach

Ignore redundancies;

Fit '6-parameter' model -- Binomial regression with -1 link.
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IV. Adapting Weinberg & Gladen's Model
Reciprocals of success probabilities at each cycle, under alternating sequence
design. Probabilities generated under (null) beta(3,15) distrn. of  first-cycle
probabilities, and an 'efficacy' of E=2. Cycle-specific ratios: 2, 2.18, 2, 2.13,2 .
{a=3,b=15}  ==> mean[p] = 1/6  & SD[p] = 0.085; c=(a+b)/a = 6 & d = 1/a = 1/3.
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0 1 2 3 4 5
cycle

3

4

5

6

7

8

9

1/p[cycle]

0.33

0.25

0.2

0.17

0.14

0.12

0.11
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Pragmatic  analytical model (GLM) for alt. seq. data...
1 / p[cycle, condn]  =  c1 +    d1 (cycle - 1) + g1 z

(c2 - c1) I +  (d1 - d2 )(cycle - 1) I + g2 I z.

 1 if exptl. condn.  1/(cycle-1) in even-# cycles
I  = z  =

 0 otherwise,  0 otherwise

θ estimated as ratio  c1 / c2.   [c1 = 1 / p[1] & c2 = 1 / (E × p[1])].

c1: ave. # cycles to pregnancy under condn. 1
for couple with 'average' fertility.

c2: ave. # cycles to pregnancy under condn. 2

Fit to N+D 'data':
c1 = 6.01 cycles ; c2 = 3.01 cycles;    E = (1/c2) / (1/c1) = 1.99.
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Parametric form for f[p] : Advantages
• Tx in specific cycle

==> outcome at that cycle, for each couple separately

• Cycle-specific covariates
- intercourse frequency and timing

- characteristics of the ova or the semen

may modify couple's base per-cycle prob. of conception

[Weinberg et al., 199x, Ecochard and Clayton, 2000].
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Fitting parametric form for f[p] : Practical Issues
To model f[p] & 'constant-multiple of p' effect of exp'tl treatment, need:

(i) random-effects model for Bernoulli regression
(ii) log link (iii) 0  ≤  p  ≤  1 ;  0  ≤ E × p  ≤ 1.

• PROC NLMIXED in SAS
- can constrain some parameters
- only Gaussian distrn. currently avail. for f[p] -- in p, log[p] & logit[p] scales.
- user must know g.l.m's and program p as function of linear predictor.

• (SAS) GLIMMIX macro:- full menu of links.

• Stata

• Gibbs Sampling

direct & flexible

(i) ability to use (among others) beta-distribution for p

(ii) can ensure p  and E × p stay in (0,1) interval

(iii) interval estimates in most appropriate parameter scale
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Fits to N+D 'data'
Estimates(SE) of efficacy parameter E .

Components of
model

Software Estimate of E
(SE*)

Estimate(s) of
other

parameter(s)

Notes

Random Effects Models
log[p] ~ N(0, σ2) SAS PROC

NLMIXED
2.42

(not calculated)
σ2:   1.12 after 7

iterations

ditto SAS Macro
GLIMMIX

2.17
( 0.04747)

after 14
iterations

p ~ Beta(α, β) WINBUGS 2.02
( 0.11 * )

α: 1.7 ;  β: 8.5

Generalized Estimating
Equations Approach

Exchangeable
correlation
structure

SAS PROC
GENMOD

1.96
(0.0468e96m)

ρ:  0.07
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III.  Generalized Estimating Equations (GEE) Approach
Consider each couple as a separate 'cluster'.

• Less direct/Less transparent/Does not explicitly model heterogeneity in p.
Instead, it models similarity of responses within same couple.

• pragmatic --> avoids high-dimensional design matrices; focus on correct SE.

• β's : not usual 'conditional on the cluster / covariate pattern' interpretation.
- Limited range of between cluster variation --> distortion is small.

• binomial/log link applied to data in Table 1:   E estimate = 1.96.

No explicit distributional form for f[p].

0.07  'correlation' of within-individual residuals  (on 0/1 scale)
-  some intra-individual variation in p
-  difficult to convert r=0.07 into var[log[p]], or var[p]
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EFFICACY ESTIMATES FROM ACTUAL TRIAL
Does 2nd generation protocol improve success rate with donor insemination
that used frozen semen ? [Brown et al, 1988].

In 1984, same team had achieved a fecundability rate of 5.0 pregnancies/100
cycles with 1st-generation protocol, versus 18.9/100 using fresh semen.

For each woman, semen was from her matched donor for first six cycles; if
pregnancy not achieved by then, the donor was changed.

Practical difficulties:  "Cryopreserved semen was frequently substituted in a
cycle scheduled to be fresh because the donor was not available".

Detailed information on which sequence was actually followed by each woman
no longer available (S. Shapiro, personal communication, 2002). Thus, in order
to allow a comparison of statistical analyses that use 'aggregated by cycle'
versus 'individual' data, we constructed individual sequences to match, as
closely as we could, the aggregated data in the 1988 report.
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Pregnancies & Fecundability in Cycles of Insemination with Fresh &
Frozen Semen. Data adapted from Table 1 of Brown et al.

Fresh semen Frozen semen

Number of Number of
Cycle Patients Pregnancies Fecundability Patients Pregnancies Fecundability

1 163 55 0.337 125 14 0.144
2 82 27 0.329 137 13 0.095
3 70 17 0.243 109 14 0.128
4 55 12 0.218 93 9 0.097
5 60 16 0.267 67 8 0.119
6 35 7 0.200 68 6 0.088

1-6 465 134 0.288 559 64 0.114
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Efficacy, estimated from... Frozen
 Fresh

64/559 = 0.114  ÷  134/465 = 0.288 ["crude"] 0.40(0.13)
odd-numbered cycles [ 36/301 ÷ 88/293 ] 0.40(0.18)
Mantel-Haenszel Risk Ratio 0.38(0.13)
Method I (same ratio (to 2 dp), whether fit 1 or 2 moments) 0.xx(0.xx)
Method II [Random effects model]

- NLMIXED  ( f[ln p] ~ Normal )
- GLIMMIX   ( f[ln p] ~ Normal )
- WINBUGS  ( f[p]     ~ Beta )

0.35(0.13)
0.36(0.14)
0.39(0.14)

Method III [GEE with exchangeable correlations] 0.40(0.13)1

Method IV [Generalized Linear Model*] 0.36(0.24)2

* see text for details. (SE) is the SE of the log of the ratio (in some cases, back-calculated from SE of ratio itself)
1 model-based SE for ln ratio = 0.13;  empirical SE =  0.12.
2 ratio = 1/8.320 ÷ 1/2.994; SE[ln ratio] = { (0.324/2.994)2 + (1.766/8.320)2 }1/2 =  0.24
*** Deviance / df = 0.69; Chi-square goodness of fit statistic = 7.3 (12 df).
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Impressions

Estimates from random effects models based on a Gaussian
distribution of ln p furthest from null.

Perhaps not surprisingly, given that the p's were generated from the
same model used to fit the parameters, the estimate obtained by
Gibbs sampling was close to the less parametric estimate from the
GEE approach.

Both crude, and Mantel-Haenszel, summaries were very close to
that given by the unbiased, but -- in terms of variance --
approximately half as precise, estimator advocated by Norman and
Daya.

Imprecise estimate yielded by the Generalized Linear Model
applied to the  'aggregated-by-cycle' data  is probably a
consequence of the large # of parameters (6) fitted to 12 datapoints.
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IMPLICATIONS

Reassurance ...

to researchers who use alternating seq. design

to couples who generate the research data:

Not necessary to exclude even-numbered cycles

Statistical precision already low:

small n's:  seldom >  25 pregnancies over all cycles.
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WHY SMALL IMPACT OF MODEL CHOICE?

• N & D's advice based on

- extreme 2-point distribution of p,

- Tx efficacy doubled : 40% -> 80% in high fertility subgroup.

• Bias from using aggregated-by-cycle data

<< imprecision induced by small sample sizes used in practice.

• Freezing reduces average p  from 33% to near 12%;

0 <-- f [ E × p ]    impact of differential removal
0 <-- f [ p ] of most fertile at odd # cycles
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OUR PREFERENCES
Random effects models
  • accommodate woman-cycle outcomes using regression models.
  • make use of all of the individual level data for each woman

(baseline, cycle-by-cycle Tx indicators; other available cycle-dependent covariates).

  • can include unexplained woman-woman heterogeneity
Software: WINBUGS.
  • flexibility, transparency of estimation process.
  • routines for binary data not standard/stable in main packages;
  • GEE ?

- sensible answers, but ...
- ?? population-averaged vs. within-woman comparisons
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CLARIFICATIONS
• Alternating sequence design not a full crossover study.

Does not have statistical efficiency of paired-comparisons.
Sample size /power calculations as per unmatched designs

• Cycle-specific results in same woman statistically independent ?
- Condn'l on (unmeasurable) p (E × p) specific to a woman,

cycles represent indep. Bernoulli trials with alternating prob's.
- Random effects model allows p to vary from woman to woman.

OTHER ISSUES
• Choice of comparative parameter ?

- unrestricted range of p, and of efficacy measure E
• p unlikely to have  continuous distribution

- subgroup where p=0 [Zhou and Weinberg]
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SUMMARY

In the alternating-sequence design used to compare success rates with assisted repro-

ductive technologies, women or couples are randomized to receive either the standard or

experimental treatment in the first cycle, and— if they do not become pregnant—crossed

between standard and experimental treatments after each successive cycle. Two authors have

shown that, in the presence of heterogeneity of fecundability, and an e↵ective treatment, the

overall e�cacy of the experimental treatment is overestimated by this design. These authors

advised that in order to achieve an accurate estimate of e�cacy, the trial should be run

for at least three cycles and that all data from even-numbered cycles be excluded from the

analysis, which should then be restricted only to odd-numbered cycles. In this paper, we

describe approaches that make use of the data from all cycles. The methods are generaliza-

tions of those applicable to the constant-sequence design, where naive methods that do not

take account of the heterogeneity produce underestimates of treatment e�cacy.

Keywords

alternating sequence; fertility; experimental design; bias; precision; heterogeneity;

generalized linear models
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1. INTRODUCTION

Two experimental designs have been used to evaluate the e�cacy of assisted reproductive

technologies[1]. In the parallel-design, or constant-sequence randomized trial, the experimen-

tal treatment is administered for one or— if unsuccessful—more cycles to a fraction (usually

one half, randomly chosen) of the eligible patients, and the control treatment for the same

number of cycles to the remaining fraction. In the alternating-sequence design, some of the

women or couples are randomized to receive the standard, and the others to receive the

experimental treatment in the first cycle. Those who do not become pregnant are crossed to

the opposite treatment after each successive cycle.

The relative merits of these two designs have been keenly debated [1-6]. Some arguments

focus on e�ciency and sample sizes: if the experimental therapy is e↵ective, the alternating-

design results in more pregnancies than the constant-sequence design, and is more attractive

to couples. Others have to do with possible biases in the resulting estimates of e�cacy. The

first suggestion of bias came from comparisons of results of actual trials that used one or other

of the two designs to evaluate the same procedure [2]. The authors noticed that, relative to

those seen in parallel trials, treatment e↵ects of the more e↵ective treatment were higher in—

i.e. overestimated by —crossover trials. Subsequent Monte Carlo evaluations [4], simulating

patients from a heterogeneous subfertile population, indicated that while results from parallel

trials appeared to slightly underestimate e�cacy, the alternating-sequence design did indeed

seem to slightly—but in their opinion not materially – overestimate it. Thus, they advised [4,

p. 40] that “because of its practical advantages and because more pregnancies are achieved,

a crossover design should be the first choice in infertility research.”

The origin and nature of the biases in the estimates from these two designs can be readily

understood by studying the worked example in Norman and Daya [6]. As shown in the first
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row of Table 1, they assumed a heterogeneous population, where fecundability i.e., the per-

cycle probability of getting pregnant, varied from couple to couple. To simplify matters,

they assumed that with the less e↵ective (Control) treatment, some 80% of couples had a

pC = 10%, and the remaining 20% of couples a pC = 40% fecundability, i.e.,

pC =
⇢

0.1 for 80% of couples,
0.4 for 20% of couples.

Thus they assumed that the overall average fecundability is 16%, and the standard deviation

is 12%.

They further assumed that the more e↵ective (Experimental) treatment had a constant

e�cacy, ✓, of 2, i.e., that at each cycle, a couple’s probability of becoming pregnant was

doubled. In Table 1 the course of the 1000 randomly allocated to undergo the ‘control’

treatment in the first cycle is tracked in bold. The entries at each cycle are the expected

numbers of couples from the higher- and lower fecundity subpopulations who attempt to

(and, in parentheses, the numbers who do) become pregnant. Using expected numbers of

pregnancies at each cycle, Norman and Daya showed that estimates of e�cacy that are

based only on the total number of women and the total number of pregnancies are biased,

irrespective of the design—the parallel design underestimates (apparent e�cacy: ✓ =1.83,

calculations not shown here but discussed later) and the alternating-sequence design overes-

timates (apparent e�cacy ✓ = 2.10, middle column Table 1). However, they noted that the

bias in the alternating-sequence design is limited to the data from even-numbered cycles.

– Table 1 about here –

Despite the greater bias in the parallel design, Norman and Daya limited discussion of

their concerns to—and aimed their cautions at prospective users of—the alternating sequence

2



design. They suggested [6, p. 323] a compromise between patient preference for this design

and the statistical bias: “The objective of obtaining an accurate estimate of the e↵ect of

treatment, but also allowing all subjects to have the opportunity to receive the experimental

treatment in at least one cycle, can now be achieved with the alternating-sequence design

trial. The proviso is that the trial should run for at least three cycles and all data from the

even-numbered cycles would have to be excluded from the analysis, which would be restricted

only to the odd-numbered cycles.” They concluded by advising [6, p. 310] that “when

multiple cycles of treatment are undertaken to evaluate the e�cacy of infertility therapy,

the alternating-sequence design with restriction of the analysis to only the odd-numbered

treatment cycles provides an unbiased estimation of the treatment e↵ect.”

This bias-avoiding strategy is unlikely to be an acceptable option for most investigators,

patients and ethics review committees, and prompts the obvious questions: Must we discard

‘biased’ cycles and compensate for the decreased precision by increasing the numbers of

couples enrolled? If we know the form of the bias, can we not remove it statistically using

statistical models?

The purpose of this paper is to investigate this question, and several related ones. Under

what model(s) is Norman’s and Daya’s approach really unbiased? If one can successfully

eliminate the bias, at what price, in terms of increased imprecision, can this be achieved?

Given the typically small sample sizes in this research area, can we a↵ord this price, or

might the overall mean squared error be smaller if we took a more naive approach? And,

ultimately, if researchers use this design to collect their data, how should they analyze them,

and how should they calculate the uncertainty in their estimates of e�cacy? We restrict

attention to models that use aggregated data for each treatment-cycle.
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2. HOMOGENEOUS FECUNDABILITY

Let pC denote a woman’s fecundability i.e., her per-cycle probability of getting pregnant,

with the less e↵ective (control) treatment (t = 0). For now, assume no variation in pC

across women, i.e., that Var[pC ] = 0. Let pE denote her fecundability with the experimental

treatment (t = 1). Its e�cacy with respect to the control treatment can be expressed in

di↵erent ways using di↵erent forms for g in the generalized regression equation g[pE] =

g[pC ] + � ⇥ t. For example, � is the absolute di↵erence in fecundability if g is the identity

function; exp[�] is the fecundability ratio ✓ if g is the ln function, or the fecundability odds

ratio if g is the logit function. We will use the fecundability ratio to measure e�cacy.

Suppose that one such woman, alternating from the experimental treatment in cycle 1,

became pregnant on this treatment in the 5th cycle.

Cycle: 1 2 3 4 5
Treatment: Exp’tl Control Exp’tl Control Exp’tl

Outcome: — — — — +

Probability(+): pE pC pE pC pE

Probability(Outcome): 1� pE 1� pC 1� pE 1� pC pE

The observed data can be modeled as a sequence of independent Bernoulli trials with

alternating probabilities of success. The likelihood based on this woman’s data is the product

of the probabilities of the 5 individual outcomes; it can also be re-arranged and written as a

product of two geometric (but binomial-like) likelihoods, corresponding to sC = 0 successful

cycles, preceded by uC = 2 unsuccessful ones, when the success probability was pC ; and

sE = 1 successful cycle, preceded by uE = 2 unsuccessful ones, when the success probability

was pE , i.e.,

L(uC , uE, sC , sE | pC , pE) / (1� pC)2 ⇥ (1� pE)2 ⇥ pE
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Since pC and pE are constant from woman to woman, so that all woman-cycles within the

same treatment condition are exchangeable, the likelihood based on the data from several

such women can again be written as the product of two binomial-like likelihoods

L(UC , UE, SC , SE | pC , pE) / (1� pC)UC ⇥ pSC
C ⇥ (1� pE)UE ⇥ pSE

E

where UC = ⌃uC and UE and SC and SE are the total numbers of unsuccessful and successful

cycles when using C and E respectively, i.e., summed over all women and all cycles. The ML

point estimator of the fecundability ratio is simply (SE/TE)/(SC/TC)/ where TE = SE + US

and TC = SC + UC . A likelihood-based interval estimate is also easily calculated.

3. HETEROGENEOUS FECUNDABILITY

In reality, fecundability does vary among women, i.e., Var[pC ] > 0 and Var[pE] > 0.

We denote this variation by the general bivariate pdf f(pC , pE), with marginal distribu-

tion f(pC). We present two data-analysis approaches which use aggregated data for each

treatment in each cycle. The first makes no assumptions about the form of the marginal

distribution f(pC), but strong ones about how a particular woman’s fecundability with the

experimental treatment is related to her fecundability with the standard one. In this ap-

proach, the observed data can be modeled either as (i) two sets of multinomial distributions,

one for the numbers {SC1 , SE2 , · · ·} who become pregnant in cycles C1, E2, etc., the other

for the numbers {SE1 , SC2 , · · ·} who become pregnant in cycles E1, C2, etc., or (ii) as cycle-

and treatment-specific binomial random variables { SC1 |Tc1}, {SE1|TE1}, {SC2|TC2}, . . . The

second approach is based on a specific parametric form—Beta—for f , but does not ‘connect’

a particular woman’s fecundability when undergoing experimental treatment with that same

woman’s fecundability with the standard treatment.
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We evaluate these approaches using the data in Table 1 as well as data generated from

continuous bivariate distribution for {pC , pE}. In the latter case, how a particular woman’s

fecundability, pE, with the experimental treatment is related to her fecundability, pC , with

the standard one induced variability in the e�cacy across women. In this second method,

the observed data are modeled as cycle- and treatment-specific binomial random variables.

3.1 Unspecified-form for f ; constant fecundability ratio

Consider an unspecified distribution f(pC) and let ✓ denote the constant ratio of pE to

pC for all values of pC . For a person with a specific value pC , assigned to the sequence C, E,

C, ... , the probabilities of becoming pregnant in cycle 1, 2, 3, ... are

pC , (1� pC)⇥ ✓ ⇥ pC , (1� pC)⇥ (1� ✓ ⇥ pC)⇥ pC , ...

The probabilities, if that same person were assigned to the sequence E, C, E,. . . , are

✓ ⇥ pC , (1� ✓ ⇥ pC)⇥ pC , (1� ✓ ⇥ pC)⇥ (1� pC)⇥ ✓ ⇥ pC , ...

Since pC varies over persons, the multinomial proportions are the expectations of these

probabilities, taken over the distribution, f(pC), of pC . They form the numerators of the

expressions given in Table 2. and represent the contribution to the (multinomial-based)

likelihood of each person who becomes pregnant in that cycle. The extension beyond cycle

3 (not shown) is obvious, even if the algebra is tedious. Of note is the fact that the two

likelihood contributions from cycle k involve the first k moments of the distribution of pC .

Others, e.g., [7,8,9], have noted this in the simpler constant-sequence design. Thus, each

cycle adds two new data points and one new parameter; overall the 2K datapoints from K

cycles are modeled by K + 1 parameters. If K � 2, the remaining K � 1 degrees of freedom

can be used to assess model fit.
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Table 2 about here

Maximum likelihood estimates for these K + 1 parameters can be obtained from a non-

linear modeling package, such as SAS PROC NLMIXED (see Appendix). Although our

approach deals with heterogeneity, it does so without specifying a traditional random ef-

fects model: we used only the ‘NL” portion of NLMIXED. We found that this multinomial

approach is very sensitive to starting values, and have had more success by modeling the

number who become pregnant on a specific treatment in a specific cycle—conditional on

the number who used that specific treatment in that cycle—as a binomial random variable.

These conditional probabilities are given as the quotients in Table 2. Again, they can be

fitted using SAS PROC NLMIXED by (i) expressing the 2K binomial parameters in terms

of the K moments and the parameter of interest ✓, and (ii) for each of the 2K observed

counts, modeling

Numberpregnant ⇠ Binomial(Numbertreated, BinomialParameter).

For the data in Table 1, Maximum Likelihood estimates (and Standard Errors of their

natural logarithms) for these parameters are shown in Table 3. This method correctly

‘recovers’ ✓. Further, because the procedure uses data from all cycles, it produces smaller

standard errors than those for the summary estimates from the odd-numbered cycles only.

Moreover, one can achieve this increased precision, and only a slight inaccuracy, with fewer

than the full K moments: one can omit i.e., set to zero in the likelihood, some of the higher

order moments—those of order 3 or more in our example. This is because pC is bounded

by 0 and 1, so that the higher moments are of decreasing magnitudes, and thus increasingly

negligible.

– Table 3 about here –
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3.2 Beta-Geometric Model

That an experimental treatment would increase each pC value a constant-fold, i.e., by the

same multiple, ✓ for each woman, regardless of her value of pC , is not realistic biologically.

Whereas women whose natural fecundability is 10% might reasonably have it increased to

20% i.e., by a factor of ✓ = 2, with experimental treatment, the treatment is unlikely to also

raise other women’s already high natural per-cycle success probability of 40%, say, by the

same (multiplicative) factor of ✓ = 2, i.e., to 80%. Moreover, if pC > 1/✓ , this assumption of

a constant ✓ is statistically impossible. In addition, there are practical technical di�culties

in fitting such a high-order nonlinear model; the number of parameters (moments) relative to

the numbers of observations is large. For these reasons, we turn to more natural parametric

statistical models for pC and pE, ones with fewer constraints on how a particular woman’s

fecundability when undergoing experimental treatment relates to what might be (loosely)

called its ‘counterfactual’ i.e., the same woman’s fecundability with the standard treatment.

The Beta-Geometric (B-G) model has been used in demography [7]. More recently,

Weinberg and Gladen [8] used it in a non-experimental study of the e↵ect of smoking on

fecundability. Since women were classified as smokers or non-smokers for the entire period of

observation (up to 12 cycles), their model immediately applies to a parallel-sequence design

[4]. The latter authors used a modified B-G model to generate data, but did not consider it

for the analysis of their data. We extend these ideas to develop a beta-geometric model for

data from the alternating-sequence design.

Before doing so, we review its use for the constant-sequence design. Weinberg and Gladen

compared fecundability, measured over 12 cycles, in smokers relative to non-smokers. They

modeled fecundability in the two source populations as Beta distributions, with their re-

spective location and shape governed by the pairs of parameters {↵C ,�C} and {↵E,�E}.
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Therefore, before the first cycle the probability density function of pC is given by:

f [pc] / pc
↵C�1(1� pc)

�C�1

The mean and variance of the fecundability in the control group before the first cycle are

µC = ↵C/(↵C +�C) and �2
C = ↵C�C/((↵C +�C)2(↵C +�C +1)) Weinberg and Gladen showed

that in those couples who were unsuccessful in U previous cycles, the—now conditional—

distribution of pC at cycle U + 1 in this selected subgroup is shifted towards the left i.e.,

towards zero, but remains a Beta distribution, with probability density function:

f(pc|U) / pc
↵�1(1� pc)

��1+U .

The parameters of the fecundability distribution are now {↵C , �C +U}. Thus, after k cycles

the mean fecundability is given by µC = ↵C/(↵C + �C + k). They further showed that the

expected probability of success among those who enter cycle U+1 is related to the number

of previously unsuccessful cycles U via the simple reciprocal link:

1/E[pC |U ] = (↵C + �C + U)/↵ = (↵C + �C)/↵ + (1/↵)⇥ U

= � + � ⇥ U

The parameter � is the expected number of cycles to become pregnant if a couple had the

average per-cycle probability under the control treatment i.e., � = 1/µC . The parameter

� reflects the spread of the initial distribution of pC : under homogeneity, the number of

cycles required to achieve pregnancy reduces to the same geometric random variable for

each couple, i.e., � = 0. The parameters � and � can be fit using binomial regression with an

inverse (i.e., power-1) link, e.g., using PROC GENMOD in the SAS, or glm in Stata. Since

glm in R does not allow this link for the binomial, one needs to supply the variance function.
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Weinberg and Gladen extended the model to e↵ectively fit separate Beta distributions for

the cycle-specific probabilities for smokers (t = 1) and non-smokers(t = 0), via one equation:

1/E[pC | U ] = (�C + �C ⇥ U)⇥ (1� t) + (�E + �E ⇥ U)⇥ t.

To extend it to the alternating sequence design, we model the expected probability of

pregnancy for women who have already undergone UE and UC unsuccessful cycles on E

and C, and are now about to receive (say) E. The initial Beta(↵E,�E) distribution must

be updated to reflect the UE and UC . The UE is added to the �E term as in the parallel

sequence model, but a correction must be made to the UC . If C were no more e↵ective than

E, and thus exchangeable with it, we would add the full UC to the UE to obtain the �E term

of UE + UC . But if C were less e↵ective than E, then using the full UE + UC in the �E term

would shift the fecundability distribution too far to the left. This is most easily seen if no

pregnancies can occur with C. The greater the e�cacy of E relative to C, (i.e., the smaller

the ‘failure ratio’ (1 � pE)/(1 � pC)), the smaller should be the ‘amalgam’ of UE and UC .

Thus, we suggest that the contribution of UC be reduced, and propose the amalgam

U⇤ = UE + FRR⇥ UC

where FRR is the ratio of the probability of failure on the experimental and control treat-

ments at cycle 1. This ratio is less than unity if E is more e↵ective than C. Thus, the

probability density function of pE at cycle uC + uE + 1 is taken to be

f(pE | uE uC) / pE
↵E�1(1� pE)�E�1+uE+FRR⇥uC ,

i.e., a Beta(↵E , �E +uE +FRR⇥uC) distribution. Thus the expected probability of success

at this cycle is inversely proportional to a linear function of uE and uC , i.e .

E(pE | uC uE) = ↵E/(↵E + �E + uE + FRR⇥ uC)
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Similarly, we can show that

E(pC | uC uE) = ↵C/(↵C + �C + uC + (1/FRR)⇥ uC)

We re-formulate it as a generalized linear model for binary data with an inverse link function:

1/E(p | uC uE) = �0E ⇥ t + �0C ⇥ (1� t)
+ �1E ⇥ (uE ⇥ t) + �1C ⇥ (uC ⇥ (1� t)) (3)
+ �2E ⇥ (uC ⇥ t) + �2C ⇥ (uE ⇥ (1� t))

where t = 1 under the experimental treatment and t = 0 under the control treatment. Con-

straints should be placed on �2E, which is a function of �0E and �1E, and on �2C . The model

can be fit using PROC NLMIXED in SAS, which can accommodate constraints. The pa-

rameters of the original Beta distributions can be obtained by the following transformations.

↵E = 1/�1E; �E = (�0E � 1)/�1E; ↵C = 1/�1C ; �C = (�0C � 1)/�1C ,

and e�cacy is estimated by ✓̂ = ˆ�0C/ ˆ�0E.

In a Bernoulli model, woman-level covariates could be added as linear terms in (3). Notice

that at each cycle the fecundability distribution under treatment t is obtained by adding to

the � parameter of its starting fecundability distribution, the number of unsuccessful cycles

on t and a multiple of the number of those on the other treatment. While we have used

the multiplying factors as FRR and 1/FRR above, we could use the generic expressions

↵C/(↵C + �C + uC + �C ⇥ uC) and ↵E/(↵E + �E + uE + �E ⇥ uC) for the respective mean

fecundability after cycle uC + uE. �C and �E should be constrained to be > 1 and < 1

respectively, assuming E is more e↵ective than C.

4. EVALUATION

We assessed the performance of these analysis models on 200 generated datasets. Fol-

lowing Cohlen et al. [4] we began with Beta distributions with means of 0.16 and 0.32, each
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with a coe�cient of variation of 75% (Cohlen et al. used 56%). We calculated the 9th, 18th,

..., 90th percentiles for each of these two initial distributions, and placed a point mass of

0.1 at each of these values, thereby creating two 10-point distributions for the first cycle.

If a woman’s fecundability was at say the 18th percentile when on C i.e. if pC = 5.2%,

then her fecundability with E (if necessary) was the corresponding 18th percentile in that

distribution, namely pE = 8.1% (fecundability ratio = 1.56). Similarly, those just above

the middle of the pC distribution, i.e., a fecundability of pc = 15.2%, were considered to

be just above the middle of the pE distribution, namely pE = 31.6% (fecundability ratio =

2.08), while in the 3rd highest subgroup, fecundabilities were pC = 22.6% and pE = 48.2%

(ratio = 2.13). For each dataset, 1000 women were randomly assigned, using a multimomial

distribution, to the 10 fecundability levels under C, and 1000 others to the 10 corresponding

levels in the pE distribution. At each cycle, these two sets of 10 subgroup frequencies were

depleted using random numbers of pregnancies generated by the 20 corresponding binomial

distributions. The numbers who were unsuccessful were switched to their corresponding level

on the opposite distribution, before generating the pregnancies for the next cycle.

The estimates produced by our analysis models are summarized in Table 5. Leaving the

form of f unspecified and estimating its first few moments is somewhat more e�cient than

using the Beta-Binomial model, where there is more of a tradeo↵ between bias and precision.

5. EFFICACY ESTIMATES FROM A CLINICAL TRIAL

The data in Table 6a are from (by today’s standards) a very large clinical trial. It

evaluated the performance of a second generation protocol for donor insemination with frozen

semen [10]. Today, screening of semen for HIV infection precludes the use of fresh semen.

Earlier, in the first use that we have found of the alternating sequence design, this group
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achieved a fecundability rate of only 5.0 pregnancies per 100 cycles with a first-generation

protocol, versus 18.9 per 100 using fresh semen [11].

The data for the first six cycles (during which, for each woman, semen was from her

matched donor) are shown in Table 6a. However, as is obvious from the denominators, the

same practical di�culties were encountered as those mentioned in the first study: “Cryopre-

served semen was frequently substituted in a cycle scheduled to be fresh because the donor

was not available.” Unfortunately, information on the actual sequence for each woman is no

longer available (S. Shapiro, personal communication, 2002).

Estimates of e�cacy are given in Table 6b. Those produced by the methods in 3.1 and

3.2 are closest to the null, suggesting that they removed some of the bias induced when

one ignores the heterogeneity. Possibly by chance, given its poor precision, the estimator

advocated by Norman and Daya was furthest from the null, further than both the crude and

the Mantel-Haenszel estimates. The Generalized Linear Model estimate was closest to the

null, but had a high SE, possibly because of the large number of parameters (6) fitted to the

12 datapoints. The method of moments had the lowest SE. The fact that it was no di↵erent

from that of the Mantel Haenszel estimator suggests that, in this study, heterogeneity does

not substantially inflate or deflate the SE. Without individual-specific data, we are unable

to assess how much heterogeneity could also be a↵ected by women who dropped out.

6. DISCUSSION

The more attractive alternative sequence design also produces more pregnancies for the

same number of cycles. We describe two approaches that allow clinical trials to use data from

all of the cycles, while Norman and Daya’s approach [6] squanders the statistical advantage

of this design. Many contemporary trials generate fewer than 25 pregnancies in total. De-
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creasing precision further by omitting even-numbered cycles, without trying to eliminate the

biases by other methods, is di�cult to defend. Moreover, with the sample sizes considered

here reduced by a realistic factor of 25, sampling variability dominates analytic bias.

The bias caused by naively using all data is a function of the heterogeneity in pC and the

e�cacy of the experimental treatment ; both must be substantial in order to produce a serious

bias. Norman and Daya based their concerns on an extreme 2-point distribution of pC , and

a treatment that doubled the pC = 40% in the high fertility subgroup to a ‘biologically

nearly impossible’ pE = 80%. Even then, the bias was less than the sampling variability

induced by the sample sizes used in practice. With the same ✓ = 2, and a more realistic

distribution where f [0.025] = 0.8 and f [0.1] = 0.2 so that mean[pC ] = 0.04, SD[pC ] = 0.03,

the bias was much smaller Moreover, if, rather than increasing p, an new treatment— such as

frozen semen—reduces it, the degree of bias in the naive estimate of ✓ is also less, because of

the smaller impact of the di↵erential success (removal) of the most fertile in odd-numbered

cycles. For example, using ✓ = 0.5 in Table 2, the data from cycle 2 yield ✓̂ = 0.47, a

relative bias of only 6%. These ‘low-bias’ conditions would also apply in comparisons of

contraceptive methods, where the probability of an unwanted pregnancy is already low.

The alternating sequence design is not a full crossover study. Nor does it carry the full

statistical e�ciency usually associated with self-matched comparisons. Thus, the sample size

and power calculations/projections are best carried out by analogy with unmatched designs.

In practice, for example in the study by Brown et al. [10], there are unavoidable individual

deviations from the alternating-sequence protocol. Some investigators may use variations of

the alternating design: e.g., in Ecochard et al. [12], 1/2 patients received one treatment for

the first two cycles and the competing treatment for the next two cycles, while the other 1/2

followed the opposite sequence. For these more complex designs, random e↵ects models for
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binary (Bernoulli) data allow one to model the cycle-by-cycle sequence of outcomes for each

woman using a full regression approach that makes use of all of the individual level data for

each woman (any baseline covariates, the cycle-by-cycle treatment indicators and any other

available cycle-dependent covariates). Some quite complex 2-level hierarchical models have

been used in such circumstances [13,14].

The approaches we have described are also applicable to simple data analyses for the

parallel- or ‘constant-sequence’ randomized trial design. Since this competing design has

the same data structure as Weinberg and Gladen’s example (fecundability of smokers and

non-smokers), their ‘Beta-Geometric’ Model is immediately applicable without modification.

The method based on moments is also applicable. Applied to Norman and Daya’s ‘constant-

sequence’ example (and the ‘data’ in their Table 1), both of our methods produce estimates

closer to the true ✓ = 2, whereas a naive analysis produces an attenuated estimate of 1.83.

In an appendix, Norman and Daya [6, p324] claim that “the assumptions of a constant

drug e�cacy is not necessary” by considering an arbitrary distribution f [pC ], and an arbi-

trary e�cacy function, ✓[pC ] They purport to show algebraically that ”the outcome rates in

the odd cycles in an alternating sequence are unbiased,” i.e., that “the results will hold true

regardless of the relationship between e�cacy and fertility.” In fact, the ratio from alternate

cycles will not continue to be unbiased if the treatment e↵ect is variable. This is illustrated

in Table 7 by slightly perturbing Norman and Daya’s simulated example so that the risk

ratio in the low fecundability group is 2.5, while the risk ratio in the high fecundability group

remains at 2. This is closer to what happens in reality where there is likely to be a greater

relative shift in the low fecundability groups, compared to the high fecundability groups.

The true average risk ratio across the population is thus 2.5⇥ 0.8 + 2⇥ 0.2 = 2.4. However,

from Table 7 we can see that this estimate is not obtained even in the first cycle: the ratio
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of the expected probabilities of successes does not match the expectation of the ratios of the

success probabilities, i.e.

⌃ ✓[pC ]⇥ pC ⇥ f [pC ]

⌃ pC ⇥ f [pC ]
6= ⌃ ✓[pC ]⇥ f [pC ] = ✓[pC ]

Further, it appears that the odd cycles underestimate the true risk ratio while the even cycles

overestimate it. If the study continues to a point when only women in the low fecundability

group remain, then the ratio approach the true ratio of 2.5 in both odd and even cycles

This contrary finding is an additional impetus to consider more general regression mod-

els that allow not just between-individual heterogeneity, and covariates at the woman-cycle

level, but also more flexibility in the specification of the comparative parameter. We plan

to investigate whether the amount of data from a typical alternating sequence design makes

such models practical. Unlike traditional studies with multiple crossovers, the alternating

sequence design involves at most one instance of Y=1 per subject, and such outcomes pre-

clude further observations. This, the small sample sizes, and the small number of cycles

usually used, may be a serious impediment to more complex modeling. The analyses we

have presented, based on marginal distributions, may well be the appropriate ones for the

amounts of clinical trial data generated by the alternating sequence design.
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Table 1: Cycle-specific ratios of expected pregnancy proportions if the alternating sequence design

is applied to a population of 2000 which is heterogeneous with respect to spontaneous fecundity

[20% with higher, 80% with lower fecundity].

Treatment received in the indicated cycle

Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800
(80) (80) (160) (320) (160) (160)

16% 2.00 32%

2 40 640 680 840 120 720
(16) (64) (80) (240) (96) 144

11.8% 2.43 28.6%

3 24 576 600 600 24 576
(9.6) (57.6) (67.2) (134.4) (19.2) (115.2)

11.2% 2.00 22.4%

4 4.8 460.8 465.6 532.8 14.4 518.4
(1.9) (46.1) (48.0) (114.9) (11.5) 103.7

11.3% 2.10 21.6%

5 2.9 414.7 417.6 417.6 2.9 414.7
(1.2) (41.5) (42.6) (85.2) (2.3) (82.9)

10.2% 2.00 20.4%

1-5 271.7 2891.5 3163.2 3390.4 361.3 3029.1
(397.8) (894.8)
(12.6%) 2.10* (26.5%*)

The course of the 1000 randomly allocated to undergo the ’control’ treatment in the first cycle is

tracked in bold. The entries at each cycle are the expected numbers of couples from the higher-

and lower fecundity subpopulations who attempt to (and, in parentheses, the numbers who do)

become pregnant. Table adapted from Figure 2 and Table 2 of Norman and Daya.
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Table 2: Unconditional (multinomial) and conditional success probabilities for each of the first

three cycles, as a function of the e�cacy, ✓, and the (absolute) moments of the unspecified

distribution of pC , the fecundability under the standard [”control” (C)] treatment.

Cycle Control Experimental

1 µ1 ✓ ⇥ µ1

2
µ1�✓⇥µ2
1�✓⇥µ1

✓⇥µ1�✓⇥µ2
1�µ1

3
µ1�µ2�✓⇥µ2+✓⇥µ3
1�µ1�✓⇥µ1+✓⇥µ2

✓⇥µ1�✓⇥µ2�✓2⇥µ2+✓2

1�µ1�✓⇥µ1+✓⇥µ2

The numerators represent the unconditional probabilities of pregnancy in the indicated cycle for

persons entering the study, while while the quotients represent conditional pregnancy probabili-

ties for those who receive the indicated treatment in the indicated cycle. These probabilities are

computed separately for those randomly allocated to the ‘C to E to C’ sequence, and conversely

for their counterparts. Cycle 1 starts with denominators of 1 (100%) in each group; it is assumed

that there are no dropouts [i.e. women/couples who have not yet become pregnant do not abandon

the study] or that dropouts are ’at random’ and unrelated to their values of pC . The symbols µ1

to µ3 are the first 3 absolute moments of the distribution of pC , the fecundability with standard

treatment.
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Table 3: MLEs of the e�cacy parameter ✓ (SE of ln of estimate) as a function of number of data

cycles used, and number of moments of unspecified distribution f estimated, compared with

estimates obtained using approach of Norman and Daya.

No. moments of f fitted
.
.
. Norman and Daya

Cycles 1 2 3 4 5
.
.
. Cycles ✓̂

used
.
.
. used (SE*)

1 2.00
.
.
. 1 2.00

(86)
.
.
. (86)

1,2 2.33 2.00
.
.
.

(77) (66)
.
.
.

1,2,3 2.18 2.06 2.00
.
.
. 1,3 2.00

(66) (60) (60)
.
.
. (70)

1,2,3,4 2.28 2.01 2.02 2.00
.
.
.

(64) (55) (55) (56)
.
.
.

1,2,3,4,5 2.18 2.07 2.01 2.00 2.00
.
.
. 1,3,5 2.00

(59) (54) (52) (52) (53)
.
.
. (65)

‘Data’ from Table 1.

All SE’s are multiplied by 1000.

* Mantel-Haenszel summary risk ratio, with SE of ln estimate back-calculated from test-based

confidence interval.
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Table 4: Fit of adapted beta-binomial generalized linear model to 5 cycles of Norman and Daya

‘data.’

Model

Term Parameter Measure � =
�C/(↵C+�C)
�E/(↵E+�E) No Constraint

t �1 3.15(0.14) 3.14(0.14)

1� t �0 6.31(0.45) 6.36(0.45)

Ratio* 2.00 2.03

ln Ratio 0.694(0.084**)

UE ⇥ t �1E 0.58(0.13) 0.36

UE ⇥ (1� t) �0E - -0.00

UC ⇥ t �1C - 0.71

UC ⇥ (1� t) �0C 0.93(0.31) 1.94

SE’s shown in parentheses.

* The ratio estimate is 6.36/3.14.

** Since the covariance between the 6.36 and 3.14 is zero, the variance of the ln of the ratio,

computed via the delta method, is [(0.45/6.36)
2
+(0.14/3.14)

2
]
1/2

= [1/499.7+1/196.6]
1/2

= 0.084.
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Table 5: Estimates obtained by applying non-parametric and parametric methods to 200

datasets.*

Beta-Binomial

No. of moments fitted (f unspecified) � :

1 2 3 4 5
�C
�E

�C/(↵C+�C)
�E/(↵E+�E) N.C.**

Measure

Median{✓̂} 2.16 2.03 1.99 1.98 1.99 1.91 2.08 2.02

SD{ln ✓̂} 0.055 0.050 0.049 0.049 0.052 0.059 0.077 0.081

Mean{SE**} 0.058 0.054 0.052 0.052 0.054 0.062 0.078 0.083

* For details, see Section 4.

** N.C.: No constraint

** SE of ln ✓̂
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Table 6a: Pregnancies and Fecundability in Cycles of Insemination with Fresh and Frozen Semen.

Fresh semen Frozen semen

Number of ... Number of ...

Patients Pregnancies Rate Patients Pregnancies Rate

1 163 57 0.350 125 18 0.144

2 69 18 0.261 130 12 0.092
3 73 20 0.274 87 8 0.092

4 59 12 0.203 69 9 0.130
5 51 12 0.235 50 1 0.020

6 51 12 0.235 28 2 0.071
1-6 466 131 0.281 489 50 0.102

The course of the patients who underwent insemination with fresh semen in the first cycle is tracked

in bold. Data from Table 1 of Brown et al [10].

Table 6b: Estimates of E�cacy of Insemination with Frozen vs. Fresh Semen. SE of ln of

estimate given in parentheses.

Cycles Method/Model Details ... E�cacy

1-6 Brown et al. 50/489 ÷ 131/466 0.36(0.15)

1-6 M-H* Summary Risk Ratio 0.37(0.15)

1, 3, 5 Norman & Daya 27/262 ÷ 89/287 0.35(0.19)

1, 3, 5 Norman & Daya, M-H* Summary Risk Ratio 0.35(0.19)

1-6 Unspecified f 4 moments fitted 0.39(0.15)

1-6 Beta-binomial Unconstrained 0.39(0.25)
1

* Mantel-Haenszel summary risk ratio (summed over cycles), with SE of ln estimate back-calculated

from test based-confidence interval.

1
See footnote to Table 4. Deviance / df = 0.98; Chi-square goodness of fit statistic = 5.6 (6 df).
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Table 7: Simulated example with varying risk ratio in each fecundability subpopulation;

otherwise, same setup as in Table 1.

Treatment received in the indicated cycle

Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800

(80) (80) (160) (360) (160) (160)

16% 2.25 36%

2 40 640 640 840 120 720
(16) (60) (76) (276) (96) 180

11.8% 2.79 32.9%

3 24 540 564 564 24 540

(9.6) (54) (63.6) (154.2) (19.2) (135)

11.2% 2.43 27.3%

4 4.8 405 409.8 500.4 14.4 486
(1.9) (40.5) (42.4) (133) (11.5) 121.5

10.3% 2.57 26.6%

5 2.9 364.5 367.4 367.4 2.9 364.5

(1.16) (36.45) (37.61) (93.429) (2.32) (91.125)

10.2% 2.48 25.4%

1-5 271.7 2709.5 2981.2 3271.8 361.3 2910.5

(108.7) (270.6) (379.3) (1016.6) (289.0) (727.625)

(12.7%) 2.45* (31.1%*)

The course of the patients who received the standard (control) treatment in the first cycle is tracked

in bold.
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SUMMARY

In the alternating-sequence design used to compare success rates with assisted repro-

ductive technologies, women or couples are randomized to receive either the standard or

experimental treatment in the first cycle, and— if they do not become pregnant—crossed

between standard and experimental treatments after each successive cycle. Two authors have

shown that, in the presence of heterogeneity of fecundability, and an e↵ective treatment, the

overall e�cacy of the experimental treatment is overestimated by this design. These authors

advised that in order to achieve an accurate estimate of e�cacy, the trial should be run

for at least three cycles and that all data from even-numbered cycles be excluded from the

analysis, which should then be restricted only to odd-numbered cycles. In this paper, we

describe approaches that make use of the data from all cycles. The methods are generaliza-

tions of those applicable to the constant-sequence design, where naive methods that do not

take account of the heterogeneity produce underestimates of treatment e�cacy.

Keywords

alternating sequence; fertility; experimental design; bias; precision; heterogeneity;

generalized linear models
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1. INTRODUCTION

Two experimental designs have been used to evaluate the e�cacy of assisted reproductive

technologies[1]. In the parallel-design, or constant-sequence randomized trial, the experimen-

tal treatment is administered for one or— if unsuccessful—more cycles to a fraction (usually

one half, randomly chosen) of the eligible patients, and the control treatment for the same

number of cycles to the remaining fraction. In the alternating-sequence design, some of the

women or couples are randomized to receive the standard, and the others to receive the

experimental treatment in the first cycle. Those who do not become pregnant are crossed to

the opposite treatment after each successive cycle.

The relative merits of these two designs have been keenly debated [1-6]. Some arguments

focus on e�ciency and sample sizes: if the experimental therapy is e↵ective, the alternating-

design results in more pregnancies than the constant-sequence design, and is more attractive

to couples. Others have to do with possible biases in the resulting estimates of e�cacy. The

first suggestion of bias came from comparisons of results of actual trials that used one or other

of the two designs to evaluate the same procedure [2]. The authors noticed that, relative to

those seen in parallel trials, treatment e↵ects of the more e↵ective treatment were higher in—

i.e. overestimated by —crossover trials. Subsequent Monte Carlo evaluations [4], simulating

patients from a heterogeneous subfertile population, indicated that while results from parallel

trials appeared to slightly underestimate e�cacy, the alternating-sequence design did indeed

seem to slightly—but in their opinion not materially – overestimate it. Thus, they advised [4,

p. 40] that “because of its practical advantages and because more pregnancies are achieved,

a crossover design should be the first choice in infertility research.”

The origin and nature of the biases in the estimates from these two designs can be readily

understood by studying the worked example in Norman and Daya [6]. As shown in the first
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row of Table 1, they assumed a heterogeneous population, where fecundability i.e., the per-

cycle probability of getting pregnant, varied from couple to couple. To simplify matters,

they assumed that with the less e↵ective (Control) treatment, some 80% of couples had a

pC = 10%, and the remaining 20% of couples a pC = 40% fecundability, i.e.,

pC =
⇢

0.1 for 80% of couples,
0.4 for 20% of couples.

Thus they assumed that the overall average fecundability is 16%, and the standard deviation

is 12%.

They further assumed that the more e↵ective (Experimental) treatment had a constant

e�cacy, ✓, of 2, i.e., that at each cycle, a couple’s probability of becoming pregnant was

doubled. In Table 1 the course of the 1000 randomly allocated to undergo the ‘control’

treatment in the first cycle is tracked in bold. The entries at each cycle are the expected

numbers of couples from the higher- and lower fecundity subpopulations who attempt to

(and, in parentheses, the numbers who do) become pregnant. Using expected numbers of

pregnancies at each cycle, Norman and Daya showed that estimates of e�cacy that are

based only on the total number of women and the total number of pregnancies are biased,

irrespective of the design—the parallel design underestimates (apparent e�cacy: ✓ =1.83,

calculations not shown here but discussed later) and the alternating-sequence design overes-

timates (apparent e�cacy ✓ = 2.10, middle column Table 1). However, they noted that the

bias in the alternating-sequence design is limited to the data from even-numbered cycles.

– Table 1 about here –

Despite the greater bias in the parallel design, Norman and Daya limited discussion of

their concerns to—and aimed their cautions at prospective users of—the alternating sequence

2



design. They suggested [6, p. 323] a compromise between patient preference for this design

and the statistical bias: “The objective of obtaining an accurate estimate of the e↵ect of

treatment, but also allowing all subjects to have the opportunity to receive the experimental

treatment in at least one cycle, can now be achieved with the alternating-sequence design

trial. The proviso is that the trial should run for at least three cycles and all data from the

even-numbered cycles would have to be excluded from the analysis, which would be restricted

only to the odd-numbered cycles.” They concluded by advising [6, p. 310] that “when

multiple cycles of treatment are undertaken to evaluate the e�cacy of infertility therapy,

the alternating-sequence design with restriction of the analysis to only the odd-numbered

treatment cycles provides an unbiased estimation of the treatment e↵ect.”

This bias-avoiding strategy is unlikely to be an acceptable option for most investigators,

patients and ethics review committees, and prompts the obvious questions: Must we discard

‘biased’ cycles and compensate for the decreased precision by increasing the numbers of

couples enrolled? If we know the form of the bias, can we not remove it statistically using

statistical models?

The purpose of this paper is to investigate this question, and several related ones. Under

what model(s) is Norman’s and Daya’s approach really unbiased? If one can successfully

eliminate the bias, at what price, in terms of increased imprecision, can this be achieved?

Given the typically small sample sizes in this research area, can we a↵ord this price, or

might the overall mean squared error be smaller if we took a more naive approach? And,

ultimately, if researchers use this design to collect their data, how should they analyze them,

and how should they calculate the uncertainty in their estimates of e�cacy? We restrict

attention to models that use aggregated data for each treatment-cycle.
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2. HOMOGENEOUS FECUNDABILITY

Let pC denote a woman’s fecundability i.e., her per-cycle probability of getting pregnant,

with the less e↵ective (control) treatment (t = 0). For now, assume no variation in pC

across women, i.e., that Var[pC ] = 0. Let pE denote her fecundability with the experimental

treatment (t = 1). Its e�cacy with respect to the control treatment can be expressed in

di↵erent ways using di↵erent forms for g in the generalized regression equation g[pE] =

g[pC ] + � ⇥ t. For example, � is the absolute di↵erence in fecundability if g is the identity

function; exp[�] is the fecundability ratio ✓ if g is the ln function, or the fecundability odds

ratio if g is the logit function. We will use the fecundability ratio to measure e�cacy.

Suppose that one such woman, alternating from the experimental treatment in cycle 1,

became pregnant on this treatment in the 5th cycle.

Cycle: 1 2 3 4 5
Treatment: Exp’tl Control Exp’tl Control Exp’tl

Outcome: — — — — +

Probability(+): pE pC pE pC pE

Probability(Outcome): 1� pE 1� pC 1� pE 1� pC pE

The observed data can be modeled as a sequence of independent Bernoulli trials with

alternating probabilities of success. The likelihood based on this woman’s data is the product

of the probabilities of the 5 individual outcomes; it can also be re-arranged and written as a

product of two geometric (but binomial-like) likelihoods, corresponding to sC = 0 successful

cycles, preceded by uC = 2 unsuccessful ones, when the success probability was pC ; and

sE = 1 successful cycle, preceded by uE = 2 unsuccessful ones, when the success probability

was pE , i.e.,

L(uC , uE, sC , sE | pC , pE) / (1� pC)2 ⇥ (1� pE)2 ⇥ pE
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Since pC and pE are constant from woman to woman, so that all woman-cycles within the

same treatment condition are exchangeable, the likelihood based on the data from several

such women can again be written as the product of two binomial-like likelihoods

L(UC , UE, SC , SE | pC , pE) / (1� pC)UC ⇥ pSC
C ⇥ (1� pE)UE ⇥ pSE

E

where UC = ⌃uC and UE and SC and SE are the total numbers of unsuccessful and successful

cycles when using C and E respectively, i.e., summed over all women and all cycles. The ML

point estimator of the fecundability ratio is simply (SE/TE)/(SC/TC)/ where TE = SE + US

and TC = SC + UC . A likelihood-based interval estimate is also easily calculated.

3. HETEROGENEOUS FECUNDABILITY

In reality, fecundability does vary among women, i.e., Var[pC ] > 0 and Var[pE] > 0.

We denote this variation by the general bivariate pdf f(pC , pE), with marginal distribu-

tion f(pC). We present two data-analysis approaches which use aggregated data for each

treatment in each cycle. The first makes no assumptions about the form of the marginal

distribution f(pC), but strong ones about how a particular woman’s fecundability with the

experimental treatment is related to her fecundability with the standard one. In this ap-

proach, the observed data can be modeled either as (i) two sets of multinomial distributions,

one for the numbers {SC1 , SE2 , · · ·} who become pregnant in cycles C1, E2, etc., the other

for the numbers {SE1 , SC2 , · · ·} who become pregnant in cycles E1, C2, etc., or (ii) as cycle-

and treatment-specific binomial random variables { SC1 |Tc1}, {SE1|TE1}, {SC2|TC2}, . . . The

second approach is based on a specific parametric form—Beta—for f , but does not ‘connect’

a particular woman’s fecundability when undergoing experimental treatment with that same

woman’s fecundability with the standard treatment.
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We evaluate these approaches using the data in Table 1 as well as data generated from

continuous bivariate distribution for {pC , pE}. In the latter case, how a particular woman’s

fecundability, pE, with the experimental treatment is related to her fecundability, pC , with

the standard one induced variability in the e�cacy across women. In this second method,

the observed data are modeled as cycle- and treatment-specific binomial random variables.

3.1 Unspecified-form for f ; constant fecundability ratio

Consider an unspecified distribution f(pC) and let ✓ denote the constant ratio of pE to

pC for all values of pC . For a person with a specific value pC , assigned to the sequence C, E,

C, ... , the probabilities of becoming pregnant in cycle 1, 2, 3, ... are

pC , (1� pC)⇥ ✓ ⇥ pC , (1� pC)⇥ (1� ✓ ⇥ pC)⇥ pC , ...

The probabilities, if that same person were assigned to the sequence E, C, E,. . . , are

✓ ⇥ pC , (1� ✓ ⇥ pC)⇥ pC , (1� ✓ ⇥ pC)⇥ (1� pC)⇥ ✓ ⇥ pC , ...

Since pC varies over persons, the multinomial proportions are the expectations of these

probabilities, taken over the distribution, f(pC), of pC . They form the numerators of the

expressions given in Table 2. and represent the contribution to the (multinomial-based)

likelihood of each person who becomes pregnant in that cycle. The extension beyond cycle

3 (not shown) is obvious, even if the algebra is tedious. Of note is the fact that the two

likelihood contributions from cycle k involve the first k moments of the distribution of pC .

Others, e.g., [7,8,9], have noted this in the simpler constant-sequence design. Thus, each

cycle adds two new data points and one new parameter; overall the 2K datapoints from K

cycles are modeled by K + 1 parameters. If K � 2, the remaining K � 1 degrees of freedom

can be used to assess model fit.
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Table 2 about here

Maximum likelihood estimates for these K + 1 parameters can be obtained from a non-

linear modeling package, such as SAS PROC NLMIXED (see Appendix). Although our

approach deals with heterogeneity, it does so without specifying a traditional random ef-

fects model: we used only the ‘NL” portion of NLMIXED. We found that this multinomial

approach is very sensitive to starting values, and have had more success by modeling the

number who become pregnant on a specific treatment in a specific cycle—conditional on

the number who used that specific treatment in that cycle—as a binomial random variable.

These conditional probabilities are given as the quotients in Table 2. Again, they can be

fitted using SAS PROC NLMIXED by (i) expressing the 2K binomial parameters in terms

of the K moments and the parameter of interest ✓, and (ii) for each of the 2K observed

counts, modeling

Numberpregnant ⇠ Binomial(Numbertreated, BinomialParameter).

For the data in Table 1, Maximum Likelihood estimates (and Standard Errors of their

natural logarithms) for these parameters are shown in Table 3. This method correctly

‘recovers’ ✓. Further, because the procedure uses data from all cycles, it produces smaller

standard errors than those for the summary estimates from the odd-numbered cycles only.

Moreover, one can achieve this increased precision, and only a slight inaccuracy, with fewer

than the full K moments: one can omit i.e., set to zero in the likelihood, some of the higher

order moments—those of order 3 or more in our example. This is because pC is bounded

by 0 and 1, so that the higher moments are of decreasing magnitudes, and thus increasingly

negligible.

– Table 3 about here –
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3.2 Beta-Geometric Model

That an experimental treatment would increase each pC value a constant-fold, i.e., by the

same multiple, ✓ for each woman, regardless of her value of pC , is not realistic biologically.

Whereas women whose natural fecundability is 10% might reasonably have it increased to

20% i.e., by a factor of ✓ = 2, with experimental treatment, the treatment is unlikely to also

raise other women’s already high natural per-cycle success probability of 40%, say, by the

same (multiplicative) factor of ✓ = 2, i.e., to 80%. Moreover, if pC > 1/✓ , this assumption of

a constant ✓ is statistically impossible. In addition, there are practical technical di�culties

in fitting such a high-order nonlinear model; the number of parameters (moments) relative to

the numbers of observations is large. For these reasons, we turn to more natural parametric

statistical models for pC and pE, ones with fewer constraints on how a particular woman’s

fecundability when undergoing experimental treatment relates to what might be (loosely)

called its ‘counterfactual’ i.e., the same woman’s fecundability with the standard treatment.

The Beta-Geometric (B-G) model has been used in demography [7]. More recently,

Weinberg and Gladen [8] used it in a non-experimental study of the e↵ect of smoking on

fecundability. Since women were classified as smokers or non-smokers for the entire period of

observation (up to 12 cycles), their model immediately applies to a parallel-sequence design

[4]. The latter authors used a modified B-G model to generate data, but did not consider it

for the analysis of their data. We extend these ideas to develop a beta-geometric model for

data from the alternating-sequence design.

Before doing so, we review its use for the constant-sequence design. Weinberg and Gladen

compared fecundability, measured over 12 cycles, in smokers relative to non-smokers. They

modeled fecundability in the two source populations as Beta distributions, with their re-

spective location and shape governed by the pairs of parameters {↵C ,�C} and {↵E,�E}.
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Therefore, before the first cycle the probability density function of pC is given by:

f [pc] / pc
↵C�1(1� pc)

�C�1

The mean and variance of the fecundability in the control group before the first cycle are

µC = ↵C/(↵C +�C) and �2
C = ↵C�C/((↵C +�C)2(↵C +�C +1)) Weinberg and Gladen showed

that in those couples who were unsuccessful in U previous cycles, the—now conditional—

distribution of pC at cycle U + 1 in this selected subgroup is shifted towards the left i.e.,

towards zero, but remains a Beta distribution, with probability density function:

f(pc|U) / pc
↵�1(1� pc)

��1+U .

The parameters of the fecundability distribution are now {↵C , �C +U}. Thus, after k cycles

the mean fecundability is given by µC = ↵C/(↵C + �C + k). They further showed that the

expected probability of success among those who enter cycle U+1 is related to the number

of previously unsuccessful cycles U via the simple reciprocal link:

1/E[pC |U ] = (↵C + �C + U)/↵ = (↵C + �C)/↵ + (1/↵)⇥ U

= � + � ⇥ U

The parameter � is the expected number of cycles to become pregnant if a couple had the

average per-cycle probability under the control treatment i.e., � = 1/µC . The parameter

� reflects the spread of the initial distribution of pC : under homogeneity, the number of

cycles required to achieve pregnancy reduces to the same geometric random variable for

each couple, i.e., � = 0. The parameters � and � can be fit using binomial regression with an

inverse (i.e., power-1) link, e.g., using PROC GENMOD in the SAS, or glm in Stata. Since

glm in R does not allow this link for the binomial, one needs to supply the variance function.
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Weinberg and Gladen extended the model to e↵ectively fit separate Beta distributions for

the cycle-specific probabilities for smokers (t = 1) and non-smokers(t = 0), via one equation:

1/E[pC | U ] = (�C + �C ⇥ U)⇥ (1� t) + (�E + �E ⇥ U)⇥ t.

To extend it to the alternating sequence design, we model the expected probability of

pregnancy for women who have already undergone UE and UC unsuccessful cycles on E

and C, and are now about to receive (say) E. The initial Beta(↵E,�E) distribution must

be updated to reflect the UE and UC . The UE is added to the �E term as in the parallel

sequence model, but a correction must be made to the UC . If C were no more e↵ective than

E, and thus exchangeable with it, we would add the full UC to the UE to obtain the �E term

of UE + UC . But if C were less e↵ective than E, then using the full UE + UC in the �E term

would shift the fecundability distribution too far to the left. This is most easily seen if no

pregnancies can occur with C. The greater the e�cacy of E relative to C, (i.e., the smaller

the ‘failure ratio’ (1 � pE)/(1 � pC)), the smaller should be the ‘amalgam’ of UE and UC .

Thus, we suggest that the contribution of UC be reduced, and propose the amalgam

U⇤ = UE + FRR⇥ UC

where FRR is the ratio of the probability of failure on the experimental and control treat-

ments at cycle 1. This ratio is less than unity if E is more e↵ective than C. Thus, the

probability density function of pE at cycle uC + uE + 1 is taken to be

f(pE | uE uC) / pE
↵E�1(1� pE)�E�1+uE+FRR⇥uC ,

i.e., a Beta(↵E , �E +uE +FRR⇥uC) distribution. Thus the expected probability of success

at this cycle is inversely proportional to a linear function of uE and uC , i.e .

E(pE | uC uE) = ↵E/(↵E + �E + uE + FRR⇥ uC)
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Similarly, we can show that

E(pC | uC uE) = ↵C/(↵C + �C + uC + (1/FRR)⇥ uC)

We re-formulate it as a generalized linear model for binary data with an inverse link function:

1/E(p | uC uE) = �0E ⇥ t + �0C ⇥ (1� t)
+ �1E ⇥ (uE ⇥ t) + �1C ⇥ (uC ⇥ (1� t)) (3)
+ �2E ⇥ (uC ⇥ t) + �2C ⇥ (uE ⇥ (1� t))

where t = 1 under the experimental treatment and t = 0 under the control treatment. Con-

straints should be placed on �2E, which is a function of �0E and �1E, and on �2C . The model

can be fit using PROC NLMIXED in SAS, which can accommodate constraints. The pa-

rameters of the original Beta distributions can be obtained by the following transformations.

↵E = 1/�1E; �E = (�0E � 1)/�1E; ↵C = 1/�1C ; �C = (�0C � 1)/�1C ,

and e�cacy is estimated by ✓̂ = ˆ�0C/ ˆ�0E.

In a Bernoulli model, woman-level covariates could be added as linear terms in (3). Notice

that at each cycle the fecundability distribution under treatment t is obtained by adding to

the � parameter of its starting fecundability distribution, the number of unsuccessful cycles

on t and a multiple of the number of those on the other treatment. While we have used

the multiplying factors as FRR and 1/FRR above, we could use the generic expressions

↵C/(↵C + �C + uC + �C ⇥ uC) and ↵E/(↵E + �E + uE + �E ⇥ uC) for the respective mean

fecundability after cycle uC + uE. �C and �E should be constrained to be > 1 and < 1

respectively, assuming E is more e↵ective than C.

4. EVALUATION

We assessed the performance of these analysis models on 200 generated datasets. Fol-

lowing Cohlen et al. [4] we began with Beta distributions with means of 0.16 and 0.32, each
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with a coe�cient of variation of 75% (Cohlen et al. used 56%). We calculated the 9th, 18th,

..., 90th percentiles for each of these two initial distributions, and placed a point mass of

0.1 at each of these values, thereby creating two 10-point distributions for the first cycle.

If a woman’s fecundability was at say the 18th percentile when on C i.e. if pC = 5.2%,

then her fecundability with E (if necessary) was the corresponding 18th percentile in that

distribution, namely pE = 8.1% (fecundability ratio = 1.56). Similarly, those just above

the middle of the pC distribution, i.e., a fecundability of pc = 15.2%, were considered to

be just above the middle of the pE distribution, namely pE = 31.6% (fecundability ratio =

2.08), while in the 3rd highest subgroup, fecundabilities were pC = 22.6% and pE = 48.2%

(ratio = 2.13). For each dataset, 1000 women were randomly assigned, using a multimomial

distribution, to the 10 fecundability levels under C, and 1000 others to the 10 corresponding

levels in the pE distribution. At each cycle, these two sets of 10 subgroup frequencies were

depleted using random numbers of pregnancies generated by the 20 corresponding binomial

distributions. The numbers who were unsuccessful were switched to their corresponding level

on the opposite distribution, before generating the pregnancies for the next cycle.

The estimates produced by our analysis models are summarized in Table 5. Leaving the

form of f unspecified and estimating its first few moments is somewhat more e�cient than

using the Beta-Binomial model, where there is more of a tradeo↵ between bias and precision.

5. EFFICACY ESTIMATES FROM A CLINICAL TRIAL

The data in Table 6a are from (by today’s standards) a very large clinical trial. It

evaluated the performance of a second generation protocol for donor insemination with frozen

semen [10]. Today, screening of semen for HIV infection precludes the use of fresh semen.

Earlier, in the first use that we have found of the alternating sequence design, this group
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achieved a fecundability rate of only 5.0 pregnancies per 100 cycles with a first-generation

protocol, versus 18.9 per 100 using fresh semen [11].

The data for the first six cycles (during which, for each woman, semen was from her

matched donor) are shown in Table 6a. However, as is obvious from the denominators, the

same practical di�culties were encountered as those mentioned in the first study: “Cryopre-

served semen was frequently substituted in a cycle scheduled to be fresh because the donor

was not available.” Unfortunately, information on the actual sequence for each woman is no

longer available (S. Shapiro, personal communication, 2002).

Estimates of e�cacy are given in Table 6b. Those produced by the methods in 3.1 and

3.2 are closest to the null, suggesting that they removed some of the bias induced when

one ignores the heterogeneity. Possibly by chance, given its poor precision, the estimator

advocated by Norman and Daya was furthest from the null, further than both the crude and

the Mantel-Haenszel estimates. The Generalized Linear Model estimate was closest to the

null, but had a high SE, possibly because of the large number of parameters (6) fitted to the

12 datapoints. The method of moments had the lowest SE. The fact that it was no di↵erent

from that of the Mantel Haenszel estimator suggests that, in this study, heterogeneity does

not substantially inflate or deflate the SE. Without individual-specific data, we are unable

to assess how much heterogeneity could also be a↵ected by women who dropped out.

6. DISCUSSION

The more attractive alternative sequence design also produces more pregnancies for the

same number of cycles. We describe two approaches that allow clinical trials to use data from

all of the cycles, while Norman and Daya’s approach [6] squanders the statistical advantage

of this design. Many contemporary trials generate fewer than 25 pregnancies in total. De-
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creasing precision further by omitting even-numbered cycles, without trying to eliminate the

biases by other methods, is di�cult to defend. Moreover, with the sample sizes considered

here reduced by a realistic factor of 25, sampling variability dominates analytic bias.

The bias caused by naively using all data is a function of the heterogeneity in pC and the

e�cacy of the experimental treatment ; both must be substantial in order to produce a serious

bias. Norman and Daya based their concerns on an extreme 2-point distribution of pC , and

a treatment that doubled the pC = 40% in the high fertility subgroup to a ‘biologically

nearly impossible’ pE = 80%. Even then, the bias was less than the sampling variability

induced by the sample sizes used in practice. With the same ✓ = 2, and a more realistic

distribution where f [0.025] = 0.8 and f [0.1] = 0.2 so that mean[pC ] = 0.04, SD[pC ] = 0.03,

the bias was much smaller Moreover, if, rather than increasing p, an new treatment— such as

frozen semen—reduces it, the degree of bias in the naive estimate of ✓ is also less, because of

the smaller impact of the di↵erential success (removal) of the most fertile in odd-numbered

cycles. For example, using ✓ = 0.5 in Table 2, the data from cycle 2 yield ✓̂ = 0.47, a

relative bias of only 6%. These ‘low-bias’ conditions would also apply in comparisons of

contraceptive methods, where the probability of an unwanted pregnancy is already low.

The alternating sequence design is not a full crossover study. Nor does it carry the full

statistical e�ciency usually associated with self-matched comparisons. Thus, the sample size

and power calculations/projections are best carried out by analogy with unmatched designs.

In practice, for example in the study by Brown et al. [10], there are unavoidable individual

deviations from the alternating-sequence protocol. Some investigators may use variations of

the alternating design: e.g., in Ecochard et al. [12], 1/2 patients received one treatment for

the first two cycles and the competing treatment for the next two cycles, while the other 1/2

followed the opposite sequence. For these more complex designs, random e↵ects models for
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binary (Bernoulli) data allow one to model the cycle-by-cycle sequence of outcomes for each

woman using a full regression approach that makes use of all of the individual level data for

each woman (any baseline covariates, the cycle-by-cycle treatment indicators and any other

available cycle-dependent covariates). Some quite complex 2-level hierarchical models have

been used in such circumstances [13,14].

The approaches we have described are also applicable to simple data analyses for the

parallel- or ‘constant-sequence’ randomized trial design. Since this competing design has

the same data structure as Weinberg and Gladen’s example (fecundability of smokers and

non-smokers), their ‘Beta-Geometric’ Model is immediately applicable without modification.

The method based on moments is also applicable. Applied to Norman and Daya’s ‘constant-

sequence’ example (and the ‘data’ in their Table 1), both of our methods produce estimates

closer to the true ✓ = 2, whereas a naive analysis produces an attenuated estimate of 1.83.

In an appendix, Norman and Daya [6, p324] claim that “the assumptions of a constant

drug e�cacy is not necessary” by considering an arbitrary distribution f [pC ], and an arbi-

trary e�cacy function, ✓[pC ] They purport to show algebraically that ”the outcome rates in

the odd cycles in an alternating sequence are unbiased,” i.e., that “the results will hold true

regardless of the relationship between e�cacy and fertility.” In fact, the ratio from alternate

cycles will not continue to be unbiased if the treatment e↵ect is variable. This is illustrated

in Table 7 by slightly perturbing Norman and Daya’s simulated example so that the risk

ratio in the low fecundability group is 2.5, while the risk ratio in the high fecundability group

remains at 2. This is closer to what happens in reality where there is likely to be a greater

relative shift in the low fecundability groups, compared to the high fecundability groups.

The true average risk ratio across the population is thus 2.5⇥ 0.8 + 2⇥ 0.2 = 2.4. However,

from Table 7 we can see that this estimate is not obtained even in the first cycle: the ratio
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of the expected probabilities of successes does not match the expectation of the ratios of the

success probabilities, i.e.

⌃ ✓[pC ]⇥ pC ⇥ f [pC ]

⌃ pC ⇥ f [pC ]
6= ⌃ ✓[pC ]⇥ f [pC ] = ✓[pC ]

Further, it appears that the odd cycles underestimate the true risk ratio while the even cycles

overestimate it. If the study continues to a point when only women in the low fecundability

group remain, then the ratio approach the true ratio of 2.5 in both odd and even cycles

This contrary finding is an additional impetus to consider more general regression mod-

els that allow not just between-individual heterogeneity, and covariates at the woman-cycle

level, but also more flexibility in the specification of the comparative parameter. We plan

to investigate whether the amount of data from a typical alternating sequence design makes

such models practical. Unlike traditional studies with multiple crossovers, the alternating

sequence design involves at most one instance of Y=1 per subject, and such outcomes pre-

clude further observations. This, the small sample sizes, and the small number of cycles

usually used, may be a serious impediment to more complex modeling. The analyses we

have presented, based on marginal distributions, may well be the appropriate ones for the

amounts of clinical trial data generated by the alternating sequence design.
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Table 1: Cycle-specific ratios of expected pregnancy proportions if the alternating sequence design

is applied to a population of 2000 which is heterogeneous with respect to spontaneous fecundity

[20% with higher, 80% with lower fecundity].

Treatment received in the indicated cycle

Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800
(80) (80) (160) (320) (160) (160)

16% 2.00 32%

2 40 640 680 840 120 720
(16) (64) (80) (240) (96) 144

11.8% 2.43 28.6%

3 24 576 600 600 24 576
(9.6) (57.6) (67.2) (134.4) (19.2) (115.2)

11.2% 2.00 22.4%

4 4.8 460.8 465.6 532.8 14.4 518.4
(1.9) (46.1) (48.0) (114.9) (11.5) 103.7

11.3% 2.10 21.6%

5 2.9 414.7 417.6 417.6 2.9 414.7
(1.2) (41.5) (42.6) (85.2) (2.3) (82.9)

10.2% 2.00 20.4%

1-5 271.7 2891.5 3163.2 3390.4 361.3 3029.1
(397.8) (894.8)
(12.6%) 2.10* (26.5%*)

The course of the 1000 randomly allocated to undergo the ’control’ treatment in the first cycle is

tracked in bold. The entries at each cycle are the expected numbers of couples from the higher-

and lower fecundity subpopulations who attempt to (and, in parentheses, the numbers who do)

become pregnant. Table adapted from Figure 2 and Table 2 of Norman and Daya.
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Table 2: Unconditional (multinomial) and conditional success probabilities for each of the first

three cycles, as a function of the e�cacy, ✓, and the (absolute) moments of the unspecified

distribution of pC , the fecundability under the standard [”control” (C)] treatment.

Cycle Control Experimental

1 µ1 ✓ ⇥ µ1

2
µ1�✓⇥µ2
1�✓⇥µ1

✓⇥µ1�✓⇥µ2
1�µ1

3
µ1�µ2�✓⇥µ2+✓⇥µ3
1�µ1�✓⇥µ1+✓⇥µ2

✓⇥µ1�✓⇥µ2�✓2⇥µ2+✓2

1�µ1�✓⇥µ1+✓⇥µ2

The numerators represent the unconditional probabilities of pregnancy in the indicated cycle for

persons entering the study, while while the quotients represent conditional pregnancy probabili-

ties for those who receive the indicated treatment in the indicated cycle. These probabilities are

computed separately for those randomly allocated to the ‘C to E to C’ sequence, and conversely

for their counterparts. Cycle 1 starts with denominators of 1 (100%) in each group; it is assumed

that there are no dropouts [i.e. women/couples who have not yet become pregnant do not abandon

the study] or that dropouts are ’at random’ and unrelated to their values of pC . The symbols µ1

to µ3 are the first 3 absolute moments of the distribution of pC , the fecundability with standard

treatment.
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Table 3: MLEs of the e�cacy parameter ✓ (SE of ln of estimate) as a function of number of data

cycles used, and number of moments of unspecified distribution f estimated, compared with

estimates obtained using approach of Norman and Daya.

No. moments of f fitted
.
.
. Norman and Daya

Cycles 1 2 3 4 5
.
.
. Cycles ✓̂

used
.
.
. used (SE*)

1 2.00
.
.
. 1 2.00

(86)
.
.
. (86)

1,2 2.33 2.00
.
.
.

(77) (66)
.
.
.

1,2,3 2.18 2.06 2.00
.
.
. 1,3 2.00

(66) (60) (60)
.
.
. (70)

1,2,3,4 2.28 2.01 2.02 2.00
.
.
.

(64) (55) (55) (56)
.
.
.

1,2,3,4,5 2.18 2.07 2.01 2.00 2.00
.
.
. 1,3,5 2.00

(59) (54) (52) (52) (53)
.
.
. (65)

‘Data’ from Table 1.

All SE’s are multiplied by 1000.

* Mantel-Haenszel summary risk ratio, with SE of ln estimate back-calculated from test-based

confidence interval.
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Table 4: Fit of adapted beta-binomial generalized linear model to 5 cycles of Norman and Daya

‘data.’

Model

Term Parameter Measure � =
�C/(↵C+�C)
�E/(↵E+�E) No Constraint

t �1 3.15(0.14) 3.14(0.14)

1� t �0 6.31(0.45) 6.36(0.45)

Ratio* 2.00 2.03

ln Ratio 0.694(0.084**)

UE ⇥ t �1E 0.58(0.13) 0.36

UE ⇥ (1� t) �0E - -0.00

UC ⇥ t �1C - 0.71

UC ⇥ (1� t) �0C 0.93(0.31) 1.94

SE’s shown in parentheses.

* The ratio estimate is 6.36/3.14.

** Since the covariance between the 6.36 and 3.14 is zero, the variance of the ln of the ratio,

computed via the delta method, is [(0.45/6.36)
2
+(0.14/3.14)

2
]
1/2

= [1/499.7+1/196.6]
1/2

= 0.084.
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Table 5: Estimates obtained by applying non-parametric and parametric methods to 200

datasets.*

Beta-Binomial

No. of moments fitted (f unspecified) � :

1 2 3 4 5
�C
�E

�C/(↵C+�C)
�E/(↵E+�E) N.C.**

Measure

Median{✓̂} 2.16 2.03 1.99 1.98 1.99 1.91 2.08 2.02

SD{ln ✓̂} 0.055 0.050 0.049 0.049 0.052 0.059 0.077 0.081

Mean{SE**} 0.058 0.054 0.052 0.052 0.054 0.062 0.078 0.083

* For details, see Section 4.

** N.C.: No constraint

** SE of ln ✓̂
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Table 6a: Pregnancies and Fecundability in Cycles of Insemination with Fresh and Frozen Semen.

Fresh semen Frozen semen

Number of ... Number of ...

Patients Pregnancies Rate Patients Pregnancies Rate

1 163 57 0.350 125 18 0.144

2 69 18 0.261 130 12 0.092
3 73 20 0.274 87 8 0.092

4 59 12 0.203 69 9 0.130
5 51 12 0.235 50 1 0.020

6 51 12 0.235 28 2 0.071
1-6 466 131 0.281 489 50 0.102

The course of the patients who underwent insemination with fresh semen in the first cycle is tracked

in bold. Data from Table 1 of Brown et al [10].

Table 6b: Estimates of E�cacy of Insemination with Frozen vs. Fresh Semen. SE of ln of

estimate given in parentheses.

Cycles Method/Model Details ... E�cacy

1-6 Brown et al. 50/489 ÷ 131/466 0.36(0.15)

1-6 M-H* Summary Risk Ratio 0.37(0.15)

1, 3, 5 Norman & Daya 27/262 ÷ 89/287 0.35(0.19)

1, 3, 5 Norman & Daya, M-H* Summary Risk Ratio 0.35(0.19)

1-6 Unspecified f 4 moments fitted 0.39(0.15)

1-6 Beta-binomial Unconstrained 0.39(0.25)
1

* Mantel-Haenszel summary risk ratio (summed over cycles), with SE of ln estimate back-calculated

from test based-confidence interval.

1
See footnote to Table 4. Deviance / df = 0.98; Chi-square goodness of fit statistic = 5.6 (6 df).
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Table 7: Simulated example with varying risk ratio in each fecundability subpopulation;

otherwise, same setup as in Table 1.

Treatment received in the indicated cycle

Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800

(80) (80) (160) (360) (160) (160)

16% 2.25 36%

2 40 640 640 840 120 720
(16) (60) (76) (276) (96) 180

11.8% 2.79 32.9%

3 24 540 564 564 24 540

(9.6) (54) (63.6) (154.2) (19.2) (135)

11.2% 2.43 27.3%

4 4.8 405 409.8 500.4 14.4 486
(1.9) (40.5) (42.4) (133) (11.5) 121.5

10.3% 2.57 26.6%

5 2.9 364.5 367.4 367.4 2.9 364.5

(1.16) (36.45) (37.61) (93.429) (2.32) (91.125)

10.2% 2.48 25.4%

1-5 271.7 2709.5 2981.2 3271.8 361.3 2910.5

(108.7) (270.6) (379.3) (1016.6) (289.0) (727.625)

(12.7%) 2.45* (31.1%*)

The course of the patients who received the standard (control) treatment in the first cycle is tracked

in bold.

26



Statistical models for data from the alternating sequence design.

Nandini Dendukuri1,2,5, James A. Hanley1,3, Robert Platt1,4 and Marie-Hélène
Mayrand1

1 Dept. of Epidemiology, Biostatistics, and Occupational Health, McGill
University, Montreal, Quebec, Canada. 2 Technology Assessment Unit, McGill
University Health Centre. 3 Division of Clinical Epidemiology, Royal Victo-
ria Hospital, Montreal. 4 Department of Pediatrics, Montreal Children’s
Hospital.

5 to whom correspondence should be adressed at .......... E-mail: N.D@xxx.xx

BACKGROUND: The alternating-sequence design has been sug-

gested as an attractive and statistically e�cient way to compare

pregnancy rates achievable with a new and an existing technology
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either fail to make full use of the data, or use statistical models

that ignore inter-patient variation. AIM / METHODS: This note
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Introduction

Two competing experimental designs have been used to evaluate the ef-

ficacy of assisted reproductive technologies[1]. In the parallel-design, or

constant-sequence randomized trial, the experimental treatment is admin-

istered for one or— if unsuccessful—more cycles to a fraction (usually one

half, randomly chosen) of the eligible patients, and the comparison (‘control’)

treatment for the same number of cycles to the remaining fraction. In the

alternating-sequence design, some of the women or couples are randomized to

receive the standard, and the others to receive the experimental treatment

in the first cycle. Those who do not become pregnant are crossed to the

opposite treatment after each successive cycle.

The relative merits of these two designs have been vigorously debated [1-

6]. Some arguments focus on e�ciency and sample sizes: if the experimental

therapy is e↵ective, the alternating-design results in more pregnancies than

the constant-sequence design, and is more attractive to couples. Others have

to do with possible biases in the resulting estimates of e�cacy. The first

suggestion of bias came from comparisons of results of actual trials that used

one or other of the two designs to evaluate the same procedure [2]. The au-

thors noticed that, relative to those seen in parallel trials, treatment e↵ects

were higher in— i.e. were overestimated by —crossover trials. Subsequent

Monte Carlo evaluations [4], simulating patients from a heterogeneous sub-

fertile population, indicated that while results from parallel trials appeared
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to slightly underestimate e�cacy, the alternating-sequence design did indeed

seem to slightly—but in their opinion not materially – overestimate it. Thus,

they advised [4, p. 40] that “because of its practical advantages and because

more pregnancies are achieved, a crossover design should be the first choice

in infertility research.”

Despite the greater bias in the parallel design, Norman and Daya limited

discussion of their concerns to—and aimed their cautions at prospective users

of—the alternating sequence design. Based on their numerical calculations

(repeated here, in Appendix 1), they suggested [6, p. 323] a compromise

between patient preference for this design and the statistical bias: “The

objective of obtaining an accurate estimate of the e↵ect of treatment, but

also allowing all subjects to have the opportunity to receive the experimental

treatment in at least one cycle, can now be achieved with the alternating-

sequence design trial. The proviso is that the trial should run for at least

three cycles and all data from the even-numbered cycles would have to be

excluded from the analysis, which would be restricted only to the odd-numbered

cycles.” They concluded by advising [6, p. 310] that “when multiple cycles

of treatment are undertaken to evaluate the e�cacy of infertility therapy, the

alternating-sequence design with restriction of the analysis to only the odd-

numbered treatment cycles provides an unbiased estimation of the treatment

e↵ect.”

This bias-avoiding strategy is unlikely to be an acceptable option for
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most investigators, patients and ethics review committees, and prompts the

obvious questions: Must we discard ‘biased’ cycles and compensate for the

decreased precision by increasing the numbers of couples enrolled? If we

know the form of the bias, can we not remove it using statistical models while

maintaining the full statistical e�ciency?

The most recent publication [7] on the topic, based on a regression

model that uses the data from all cycles, appears to confirm the validity

of the alternating-sequence design. However, the data-analysis methods in

it, and in some earlier publications, rely on models that do not explicitly

acknowledge inter-patient variation.

The purpose of this paper is to show that one can use biologically re-

alistic statistical models to remove the bias demonstrated by Norman and

Daya, without having to remove some of the data. In the process, we illus-

trate a number of statistical models that explicitly include between-patient

heterogeneity, a phenomenon that all agree exists, but not all authors include

in their analyses. In order to illustrate these models, many of which have

been set forth in statistical rather than substantive journals, we begin with

the simplest type of data, from a single-arm, ‘constant-sequence’, design.

We then extend the presentation to include models for comparative studies,

where the focus is on a comparative parameter, such as a success ratio, rather

than on the heterogeneity parameters per se. The models are general, and

can be used for both alternating and constant-sequence designs.
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Modelling heterogeneity in one-arm studies

Consider the simplest type of data, from a single-arm ‘constant-sequence’

design, or a cohort study of persons with a common characteristic (in the first

example, presented in Table 1, e.g. all were non-smokers). In the reporting

of the results in such cohorts, it is common to see statements such as that

“the probability of success was lower at each successive cycle.” Thus, in

the statistical modelling of the cycle-specific success rates, say by logistic

regression, data-analysts will often add a term to reflect this ‘decline.’

But does an individual’s probability of success really decrease in each

successive cycle? To see why this may not be the best (or only) interpretation,

consider the cycle-specific ‘success’ rates one would observe in a large group

of persons if the data-generation process followed the following statistical

model: half are given a six-sided die, and asked to roll it once each cycle

until they first “succeed” when a six shows upward; the others are given a

coin, and asked to toss it until a specified face shows upwards. Persons are

not allowed to switch between the die and the coin. The investigators do not

observe which outcomes were generated by which subgroup – in statistical

terminology, the subgroups and their associated di↵erential success rates, are

latent. As can easily be calculated, the overall cycle-specific success rates,

shown below, would exhibit a decreasing trend, even though each person’s

probability of success remained constant (at either 1/6 or 1/2) from one cycle

to the next.
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Cycle: 1 2 3 4 5 6 7 8 9 10 11 12
% Success: 33 29 25 23 20 19 18 18 17 17 17 17

The reason for this trend is that those with a cycle-specific success prob-

ability of 50% tend to succeed sooner, so that by the later cycles, those re-

maining are predominately those whose cycle-specific success probability is

1/6th, or 17%. Had say only one-quarter been given the coin, and three

quarters the die, the average success in the first cycle would have been 25%,

and the decrease to the asymptote of 17% would have been more rapid; con-

versely, had say three-quarters been given the coin, and one quarter the die,

the average success in the first cycle would have been 42%, and the decrease

to the 17% would have been more gradual. The nature (center and spread) of

the distribution (the ‘mix’ of probabilities) determines the observed sequence

of success rates.

In reality, with small sample sizes, the observed sequence of success

rates will not necessarily be monotonic. Moreover, in any clinical situation,

a cohort will not consist of just two subtypes; rather there will be a continuum

of probabilities, and some distribution of these probabilities. Figure 1 shows

the infinite-sample and a finite-sample realization for a number of ‘mixtures.’

Statisticians refer to statistical models for this heterogeneity by several

names: a random e↵ects model, a latent class model, a hierarchical model.

If one has su�cient data, one can more precisely estimate the parameters of

this distribution. Clearly, if in our simulation, we could ask each person to

perform a large number of trials, and not stop at the first success, it would
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be easier to estimate the distribution of success probabilities. Although the

parameters that describe the success rates in a one-arm study are seldom of

interest, it is instructive for the comparative study to be considered in the

next section to how one statistically estimate them from a finite amount of

persons, where observation terminates at the first success or after persons

have tried for C cycles, whichever comes first.

Consider first the simplest case, where as before there are just 2 prob-

abilities of success, P1 and P2. Unlike the didactic example where we set

them to 1/2 and 1/6 respectively, in practice P1 and P2 would be unknown,

as would the relative frequencies F1 and F2(= 1 � F1) of the two classes of

persons. Since there are 3 unknown parameters (P1, P2, F1), we could use the

observed success rates {S1, S2, S3} in the first C = 3 cycles in a very large

cohort to estimate them, with very little sampling error, by solving the 3

estimating equations:

S1 =
F1P1 + F2P2

1
; S2 =

F1P̄1P1 + F2P̄2P2

1� S1
; S3 =

F1P̄1P̄1P1 + F2P̄2P̄2P2

1� (S1 + S2)
,

where P̄1 and P̄2 are shorthand for (1�P1) and (1�P2), respectively. With

a smaller cohort, the observed success rates {s1, s2, s3} in the first three

cycles would be imperfect estimates of {S1, S2, S3}. Thus the estimates of

P1, P2 and F1 derived from {s1, s2, s3}1, while seeming to yield a perfect

fit, would contain some sampling error. The amount of estimation error

could be reduced by using data from C > 3 cycles, just as the errors in

1
Statisticians refer to this fitting technique as the method of moments.
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the estimated parameters of a line could be made smaller by using more

datapoints. Moreover, the discrepancies between the observed success rates

{s1, s2, . . . , sC} and the fitted ones {ŝ1, ŝ2, . . . , ŝC} could be used to gauge

the statistical uncertainty of the estimates P̂1, P̂2 and F̂1.

Again, in reality, there is a continuum of success probabilities, and these

would have a frequency distribution, with a shape described by a (frequency,

or density) function, f(P ), say. If a very large number of persons each

performed a large number of trials and did not stop at the first success,

the resulting individual success rates would – as with batting averages of

professional baseball players over one or more years – yield a precise estimate

of the location and shape of the f(P ) distribution. However, with data

on say a maximum of C = 12 trials on a finite number of persons, one is

forced to assume a functional form of the distribution, one that is governed

by just a few parameters. These can then be estimated from a series of

observed success proportions {s1, s2, . . . , sC}. One of the most common forms

is the Beta distribution: it is governed by two parameters, ↵ and �, the

mean is µ = ↵/(↵ + �), the standard deviation is � = {µ(1 � µ)/(↵ +

� + 1)}1/2, and the upper tail is longer than the lower one when µ < 0.5.

Another 2-parameter form, that can more easily accommodate covariates, is

the logit-Normal distribution, where logit(P ) = log(P/[1�P ]) has a Normal

(Gaussian) distribution with mean µlogit and standard deviation �logit.

These two hierarchical models – the Beta-geometric
2 and the logit-

2
If there is no variation in P , the beta-geometric distribution becomes the familiar
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Normal – are easily fit by widely available software for hierarchical models.

in Appendix 1 we apply them to the data from a ‘one-arm’ observational

study (all non-smokers, with no known fertility problems).

geometric distribution, used to describe the probabilities of achieving say a first success

in a series of trials.

9



2. HOMOGENEOUS FECUNDABILITY

Let pC denote a woman’s fecundability i.e., her per-cycle probability of

getting pregnant, with the less e↵ective (control) treatment (t = 0). For

now, assume no variation in pC across women, i.e., that Var[pC ] = 0. Let

pE denote her fecundability with the experimental treatment (t = 1). Its

e�cacy with respect to the control treatment can be expressed in di↵erent

ways using di↵erent forms for g in the generalized regression equation g[pE] =

g[pC ] + � ⇥ t. For example, � is the absolute di↵erence in fecundability if

g is the identity function; exp[�] is the fecundability ratio ✓ if g is the ln

function, or the fecundability odds ratio if g is the logit function. We will

use the fecundability ratio to measure e�cacy.

Suppose that one such woman, alternating from the experimental treat-

ment in cycle 1, became pregnant on this treatment in the 5th cycle.

Cycle: 1 2 3 4 5
Treatment: Exp’tl Control Exp’tl Control Exp’tl

Outcome: — — — — +

Probability(+): pE pC pE pC pE

Probability(Outcome): 1� pE 1� pC 1� pE 1� pC pE

The observed data can be modeled as a sequence of independent Bernoulli

trials with alternating probabilities of success. The likelihood based on this

woman’s data is the product of the probabilities of the 5 individual out-

comes; it can also be re-arranged and written as a product of two geometric
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(but binomial-like) likelihoods, corresponding to sC = 0 successful cycles,

preceded by uC = 2 unsuccessful ones, when the success probability was pC

; and sE = 1 successful cycle, preceded by uE = 2 unsuccessful ones, when

the success probability was pE , i.e.,

L(uC , uE, sC , sE | pC , pE) / (1� pC)2 ⇥ (1� pE)2 ⇥ pE

Since pC and pE are constant from woman to woman, so that all woman-

cycles within the same treatment condition are exchangeable, the likelihood

based on the data from several such women can again be written as the

product of two binomial-like likelihoods

L(UC , UE, SC , SE | pC , pE) / (1� pC)UC ⇥ pSC
C ⇥ (1� pE)UE ⇥ pSE

E

where UC = ⌃uC and UE and SC and SE are the total numbers of unsuccessful

and successful cycles when using C and E respectively, i.e., summed over all

women and all cycles. The ML point estimator of the fecundability ratio

is simply (SE/TE)/(SC/TC)/ where TE = SE + US and TC = SC + UC . A

likelihood-based interval estimate is also easily calculated.

3. HETEROGENEOUS FECUNDABILITY

In reality, fecundability does vary among women, i.e., Var[pC ] > 0 and

Var[pE] > 0. We denote this variation by the general bivariate pdf f(pC , pE),

with marginal distribution f(pC). We present two data-analysis approaches

which use aggregated data for each treatment in each cycle. The first makes
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no assumptions about the form of the marginal distribution f(pC), but strong

ones about how a particular woman’s fecundability with the experimental

treatment is related to her fecundability with the standard one. In this ap-

proach, the observed data can be modeled either as (i) two sets of multinomial

distributions, one for the numbers {SC1 , SE2 , · · ·} who become pregnant in

cycles C1, E2, etc., the other for the numbers {SE1 , SC2 , · · ·} who become preg-

nant in cycles E1, C2, etc., or (ii) as cycle- and treatment-specific binomial

random variables { SC1|Tc1}, {SE1|TE1}, {SC2|TC2}, . . . The second approach

is based on a specific parametric form—Beta—for f , but does not ‘connect’

a particular woman’s fecundability when undergoing experimental treatment

with that same woman’s fecundability with the standard treatment.

We evaluate these approaches using the data in Table 1 as well as data

generated from continuous bivariate distribution for {pC , pE}. In the lat-

ter case, how a particular woman’s fecundability, pE, with the experimental

treatment is related to her fecundability, pC , with the standard one induced

variability in the e�cacy across women. In this second method, the observed

data are modeled as cycle- and treatment-specific binomial random variables.

3.1 Unspecified-form for f ; constant fecundability ratio

Consider an unspecified distribution f(pC) and let ✓ denote the constant

ratio of pE to pC for all values of pC . For a person with a specific value pC ,

assigned to the sequence C, E, C, ... , the probabilities of becoming pregnant
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in cycle 1, 2, 3, ... are

pC , (1� pC)⇥ ✓ ⇥ pC , (1� pC)⇥ (1� ✓ ⇥ pC)⇥ pC , ...

The probabilities, if that same person were assigned to the sequence E, C,

E,. . . , are

✓ ⇥ pC , (1� ✓ ⇥ pC)⇥ pC , (1� ✓ ⇥ pC)⇥ (1� pC)⇥ ✓ ⇥ pC , ...

Since pC varies over persons, the multinomial proportions are the expecta-

tions of these probabilities, taken over the distribution, f(pC), of pC . They

form the numerators of the expressions given in Table 2. and represent the

contribution to the (multinomial-based) likelihood of each person who be-

comes pregnant in that cycle. The extension beyond cycle 3 (not shown)

is obvious, even if the algebra is tedious. Of note is the fact that the two

likelihood contributions from cycle k involve the first k moments of the dis-

tribution of pC . Others, e.g., [7,8,9], have noted this in the simpler constant-

sequence design. Thus, each cycle adds two new data points and one new

parameter; overall the 2K datapoints from K cycles are modeled by K + 1

parameters. If K � 2, the remaining K � 1 degrees of freedom can be used

to assess model fit.

Table 2 about here

Maximum likelihood estimates for these K + 1 parameters can be ob-

tained from a non-linear modeling package, such as SAS PROC NLMIXED
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(see Appendix). Although our approach deals with heterogeneity, it does so

without specifying a traditional random e↵ects model: we used only the ‘NL”

portion of NLMIXED. We found that this multinomial approach is very sen-

sitive to starting values, and have had more success by modeling the number

who become pregnant on a specific treatment in a specific cycle—conditional

on the number who used that specific treatment in that cycle—as a binomial

random variable. These conditional probabilities are given as the quotients

in Table 2. Again, they can be fitted using SAS PROC NLMIXED by (i)

expressing the 2K binomial parameters in terms of the K moments and the

parameter of interest ✓, and (ii) for each of the 2K observed counts, modeling

Numberpregnant ⇠ Binomial(Numbertreated, BinomialParameter).

For the data in Table 1, Maximum Likelihood estimates (and Standard

Errors of their natural logarithms) for these parameters are shown in Table

3. This method correctly ‘recovers’ ✓. Further, because the procedure uses

data from all cycles, it produces smaller standard errors than those for the

summary estimates from the odd-numbered cycles only. Moreover, one can

achieve this increased precision, and only a slight inaccuracy, with fewer than

the full K moments: one can omit i.e., set to zero in the likelihood, some of

the higher order moments—those of order 3 or more in our example. This

is because pC is bounded by 0 and 1, so that the higher moments are of

decreasing magnitudes, and thus increasingly negligible.

– Table 3 about here –
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3.2 Beta-Geometric Model

That an experimental treatment would increase each pC value a constant-

fold, i.e., by the same multiple, ✓ for each woman, regardless of her value of

pC , is not realistic biologically. Whereas women whose natural fecundability

is 10% might reasonably have it increased to 20% i.e., by a factor of ✓ = 2,

with experimental treatment, the treatment is unlikely to also raise other

women’s already high natural per-cycle success probability of 40%, say, by

the same (multiplicative) factor of ✓ = 2, i.e., to 80%. Moreover, if pC > 1/✓

, this assumption of a constant ✓ is statistically impossible. In addition,

there are practical technical di�culties in fitting such a high-order nonlinear

model; the number of parameters (moments) relative to the numbers of ob-

servations is large. For these reasons, we turn to more natural parametric

statistical models for pC and pE, ones with fewer constraints on how a partic-

ular woman’s fecundability when undergoing experimental treatment relates

to what might be (loosely) called its ‘counterfactual’ i.e., the same woman’s

fecundability with the standard treatment.

The Beta-Geometric (B-G) model has been used in demography [7].

More recently, Weinberg and Gladen [8] used it in a non-experimental study

of the e↵ect of smoking on fecundability. Since women were classified as

smokers or non-smokers for the entire period of observation (up to 12 cycles),

their model immediately applies to a parallel-sequence design [4]. The latter

authors used a modified B-G model to generate data, but did not consider
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it for the analysis of their data. We extend these ideas to develop a beta-

geometric model for data from the alternating-sequence design.

Before doing so, we review its use for the constant-sequence design.

Weinberg and Gladen compared fecundability, measured over 12 cycles, in

smokers relative to non-smokers. They modeled fecundability in the two

source populations as Beta distributions, with their respective location and

shape governed by the pairs of parameters {↵C ,�C} and {↵E,�E}. Therefore,

before the first cycle the probability density function of pC is given by:

f [pc] / pc
↵C�1(1� pc)

�C�1

The mean and variance of the fecundability in the control group before the

first cycle are µC = ↵C/(↵C +�C) and �2
C = ↵C�C/((↵C +�C)2(↵C +�C +1))

Weinberg and Gladen showed that in those couples who were unsuccessful in

U previous cycles, the—now conditional—distribution of pC at cycle U + 1

in this selected subgroup is shifted towards the left i.e., towards zero, but

remains a Beta distribution, with probability density function:

f(pc|U) / pc
↵�1(1� pc)

��1+U .

The parameters of the fecundability distribution are now {↵C , �C+U}. Thus,

after k cycles the mean fecundability is given by µC = ↵C/(↵C + �C + k).

They further showed that the expected probability of success among those

who enter cycle U+1 is related to the number of previously unsuccessful
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cycles U via the simple reciprocal link:

1/E[pC |U ] = (↵C + �C + U)/↵ = (↵C + �C)/↵ + (1/↵)⇥ U

= � + � ⇥ U

The parameter � is the expected number of cycles to become pregnant if a

couple had the average per-cycle probability under the control treatment i.e.,

� = 1/µC . The parameter � reflects the spread of the initial distribution of

pC : under homogeneity, the number of cycles required to achieve pregnancy

reduces to the same geometric random variable for each couple, i.e., � = 0.

The parameters � and � can be fit using binomial regression with an inverse

(i.e., power-1) link, e.g., using PROC GENMOD in the SAS, or glm in Stata.

Since glm in R does not allow this link for the binomial, one needs to supply

the variance function.

Weinberg and Gladen extended the model to e↵ectively fit separate Beta

distributions for the cycle-specific probabilities for smokers (t = 1) and non-

smokers(t = 0), via one equation:

1/E[pC | U ] = (�C + �C ⇥ U)⇥ (1� t) + (�E + �E ⇥ U)⇥ t.

To extend it to the alternating sequence design, we model the expected

probability of pregnancy for women who have already undergone UE and UC

unsuccessful cycles on E and C, and are now about to receive (say) E. The

initial Beta(↵E,�E) distribution must be updated to reflect the UE and UC .

The UE is added to the �E term as in the parallel sequence model, but a
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correction must be made to the UC . If C were no more e↵ective than E, and

thus exchangeable with it, we would add the full UC to the UE to obtain

the �E term of UE + UC . But if C were less e↵ective than E, then using the

full UE + UC in the �E term would shift the fecundability distribution too

far to the left. This is most easily seen if no pregnancies can occur with C.

The greater the e�cacy of E relative to C, (i.e., the smaller the ‘failure ratio’

(1�pE)/(1�pC)), the smaller should be the ‘amalgam’ of UE and UC . Thus,

we suggest that the contribution of UC be reduced, and propose the amalgam

U⇤ = UE + FRR⇥ UC

where FRR is the ratio of the probability of failure on the experimental

and control treatments at cycle 1. This ratio is less than unity if E is more

e↵ective than C. Thus, the probability density function of pE at cycle uC +

uE + 1 is taken to be

f(pE | uE uC) / pE
↵E�1(1� pE)�E�1+uE+FRR⇥uC ,

i.e., a Beta(↵E , �E +uE +FRR⇥uC) distribution. Thus the expected prob-

ability of success at this cycle is inversely proportional to a linear function

of uE and uC , i.e .

E(pE | uC uE) = ↵E/(↵E + �E + uE + FRR⇥ uC)

Similarly, we can show that

E(pC | uC uE) = ↵C/(↵C + �C + uC + (1/FRR)⇥ uC)
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We re-formulate it as a generalized linear model for binary data with an

inverse link function:

1/E(p | uC uE) = �0E ⇥ t + �0C ⇥ (1� t)
+ �1E ⇥ (uE ⇥ t) + �1C ⇥ (uC ⇥ (1� t)) (3)
+ �2E ⇥ (uC ⇥ t) + �2C ⇥ (uE ⇥ (1� t))

where t = 1 under the experimental treatment and t = 0 under the control

treatment. Constraints should be placed on �2E, which is a function of �0E

and �1E, and on �2C . The model can be fit using PROC NLMIXED in SAS,

which can accommodate constraints. The parameters of the original Beta

distributions can be obtained by the following transformations.

↵E = 1/�1E; �E = (�0E � 1)/�1E; ↵C = 1/�1C ; �C = (�0C � 1)/�1C ,

and e�cacy is estimated by ✓̂ = ˆ�0C/ ˆ�0E.

In a Bernoulli model, woman-level covariates could be added as linear

terms in (3). Notice that at each cycle the fecundability distribution under

treatment t is obtained by adding to the � parameter of its starting fecund-

ability distribution, the number of unsuccessful cycles on t and a multiple

of the number of those on the other treatment. While we have used the

multiplying factors as FRR and 1/FRR above, we could use the generic

expressions ↵C/(↵C +�C +uC +�C ⇥uC) and ↵E/(↵E +�E +uE +�E ⇥uC)

for the respective mean fecundability after cycle uC + uE. �C and �E should

be constrained to be > 1 and < 1 respectively, assuming E is more e↵ective

than C.

4. EVALUATION
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We assessed the performance of these analysis models on 200 generated

datasets. Following Cohlen et al. [4] we began with Beta distributions with

means of 0.16 and 0.32, each with a coe�cient of variation of 75% (Cohlen

et al. used 56%). We calculated the 9th, 18th, ..., 90th percentiles for each

of these two initial distributions, and placed a point mass of 0.1 at each of

these values, thereby creating two 10-point distributions for the first cycle.

If a woman’s fecundability was at say the 18th percentile when on C i.e. if

pC = 5.2%, then her fecundability with E (if necessary) was the correspond-

ing 18th percentile in that distribution, namely pE = 8.1% (fecundability

ratio = 1.56). Similarly, those just above the middle of the pC distribu-

tion, i.e., a fecundability of pc = 15.2%, were considered to be just above

the middle of the pE distribution, namely pE = 31.6% (fecundability ratio =

2.08), while in the 3rd highest subgroup, fecundabilities were pC = 22.6% and

pE = 48.2% (ratio = 2.13). For each dataset, 1000 women were randomly

assigned, using a multimomial distribution, to the 10 fecundability levels

under C, and 1000 others to the 10 corresponding levels in the pE distribu-

tion. At each cycle, these two sets of 10 subgroup frequencies were depleted

using random numbers of pregnancies generated by the 20 corresponding bi-

nomial distributions. The numbers who were unsuccessful were switched to

their corresponding level on the opposite distribution, before generating the

pregnancies for the next cycle.

The estimates produced by our analysis models are summarized in Table
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5. Leaving the form of f unspecified and estimating its first few moments is

somewhat more e�cient than using the Beta-Binomial model, where there is

more of a tradeo↵ between bias and precision.

5. EFFICACY ESTIMATES FROM A CLINICAL TRIAL

The data in Table 6a are from (by today’s standards) a very large clin-

ical trial. It evaluated the performance of a second generation protocol for

donor insemination with frozen semen [10]. Today, screening of semen for

HIV infection precludes the use of fresh semen. Earlier, in the first use that

we have found of the alternating sequence design, this group achieved a fe-

cundability rate of only 5.0 pregnancies per 100 cycles with a first-generation

protocol, versus 18.9 per 100 using fresh semen [11].

The data for the first six cycles (during which, for each woman, semen

was from her matched donor) are shown in Table 6a. However, as is obvi-

ous from the denominators, the same practical di�culties were encountered

as those mentioned in the first study: “Cryopreserved semen was frequently

substituted in a cycle scheduled to be fresh because the donor was not avail-

able.” Unfortunately, information on the actual sequence for each woman is

no longer available (S. Shapiro, personal communication, 2002).

Estimates of e�cacy are given in Table 6b. Those produced by the meth-

ods in 3.1 and 3.2 are closest to the null, suggesting that they removed some

of the bias induced when one ignores the heterogeneity. Possibly by chance,

given its poor precision, the estimator advocated by Norman and Daya was
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furthest from the null, further than both the crude and the Mantel-Haenszel

estimates. The Generalized Linear Model estimate was closest to the null,

but had a high SE, possibly because of the large number of parameters (6)

fitted to the 12 datapoints. The method of moments had the lowest SE.

The fact that it was no di↵erent from that of the Mantel Haenszel estimator

suggests that, in this study, heterogeneity does not substantially inflate or

deflate the SE. Without individual-specific data, we are unable to assess how

much heterogeneity could also be a↵ected by women who dropped out.

6. DISCUSSION

The more attractive alternative sequence design also produces more

pregnancies for the same number of cycles. We describe two approaches

that allow clinical trials to use data from all of the cycles, while Norman and

Daya’s approach [6] squanders the statistical advantage of this design. Many

contemporary trials generate fewer than 25 pregnancies in total. Decreas-

ing precision further by omitting even-numbered cycles, without trying to

eliminate the biases by other methods, is di�cult to defend. Moreover, with

the sample sizes considered here reduced by a realistic factor of 25, sampling

variability dominates analytic bias.

The bias caused by naively using all data is a function of the hetero-

geneity in pC and the e�cacy of the experimental treatment ; both must be

substantial in order to produce a serious bias. Norman and Daya based their

concerns on an extreme 2-point distribution of pC , and a treatment that
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doubled the pC = 40% in the high fertility subgroup to a ‘biologically nearly

impossible’ pE = 80%. Even then, the bias was less than the sampling vari-

ability induced by the sample sizes used in practice. With the same ✓ = 2,

and a more realistic distribution where f [0.025] = 0.8 and f [0.1] = 0.2 so

that mean[pC ] = 0.04, SD[pC ] = 0.03, the bias was much smaller Moreover,

if, rather than increasing p, an new treatment— such as frozen semen—

reduces it, the degree of bias in the naive estimate of ✓ is also less, because

of the smaller impact of the di↵erential success (removal) of the most fertile

in odd-numbered cycles. For example, using ✓ = 0.5 in Table 2, the data

from cycle 2 yield ✓̂ = 0.47, a relative bias of only 6%. These ‘low-bias’

conditions would also apply in comparisons of contraceptive methods, where

the probability of an unwanted pregnancy is already low.

The alternating sequence design is not a full crossover study. Nor does

it carry the full statistical e�ciency usually associated with self-matched

comparisons. Thus, the sample size and power calculations/projections are

best carried out by analogy with unmatched designs.

In practice, for example in the study by Brown et al. [10], there are un-

avoidable individual deviations from the alternating-sequence protocol. Some

investigators may use variations of the alternating design: e.g., in Ecochard

et al. [12], 1/2 patients received one treatment for the first two cycles and the

competing treatment for the next two cycles, while the other 1/2 followed the

opposite sequence. For these more complex designs, random e↵ects models
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for binary (Bernoulli) data allow one to model the cycle-by-cycle sequence of

outcomes for each woman using a full regression approach that makes use of

all of the individual level data for each woman (any baseline covariates, the

cycle-by-cycle treatment indicators and any other available cycle-dependent

covariates). Some quite complex 2-level hierarchical models have been used

in such circumstances [13,14].

The approaches we have described are also applicable to simple data

analyses for the parallel- or ‘constant-sequence’ randomized trial design.

Since this competing design has the same data structure as Weinberg and

Gladen’s example (fecundability of smokers and non-smokers), their ‘Beta-

Geometric’ Model is immediately applicable without modification. The method

based on moments is also applicable. Applied to Norman and Daya’s ‘constant-

sequence’ example (and the ‘data’ in their Table 1), both of our methods pro-

duce estimates closer to the true ✓ = 2, whereas a naive analysis produces

an attenuated estimate of 1.83.

In an appendix, Norman and Daya [6, p324] claim that “the assumptions

of a constant drug e�cacy is not necessary” by considering an arbitrary

distribution f [pC ], and an arbitrary e�cacy function, ✓[pC ] They purport to

show algebraically that ”the outcome rates in the odd cycles in an alternating

sequence are unbiased,” i.e., that “the results will hold true regardless of the

relationship between e�cacy and fertility.” In fact, the ratio from alternate

cycles will not continue to be unbiased if the treatment e↵ect is variable. This
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is illustrated in Table 7 by slightly perturbing Norman and Daya’s simulated

example so that the risk ratio in the low fecundability group is 2.5, while the

risk ratio in the high fecundability group remains at 2. This is closer to what

happens in reality where there is likely to be a greater relative shift in the

low fecundability groups, compared to the high fecundability groups. The

true average risk ratio across the population is thus 2.5⇥ 0.8+2⇥ 0.2 = 2.4.

However, from Table 7 we can see that this estimate is not obtained even in

the first cycle: the ratio of the expected probabilities of successes does not

match the expectation of the ratios of the success probabilities, i.e.

⌃ ✓[pC ]⇥ pC ⇥ f [pC ]

⌃ pC ⇥ f [pC ]
6= ⌃ ✓[pC ]⇥ f [pC ] = ✓[pC ]

Further, it appears that the odd cycles underestimate the true risk ratio while

the even cycles overestimate it. If the study continues to a point when only

women in the low fecundability group remain, then the ratio approach the

true ratio of 2.5 in both odd and even cycles

This contrary finding is an additional impetus to consider more general

regression models that allow not just between-individual heterogeneity, and

covariates at the woman-cycle level, but also more flexibility in the speci-

fication of the comparative parameter. We plan to investigate whether the

amount of data from a typical alternating sequence design makes such models

practical. Unlike traditional studies with multiple crossovers, the alternating

sequence design involves at most one instance of Y=1 per subject, and such

outcomes preclude further observations. This, the small sample sizes, and
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the small number of cycles usually used, may be a serious impediment to

more complex modeling. The analyses we have presented, based on marginal

distributions, may well be the appropriate ones for the amounts of clinical

trial data generated by the alternating sequence design.
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Appendix 1: Why heterogeneity creates biased e�cacy estimates

in the alternating-sequence design

The origin and nature of the biases in the estimates from these two designs

– as well as the concept of inter-patient heterogeneity – can be readily

understood by studying the worked example in Norman and Daya [6]. As

shown in the first row of Table 1, for didactic purposes, they assumed a

heterogeneous population, where fecundability i.e., the per-cycle probability

of getting pregnant, varied from couple to couple. For didactic purposes,

they assumed the simplest possible model of heterogeneity – with just two

classes. In this simplistic model, with the less e↵ective (Control) treatment,

some 80% of couples had a per-cycle probability pC = 10%, and the

remaining 20% of couples a pC = 40% fecundability, i.e.,

pC =
⇢

0.1 for 80% of couples,
0.4 for 20% of couples.

Thus they assumed that the overall average fecundability is 16%, and the

standard deviation is 12% (in reality fecundability would vary along a

continuum, and there might also be an sub-populationt with zero

fecundability).

They further assumed that the more e↵ective (Experimental) treatment

had a constant e�cacy, ✓, of 2, i.e., that at each cycle, a couple’s

probability of becoming pregnant was doubled. In Table 1 the course of the

1000 randomly allocated to undergo the ‘control’ treatment in the first

cycle is tracked in bold. The entries at each cycle are the expected numbers
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of couples from the higher- and lower fecundity subpopulations who

attempt to (and, in parentheses, the numbers who do) become pregnant.

Using expected numbers of pregnancies at each cycle, Norman and Daya

showed that estimates of e�cacy that are based only on the total number of

women and the total number of pregnancies are biased, irrespective of the

design—the parallel design underestimates (apparent e�cacy: ✓ =1.83,

calculations not shown here but discussed later) and the

alternating-sequence design overestimates (apparent e�cacy ✓ = 2.10,

middle column Table 1). However, they noted that the bias in the

alternating-sequence design is limited to the data from even-numbered

cycles.
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Appendix Table 1: Cycle-specific ratios of expected pregnancy proportions if the

alternating sequence design is applied to a population of 2000 which is

heterogeneous with respect to spontaneous fecundity [20% with higher, 80% with

lower fecundity].

Treatment received in the indicated cycle
Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800
(80) (80) (160) (320) (160) (160)

16% 2.00 32%

2 40 640 680 840 120 720
(16) (64) (80) (240) (96) 144

11.8% 2.43 28.6%

3 24 576 600 600 24 576
(9.6) (57.6) (67.2) (134.4) (19.2) (115.2)

11.2% 2.00 22.4%

4 4.8 460.8 465.6 532.8 14.4 518.4
(1.9) (46.1) (48.0) (114.9) (11.5) 103.7

11.3% 2.10 21.6%

5 2.9 414.7 417.6 417.6 2.9 414.7
(1.2) (41.5) (42.6) (85.2) (2.3) (82.9)

10.2% 2.00 20.4%

1-5 271.7 2891.5 3163.2 3390.4 361.3 3029.1
(397.8) (894.8)
(12.6%) 2.10* (26.5%*)

The course of the 1000 randomly allocated to undergo the ’control’ treatment in

the first cycle is tracked in bold. The entries at each cycle are the expected

numbers of couples from the higher- and lower fecundity subpopulations who

attempt to (and, in parentheses, the numbers who do) become pregnant. Table

adapted from Figure 2 and Table 2 of Norman and Daya.
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Figure 1: Random e↵ects models fitted to pregnancy rates in (fertile)

non-smokers (data from Gladen and Weinberg). Lower portion: n: number

attempting to become pregnant; s: number successful; ⇥ = success rate

(%); • fitted rate from Beta-geometric model; • fitted rate from

logit-normal model. Upper portion: + cumulative success rate; • fitted rate

from Beta-geometric model;
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Figure 2: Distribution of individual success probabilities estimated from

random e↵ects models fitted to pregnancy rates in (fertile) non-smokers.

Data, from Gladen and Weinberg, are given in Figure 1. Black curve:

Beta-geometric model; Grey curve: logit-Normal model.
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Table 2: Unconditional (multinomial) and conditional success probabilities

for each of the first three cycles, as a function of the e�cacy, ✓, and the

(absolute) moments of the unspecified distribution of pC , the fecundability

under the standard [”control” (C)] treatment.

Cycle Control Experimental

1 µ1 ✓ ⇥ µ1

2 µ1�✓⇥µ2

1�✓⇥µ1

✓⇥µ1�✓⇥µ2

1�µ1

3 µ1�µ2�✓⇥µ2+✓⇥µ3

1�µ1�✓⇥µ1+✓⇥µ2

✓⇥µ1�✓⇥µ2�✓2⇥µ2+✓2

1�µ1�✓⇥µ1+✓⇥µ2

The numerators represent the unconditional probabilities of pregnancy in the in-

dicated cycle for persons entering the study, while while the quotients represent

conditional pregnancy probabilities for those who receive the indicated treatment

in the indicated cycle. These probabilities are computed separately for those ran-

domly allocated to the ‘C to E to C’ sequence, and conversely for their counter-

parts. Cycle 1 starts with denominators of 1 (100%) in each group; it is assumed

that there are no dropouts [i.e. women/couples who have not yet become preg-

nant do not abandon the study] or that dropouts are ’at random’ and unrelated

to their values of pC . The symbols µ1 to µ3 are the first 3 absolute moments of

the distribution of pC , the fecundability with standard treatment.
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Table 3: MLEs of the e�cacy parameter ✓ (SE of ln of estimate) as a function of

number of data cycles used, and number of moments of unspecified distribution f
estimated, compared with estimates obtained using approach of Norman and

Daya.

No. moments of f fitted
.
.
. Norman and Daya

Cycles 1 2 3 4 5
.
.
. Cycles ✓̂

used
.
.
. used (SE*)

1 2.00
.
.
. 1 2.00

(86)
.
.
. (86)

1,2 2.33 2.00
.
.
.

(77) (66)
.
.
.

1,2,3 2.18 2.06 2.00
.
.
. 1,3 2.00

(66) (60) (60)
.
.
. (70)

1,2,3,4 2.28 2.01 2.02 2.00
.
.
.

(64) (55) (55) (56)
.
.
.

1,2,3,4,5 2.18 2.07 2.01 2.00 2.00
.
.
. 1,3,5 2.00

(59) (54) (52) (52) (53)
.
.
. (65)

‘Data’ from Table 1.

All SE’s are multiplied by 1000.

* Mantel-Haenszel summary risk ratio, with SE of ln estimate back-calculated

from test-based confidence interval.
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Table 4: Fit of adapted beta-binomial generalized linear model to 5 cycles of

Norman and Daya ‘data.’

Model

Term Parameter Measure � =
�C/(↵C+�C)
�E/(↵E+�E) No Constraint

t �1 3.15(0.14) 3.14(0.14)

1� t �0 6.31(0.45) 6.36(0.45)

Ratio* 2.00 2.03

ln Ratio 0.694(0.084**)

UE ⇥ t �1E 0.58(0.13) 0.36

UE ⇥ (1� t) �0E - -0.00

UC ⇥ t �1C - 0.71

UC ⇥ (1� t) �0C 0.93(0.31) 1.94

SE’s shown in parentheses.

* The ratio estimate is 6.36/3.14.

** Since the covariance between the 6.36 and 3.14 is zero, the variance of the ln
of the ratio, computed via the delta method, is [(0.45/6.36)

2
+ (0.14/3.14)

2
]
1/2

=

[1/499.7 + 1/196.6]
1/2

= 0.084.
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Table 5: Estimates obtained by applying non-parametric and parametric

methods to 200 datasets.*

Beta-Binomial

No. of moments fitted (f unspecified) � :

1 2 3 4 5
�C
�E

�C/(↵C+�C)
�E/(↵E+�E) N.C.**

Measure

Median{✓̂} 2.16 2.03 1.99 1.98 1.99 1.91 2.08 2.02

SD{ln ✓̂} 0.055 0.050 0.049 0.049 0.052 0.059 0.077 0.081

Mean{SE**} 0.058 0.054 0.052 0.052 0.054 0.062 0.078 0.083

* For details, see Section 4.

** N.C.: No constraint

** SE of ln ✓̂
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Table 6a: Pregnancies and Fecundability in Cycles of Insemination with Fresh

and Frozen Semen.

Fresh semen Frozen semen

Number of ... Number of ...

Patients Pregnancies Rate Patients Pregnancies Rate

1 163 57 0.350 125 18 0.144

2 69 18 0.261 130 12 0.092
3 73 20 0.274 87 8 0.092

4 59 12 0.203 69 9 0.130
5 51 12 0.235 50 1 0.020

6 51 12 0.235 28 2 0.071
1-6 466 131 0.281 489 50 0.102

The course of the patients who underwent insemination with fresh semen in the

first cycle is tracked in bold. Data from Table 1 of Brown et al [10].

Table 6b: Estimates of E�cacy of Insemination with Frozen vs. Fresh Semen. SE

of ln of estimate given in parentheses.

Cycles Method/Model Details ... E�cacy

1-6 Brown et al. 50/489 ÷ 131/466 0.36(0.15)

1-6 M-H* Summary Risk Ratio 0.37(0.15)

1, 3, 5 Norman & Daya 27/262 ÷ 89/287 0.35(0.19)

1, 3, 5 Norman & Daya, M-H* Summary Risk Ratio 0.35(0.19)

1-6 Unspecified f 4 moments fitted 0.39(0.15)

1-6 Beta-binomial Unconstrained 0.39(0.25)
1

* Mantel-Haenszel summary risk ratio (summed over cycles), with SE of ln esti-

mate back-calculated from test based-confidence interval.

1
See footnote to Table 4. Deviance / df = 0.98; Chi-square goodness of fit statistic

= 5.6 (6 df).
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Table 7: Simulated example with varying risk ratio in each fecundability

subpopulation; otherwise, same setup as in Table 1.

Treatment received in the indicated cycle

Control Experimental

Sub-population (fecundability) Sub-population (fecundability)

Cycle High Low All Ratio All High Low

1 200 800 1000 1000 200 800

(80) (80) (160) (360) (160) (160)

16% 2.25 36%

2 40 640 640 840 120 720
(16) (60) (76) (276) (96) 180

11.8% 2.79 32.9%

3 24 540 564 564 24 540

(9.6) (54) (63.6) (154.2) (19.2) (135)

11.2% 2.43 27.3%

4 4.8 405 409.8 500.4 14.4 486
(1.9) (40.5) (42.4) (133) (11.5) 121.5

10.3% 2.57 26.6%

5 2.9 364.5 367.4 367.4 2.9 364.5

(1.16) (36.45) (37.61) (93.429) (2.32) (91.125)

10.2% 2.48 25.4%

1-5 271.7 2709.5 2981.2 3271.8 361.3 2910.5

(108.7) (270.6) (379.3) (1016.6) (289.0) (727.625)

(12.7%) 2.45* (31.1%*)

The course of the patients who received the standard (control) treatment in the

first cycle is tracked in bold.
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