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SUMMARY 
The binormal model is widely used for parametric receiver operating characteristic (ROC) analyses of data 
concerning the accuracy of medical diagnostic tests. Empirical evaluation of the performance of this model 
in the face of departures from binormality has been limited to interpretations of radiology-type examina- 
tions recorded on a rating scale. This paper extends the investigation to the performance of the model with 
biochemical and other tests recorded on an interval scale. In order to describe non-binormal pairs of 
distributions, a useful standardized graphical display is developed; this display also illustrates several 
features of ROC curves. We consider non-binormal pairs of distributions with or without a monotone 
likelihood ratio and show that by transformation of the underlying scale, one can make many such pairs 
resemble closely the binormal model. These findings justify Metz’s use of the binormal model in the 
‘LABROC‘ software for ROC analyses of laboratory type data even when the raw data may ‘look’ decidedly 
non-Gaussian. 

INTRODUCTION 

The use of receiver operating characteristic (ROC) analyses’ in biomedical applications has 
increased considerably over the past fifteen The textbook by Swets and Pickett’ 
marked the beginning of the widespread use of this technique outside of psychophysics; the 
methodology now has its own keyword classification in Index Medicus. Whereas most of the 
early medical applications were in r a d i ~ l o g y , ~ . ~  where test results are subjective and recorded on 
a rating scale, the methodology has seen increasing use in the evaluation of the accuracy of 
medical diagnostic and prognostic tests that yield numerical test results.’ - ’ O 

Until the early 1980s, the parametric methods used to fit ROC curves and to derive summary 
indices of accuracy were based entirely on the binormal model.” This model postulates a pair of 
overlapping Gaussian distributions to represent the distribution of the discriminating variable (or 
a monotonic transformation of it) in the two populations or states to be distinguished. 

Several recent developments, both in software and in methodology, have increased the number 
of parametric models that can be used to model ROC data. Tosteson and Begg” showed how 
ROC analyses of rating data can be performed using the ordinal regression models of McCul- 
lagh.13 Using the concept of different ‘links’ (familiar to GLIM users), different underlying latent 
distributions (for example, probit, logit, and log links implying pairs of Gaussian, logistic and 
negative exponential distributions) can be used to fit ROC curves using the PLUM software 
package.” Similar model choices are available in the SIGNAL ~ o f t w a r e ’ ~  and the user’s manual 
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devotes considerable space to the various possible distributions and their ROC curves. Egan’s 
text” describes fully many of these. In a search for ‘parametric ROCs on a spreadsheet’, 
Diamond’ proposed the use of equal-variance logistic distributions (yielding a one-parameter 
ROC curve), resurrecting a distribution that had been neglected since 1968.’’ 

Two investigators have examined the basis for and the performance of the binormal mode1’8*’9 
to analyse rating data. Neither could find cases where the binormal model would seriously 
mislead. 

However, should one use the binormal model if the diagnostic test results are recorded on 
a continuous scale? If so, how? Goddard8 warns that if the distribution of the raw data is far 
from Gaussian, standard errors of accuracy indices based on directly fitted normal distributions 
can be seriously distorted. If the raw data appear to be non-Gaussian, must one then search 
among the various other bi-distributional forms? Or should one try to transform the raw data to 
bring them closer to binormality? What about the approach of Metz,” implemented in his 
LABROC program?” He fits ROC curves to continuous (‘lab’) type data by first ranking and 
then discretizing the data into as many categories as are possible, then fits the binormal model to 
these categorized data as if they were ‘rating’ data. Metz argues that this partially parametric 
approach preserves the rankings of the original data and thus minimizes the loss of information, 
since one is effectively replacing the raw data by Gaussian order statistics. 

Alternatively, should one simply resort to non-parametric indices, such as the area under 
al17921*22 or part’ of the ROC curve, without actually fitting a smooth ROC curve? 

With so many choices, what is a user to do? Is one model ‘better’ than another? Does the 
binormal model really make strong assumptions? We undertook our investigation because of the 
growing number of available methods, and users’ need for guidance about the choice of 
distribution and the impact that it will have on their results and conclusions. Our main question 
was: how flexible is the binormal model? how ‘close’ to binormal do other legitimate pairs of 
distributions look or how close can they be made to look? What shapes do various transforma- 
tions of the original scale produce? A secondary question was whether there is one particular scale 
that is more ‘natural’ than the others for visually displaying the degree of separation achieved by 
a test, and whether some of the usual ROC indices of accuracy could be visually estimated from 
the pair of distributions displayed on this scale. 

METHODS 

Notation 

In signal detection theory the populations or states to be distinguished are referred to as 
‘noise-only’ and ‘signal + noise’; in medical testing, they are typically referred to as non-diseased 
(D-) and diseased (D +). Denote the probability density functions (PDFs) of the values produced 
by the diagnostic test in these two populations as f and g, respectively, and the corresponding 
cumulative distribution functions (CDFs) as F and G .  

Distributions 

We studied two types of pairs of distributions, some designed to yield proper ROC curves, and 
some that do not necessarily do so. In order for the comparisons of these {f, g} pairs in other 
scales to be meaningful, we compared only those pairs which yielded the same area under the 
ROC curve. 

For the first type of pair, we took the scale to be (0, l), the probability distribution f in the 
‘noise-only’ population to be uniform, and g to be monotone increasing. Because such {f, g }  pairs 
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have a monotone increasing likelihood ratio glf, they produce a proper ROC curve, that is, 
one which is concave downwards. We limited our investigation to g’s which could be described 
by polynomials g ( x )  on (0, 1) of order k < 5. By varying the coefficients, we sought out the 
{ f ,  g} pairs which gave the widest variation in ROC shapes, but yielded the same area under the 
ROC curve. 

For the second type we chose { f ,  g} pairs from familiar families of distributions: Gaussian, 
negative exponential and beta, on the ( - 00, 00), (0, co) and (0, 1) scales, respectively. 

The widely used binormal model, based on a pair of Gaussian distributions, is characterized by 
two parameters a and b; without loss of generality,fcan be taken to be N(0, l), so that g is 
N(a/b, l/b). The resulting ROC curve is ‘proper’ only if the standard deviations in the two 
distributions are equal, that is, if b = 1. Although empirical studies” have demonstrated that the 
variation in the ‘signal + noise’ distribution tends to be larger, that is, b < 1, we studied three 
cases: b = 2/3; 1; and 3/2. The area under the corresponding curve is A = @ [a/,/(l + b’)]. 

The pairs of negative exponential distributions are characterized by a single parameter, that is, 
fand g were taken to be exp(- x) and Aexp(- Lx), respectively, where A < 1. The ROC curve has 
the closed ‘power law’ form TP = FPA and the area under the curve is A = 1/(1 + A). 

Beta-based ROC curves were generated with f -  beta(l,2) and g - beta(3,2); distributions 
with any greater skewness generate higher areas close to 1.0. Although in this case the ROC area 
is 0.8, we were unable to find a general closed form for the equation of the ROC curve or the area 
under it. 

Transformations 

Our aim was to show how each {f,g} pair would look in each of the other two scales. As is 
explained in the legends to Figures 1 and 2, we mapped those pairs wherefwas already U(0, 1) 
into the other scales using the inverse CDF transforms s’ = 0- (s) and s’ = - In($. We mapped 
Gaussian, negative exponential and beta pairs (Figures 3 to 5 )  into the other two scales by first 
mapping them so t h a t 7  was U(0,l). 0-’ was deliberately chosen to force an fo r f ’  which was 
uniform(0,l) to become Gaussian, and to offer comparison with a familiar shape. The densities 
on the transformed scales were computed analytically when possible and using numerical 
methods otherwise. 

These ‘aliases’ are only a small number of the re-expressions of each original {f, g }  pair. Several 
others were examined, but for space reasons they cannot be reported here. They include pairs 
re-mapped into (0, 1) by the transform s’ = s”, and from (0,l) to (0, 0 0 )  using s’ = s/(l - s). 

Closeness to binormality after transformation 

One can judge how close each { f ,  g} pair is to binormality by using the scale on whichf’ was 
Gaussian, and judging how close the g’ distribution also is to Gaussian. We restricted ourselves to 
a visual assessment for a number of reasons. First, in practice, sample sizes seldom exceed a few 
hundred and are often considerably smaller. With small n’s, one would not be able to determine 
from one’s data exactly which scale transformation produces a Gaussian distribution for even one 
member of the pair. Second, while one could formally test if data are within sampling variability 
of the binormal distribution, there are no direct methods for finding the change of scale, out of the 
large number of scale transformations available, which produces the closest binormal fit for any 
one data set. Even if there were, it is not clear that the exact same re-scaling would apply to all 
future data sets. Also, binormality cannot be judged using the significance level from a formal 
goodness-of-fit test; the assessment is necessarily subjective, based on the magnitude of the 
departures from binormality. 
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Figure 1. Two pairs ofdistributions, which yield the same ROC area of0.6, displayed on different scales. Top left: original 
pairs on (0, 1) scale: the pair {fl = 1 [dashed line]; g I  = 4x - 4x2 + 4x3/3 [solid line]}. and the pair {f2 = 1 [dashed 
line]; g2 = 0.5 + x - 3x2/5 + x4 [other solid line]]. g1 and g2 both yield monotonic likelihood ratio gfland the same 
ROC area but are as dissimilar as possible otherwise. Bottom left: the same pairs {fl; g l ]  and {f2; g2] on the (- 03, 00) 

scale, wherefl[ =fJ is Gaussian. Bottom right: {f,; g l }  and {f2; g2] on the (0, co) scale, wherefl[ =f2] has negative 
exponential distribution. Top right: the ROC curves [solid lines] corresponding to the pairs {fl; g l }  and {f2; g2} 

RESULTS 

We first list the features of the ROC curve that can be depicted by displaying the overlapping 
(f, g }  distributions on a scale on which f is uniform. We then report the answers to the main 
question posed, namely the shapes of specific pairs of distributions across all three scales. 
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ORIGINAL PAIRS 
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Figure 2. Two pairs of distributions which yield an ROC area of 08. Top left: original pairs of distributions, again as in 
Figure 1, with polynomial-based monotonic densities g1 and g2, on (0, 1) scale. Bottom left: The pairs {fl; g l }  and {fz; g2} 
on the (- w , w) scale. Bottom right: ifl; g l }  and {fz; g2j on the (0, w ) scale. Top right: the ROC curves [solid lines] 

corresponding to the pairs {fl; g l }  and {fz; gz} 

ROC features seen by displaying & g} on (0,l)  scale on which f is uniform 

Mapping the original {f; g }  pair from their original scales, into {f’, g’} on the (0, 1) scale using the 
transformation s’ = F(s )  shows several features of the associated ROC curve. To help appreciate 
these, one can use one of the pairs of distributions in the top left panel of any of Figures 1-5. 

First, the specificity (sp) of the test for any cutoffs’ on the (0, 1) scale is the portion of t h e y  
distribution to the left of s’; the (0,l) scale directly marks the percentiles of the ‘non-diseased’ 
population. The sensitivity (se) of the test for this given level (sp) of specificity is the portion of the 
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Figure 3. Three pairs of distributions which yield an ROC area of 08. Bottom left: original pairs {fi; g i }  of Gaussian 
densities on (- 00, m) scale:f, =f2 =j3  [dashed line]; u[gi]/u[fi] = 2/3, 1 and 3/2, respectively; g i s  represented by solid 
lines. Top left: the same pairs {A; g i }  on the (0, 1) scale, withf, =f2 =f, [dashed line, uniform density] and the { g i }  shown 
as solid lines. Bottom right: the {fi; gi }  on the (0, co) scale, where the {A}  have a negative exponential distribution. Top 

right: the ROC curves [solid lines] corresponding to the three pairs (5; gi} 

g’ distribution that lies to the right of the point s‘ = sp on the (0,l) scale, that is, se = 1 - G’(sp). 
Second, i f f ’  is uniform, the area under the ROC curve is simply the mean of the g’ distribu- 
tion. The basis for this relationship as follows; if X -f’ and Y - g’, then the area under the 
ROC curve equals Prob(Y > X) and so one can write it as lzzi 1;:; f’(x)g’(y)dydx. The 
inner integral is simply 1 - G’(x). Iff’ = 1, the Prob(Y > X) reduces to j::: [l - G’(x)]dx. As is 
well known in survival analy~is,’~ this integral is the mean of a random variable with PDF g’ 
on (0, 1). 
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Figure 4. A pair of distributions which yields an ROC area of 0.8. Bottom right: original pair of negatioe exponential 
densities {A g} on (0, co ) on (0, co ), with g [x]lf[x] = 0.25exp[0.75x]. Bottom left: the same { J  g} on the (- 00, co) 
scale, wherefis Gaussian. Top left: the pair on the (0, 1) scale, wherefhas uniform density. Top right: the ROC curve 

corresponding to { J  g} 

Third, the fact that the area under the ROC curve is a mean of U-statistics distributed 
according to a PDF g has been used in another context by DeLong et al.’ However, if the 
diagnostic test is informative, so that g is skewed, one may prefer a more resistant measure of 
central tendency. Thus, one might calculate from a data set that the median of g’ was 0.8, say, and 
report this by saying that 50 per cent of the test values from the diseased population were above 
the 80th percentile of values in the healthy population. In addition, such a summary should be 
more attractive to users who object to an area index that averages all sensitivities, including those 
corresponding to clinically irrelevant specificities. In practice, without explicitly converting the 
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Figure 5 .  A pair of distributions which yield an ROC area of 0.8. T o p  left (inset): original pair of beta densities on (0, I), 
withf- beta [ l ,  21 and g - beta C3.21. Top left: the same { J  g} pair on the (0, 1) scale, but wherefhas uniform density. 
Bottom left: the same { J  g} pair on the (- a, m) scale, wherefis Gaussian. Bottom right: { J  g} on  the (0, to) scale, 

wheref has a negative exponential distribution. Top right: the ROC curve corresponding to { J  g) 

scale so thatf’ = 1, one could also measure this ‘median’ index of accuracy directly from the ROC 
curve as the specificity at a sensitivity of 0.5. The representation of ROC data using g allows the 
statistical variability of such a summary to be assessed. 

Finally, the complement, 1 - G’, of the cumulative distribution function associated with g’ 
becomes the ROC curve one would obtain by plotting specificity on the horizontal axis, as do 
Wieand et aL9 This last point emphasizes that the g’ which must be paired with anf’ which is 
U(0,l)  can be obtained directly from the ROC curve by differentiation, and that the ROC curve is 
only unique up to the specification of one of the two membersfor g. 
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Pairs of distributions displayed on other scales 

We studied { J  g )  pairs yielding various areas under the ROC curve, but because of lack of space, 
we show here only those yielding areas of 0.6 and 0.8. 

Using the scale (0, 1) with f =  1 and polynomials of the form g = ( k  + l)xk to generate 
proper ROC curves, it was only possible to produce ROC curves with areas up to A = 0-83 
( g  = 5x4). Moreover, the higher the ROC area investigated, the less room there is for choices 
of g .  Figure 1 shows two g’s that yield the most disparate ROC curves with areas of 
0.6, while Figure 2 shows two yielding an area of 0.8. Each figure also shows the representations 
of the { J g }  pairs on the other scales. From these, it is evident that even though we chose 
the g’s without any regardfor ‘Gaussian-ness’, nevertheless, when we transformed to the (- cc , 00) 

scale using the inverse of the Gaussian CDF, the g member of the pair also looks remarkably 
Gaussian. 

We also deliberately mapped f from (0, 1) into (0, co) in such a way that it would have 
a negative exponential distribution (bottom right panel of Figures 1 and 2). The corresponding g’s 
were gamma-like. There is insufficient space to show some of the many other aliases of each { J  g }  
pair in the three different scales, except to say that on the non-Gaussian scales, some of the shapes 
are quite ‘perverse’. 

Figures 3-5 show ROC curves based on pairs of Gaussian, negative exponential and beta 
distributions and illustrate how the distributions appear when they are transformed into other 
scales. Again, we have deliberately mapped each one into the (0, 1) scale and from there via 
y = F - ’ ( x )  into (- 0 0 ,  a), to show the reference distributionfin two familiar shapes. Again, it is 
clear that binormal distributions can have many aliases, and conversely many non-binormal 
pairs can be made close to binormal by a suitable change of scale. 

DISCUSSION 

Investigators and end-users of data are often uncomfortable with suggestions by statisticians to 
use data transformations, and need considerable urging before they will consider another scale. 
Statisticians fail to emphasize that one is only changing the scale and not inherently changing the 
observations themselves, or their relative ordering; unfortunately, even statistics books typically 
speak about changing variables rather than changing scales. 

Our figures depict what pairs of known distributions - Gaussian, negative exponential, beta 
and even ‘no-name’ - look like on other scales. If the new scale is chosen to induce a Gaussian 
distribution for the ‘noise-only’ condition, the distribution for the ‘signal + noise’ condition is 
also close to Gaussian. 

In practice, with the typical sample sizes involved, one cannot reliably estimate from one’s data 
the scale s’ on whichf’ and g’ would be close to Gaussian. The ‘rank-preserving but necessarily 
scale-preserving’ approach used by Metz’ in his LABROC software avoids having to explicitly 
perform a search for the most appropriate scale. In using the binormal model on ‘rating’ 
categories formed by ranks, it is essentially semi-parametric; by not making a commitment to any 
objective numerical scale, it avoids the risk of biased, but possibly more precise, estimates of 
diagnostic accuracy estimates. 

Several recent papers dealing with quantitative test results have made statements to the effect 
that ‘because our data were not Gaussian, we could not use the binormal model’. It is hoped that 
this paper dispels this misunderstanding about the use of the binormal model. It emphasizes that 
Metz’s use of the model does not use a transformation of the actual data scale; rather it fits 
a latent model to categorized data formed from ranks. 
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There is no obvious statistical advantage to using a binormal over its close cousin the bilogistic 
model with these categorical ‘rating’ data formed by the data-dependent discretization of the 
continuous scale. Both models will be equally robust, provided they allow for asymmetric ROC 
curves. Our many re-expressions of the same pair of distributions in Figures 1-5 emphasize again 
that the ROC curve, and all of the indices derived from it, does not arise from one ‘true’ pair of 
distributions on a particular scale. Thus, users should be guided by practicality and availability of 
software and less by the choice of specific distributional forms. 

Perhaps surprisingly, if one does not count the variations induced by scale changes, the choice 
of pairs of distributions that generate proper ROC curves is limited. Empirically, there is 
considerable evidence that binormal models need to take account of the usually greater variation 
seen in the ‘signal + noise’ distribution; accommodating this by the parameter b in the binormal 
model means that the resulting likelihood is no longer monotonic over the entire scale. It 
would be interesting to investigate if one could accommodate this additional variance, and at the 
same time preserve the monotonicity, by choosing a model other than the normal. Alternatively, 
since part of the increased variance in the ‘signal + noise’ distribution probably results from 
a mixture of several disease subtypes, in each of which g/f was monotone, one might model it 
accordingly. 
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