
May 31, 2025

Below you will find our (twice-reviewed but unpublished) work on sample size consid-

erations for case crossover studies. It was prompted by questions my colleague Scott
Weichenthal had when he was planning case-crossover studies in the field of environmental
epidemiology.

But, of course, these considerations also apply to case-crossover studies in other fields. I
was also keen to play up the connections I saw with the Cox model, which shares the same
likelihood function with the model used in conditional (matched set) logistic regression.

We submitted it first as a tutorial (in ‘epidemiologic statistics’) in a broader and more
methodologic journal (IJE, the International Journal of Epidemiology), and then to an
environmental research journal. Both submissions included an extensive appendix that
showed the broader connections, and the insights from inspecting the likelihood function.

Below you can read

• an early draft, which included at the end some additional notes, possible references,
and examples.

• The submitted versions, and the reviews we received.

We still think there are important (and broader) messages/insights in this manuscript.

In section 10 of the supplement to my recent (published) article1 on a very early application
of conditional logistic regression – 4 decades before the dates one sees when one looks
up this topic in Wikipedia – I commented on the form that the variance of the fitted
coe�cients takes. Note how critical it is to have a large within-set variance of the exposure
of interest. Also, if the (again within-set) covariance with any ‘confounding’ variable is
high, one would need a large number of sets to counteract the smaller ‘e↵ective variance’
for the exposure of interest – and the resulting imprecision. Penrose’s mentor, R A Fisher,
remarked on this in their extensive correspondence.

Even though I don’t have any current plans to see this manuscript through to publication,
I would be happy to help a younger and more energetic person bring its messages to a
broader readership. So, if you are interested, please contact me.

Sincerely,
James Hanley

webpage: https://jhanley.biostat.mcgill.ca

email: james.hanley@mcgill.ca

1 https://jhanley.biostat.mcgill.ca/Penrose/
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Abstract 

Background: Reports of ‘case crossover’ studies linking the rate of health events to a 

quantitative environmental ‘exposure’ are becoming much more common, but the statistical 

aspects behind the planning and analysis are not very transparent or intuitive. 

Methods: Using a small hand-worked example, we illustrate the Maximum Likelihood (ML) 

calculations involved in estimating the parameter of the conditional logistic regression model 

that quantifies the strength of the exposure-response function. The quantity that determines the 

precision of the parameter estimate is easily seen from these calculations and provides a direct 

way to anticipate the precision and statistical power that will result from a given sample size. 

The amount of statistical ‘information’ each instance contributes to the ML parameter estimate is 

emphasized. 

Results/Conclusions: As expected, the standard error of the estimated regression coefficient 

estimate is inversely related to the square root of the number of instances (cases) of the event. It 

is also inversely related to a function of the variation in the exposure values in a typical matched 

set. This understanding, and the fact that the statistical power depends on two versions of this 

typical variation (one under the ‘null’ and one under the ‘alternative’) can be used to plan the 

size of a case-crossover study. A study involving of an all-or-none exposure is just a special case. 

 

218 words 
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Introduction 

Articles with abstracts stating that the authors ‘conducted a case-crossover study of xxx health 

events using weather records between the months of xxx and yyy for place z from 19xx to 20yy’ 

are becoming more and more common. Authors typically report that they ‘compared some 

measure of exposure on/before the date of these events with the same measure on (possibly 

matched) control days when the event did not occur.’ They also typically report that they ‘used 

conditional logistic regression to compute odds ratios (OR) and 95% confidence intervals (CI) to 

measure the association between the exposure and event of interest.’ 

Unfortunately, guidance on the statistical aspects behind the planning and analysis is not 

as transparent or intuitive as it might be Thus, we use a small hand-worked example to show the 

logic behind, and the calculations involved in obtaining, the Maximum Likelihood (ML) estimate 

the parameter of the conditional logistic regression model that quantifies the strength of the 

exposure-response function. We also illustrate the use of Poisson regression models. We 

examine the ‘anatomy’ of the formula for the precision of the parameter estimate. The resulting 

insights provide a direct way to anticipate the precision and statistical power that will result from 

a given sample size. Throughout, we emphasize the amount of statistical ‘information’ each 

instance contributed to the ML parameter estimate. 

Even though our focus is on quantitative exposures, the exact same statistical principles 

apply to a case-crossover study involving an all-or-none exposure. Since it is merely a special 

case, the two statistical silos can be unified under the single unified approach presented here, just 

as was done earlier (Hanley and Moodie, 2011). Indeed, if viewed appropriately, the formula 

given under the Rate Ratios section of that article applies to case-cross-over studies as well. 

In our review of recent so-called case-crossover studies, have noticed some confusion in 

terminology, ‘creep’ from the original case-crossover studies, and misunderstandings as what 

parameter of the exposure-response relationship is being estimated by the conditional logistic 

regression. We also see multiplicity issues involving lagged exposures. Thus, we address these in 

the Discussion 
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A small, but real, dataset for illustration 

Figure 1 shows a small, but real, dataset typical of many environmental case-crossover studies. 

The heat map shows the daily maximum temperatures. Since they are from a North American 

setting, they range from very cold (dark blue) in Winter to very hot (dark red) in Summer. The 

dates of the 10 events of interest are indicated by rectangles with solid black borders: they are 

confined to the months from May to September. 

 
Figure 1: A small, but real, dataset bearing on the relationship between the rate of an event of concern and the 
daily temperature. The dates of the 10 events are marked by solid black borders, and the magnitudes of the daily 
temperatures are color-coded from cold (blue) to hot (red). 
 

Before moving on to the data analysis, we comment briefly in passing on terminology, a 

topic we will return to later. Imagine for a moment that this Figure did not yet contain the dates 

of the events, but did contain the temperatures. Then, with the planned matching on the month 

and day of the week, the design can be thought of as a total of 7 x 12 = 84 possible mini-

comparisons or regression models, one for each of the 84 ‘columns’ of 4 or 5 days. As we will 

see in the next sections, even if the plan is to include all 365 data points in a regression model in 

which the rate is taken to be log-linear in temperature within each matched column, then only the 
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44 data points from the 10 columns containing at least one event will contribute to the parameter 

estimate of interest. Nevertheless, this ‘before-seeing-the-event-data’ regression plan/outlook 

still makes it clear that – conceptually at least -- we are comparing event rates across a range of 

temperatures; we are not comparing ‘cases’ with ‘controls’ (or ‘case days’ versus ‘control’ or 

‘reference’ days) with respect to temperature (exposure). Whereas the term ‘case-crossover’ may 

be familiar to epidemiology researchers, it does not communicate to a lay consumer that what are 

really being compared (with some additional time-matching) are event rates at various 

temperatures. 

The exposure-response model 

Without loss of generality, we will limit ourselves to the temperature on the day (T), rather than 

to any lagged version of it, and to the usual multiplicative model for event rates i.e., for the 

expected numbers of events per day 

!(#) = !! 	× 	exp[	β	(T −	#! 	)	]	, 

where !! refers to the event rate at some reference temperature, #!, the shorthand ‘exp’ stands 

for ‘the exponential of’ and, thus, 	exp[	β	(T −	#!)	]	 denotes the ratio of the event rate at 

temperature T to the rate at the reference temperature (to simplify matters, we will take #! to be 

0° Celsius, but will come back to this when addressing the reporting of model fits). Thus, b, the 

parameter of interest, refers to the log of the ratio of the event rates at temperatures that are 1° 

Celsius apart. Despite the fact that this rate ratio model is usually fitted via a logistic regression, 

its exponentiated value should be referred to as a rate ratio rather than an odds ratio. 

The fitting of this model to the illustrative dataset 

The top 4/5 rows of Figure 2 show the temperatures for the day-of-week-that-month ‘column’ for 

each of the 10 events. 
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Figure 2: Top: the temperatures, T, (° Celsius) for the day-of-week-that-month ‘column’ containing each of the 10 
events shown in Figure 1. The temperature on the day of the event is indicated in bold. 
Bottom: the calculations used in the pursuit of the Maximum Likelihood (ML) estimate of b, starting with the null 
value. Each mean is a weighted average of the temperatures !!, !", …	!#/% , with weights exp[)!!] , exp[)!"] , … 
or, equivalently, as shown, with re-scaled weights exp[)!′!] , exp[)!′"] , … where !′!, !′", …	!′#/% are measured 
relative to the minimum T in the column, Thus, the minimum temperature in the column has a weight of 1. Each 
mean.sq.devn is a weighted average of the squared deviations of  !!, !", …	!#/% from mean, using these same 
weights. The detailed calculations are shown for one selected column (5*). The sum/mean at the right is the 
sum/mean over the 10 instances/cases. The ML iterations continue until the sum/mean of the 10 fitted/weighted 
means equals (balances) the sum/mean of the 10 (observed) temperatures on the days the events occurred. 

Later we will use the calculations in the bottom portion of Figure 2 to show how and why 

conditional logistic regression can be used to fit the parameter of interest, b, in the exposure-

response model. But first, to appreciate why a conditional approach is preferred, we begin by 

showing how it can be fitted using a much more familiar event-rate model, namely a Poisson 

regression model in which the time-matching is dealt with in the model, via indicator (‘dummy’) 

variables, one per column. Since each of the rows involves 1 day’s duration, the offset (the log of 
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1 day, or 0) can be omitted. Since the total number of events is just 10, we would expect that the 

coefficients for the indicator variables will be very imprecisely estimated. And indeed, as is 

shown in Figure 3, they are. But more remarkable, and less well known, is that the b coefficient 

for T (temperature) has a standard error that is commensurate with the number of events,  and is 

not distorted (biased) by the overfitting of such a large model to so little data (just 10 events). 

[The model on the right had side of Figure 3 has  84 + 1 = 85 terms,  while the one of the upper 

left has 10 + 1 = 11]. This is a little-known feature that is peculiar to the Poisson model (it is not 

true in the case of a logistic regression that has as many intercepts as there are matched sets --see 

Breslow and Day, Volume I, page xx). The fitted b of 0.261 implies that the event rate is 

exp[0.261] = 1.3 times higher at (x + 1) °C  than it is at x °C. 

 

 

Figure 3: left: The data for each of the 365 days (for lack of space, only 24 are shown), followed by the Poisson 
regression model, with 12 x 7 = 84 indicator variables, one per Month-DayOfWeek. y=1 denotes an event. The row 

    Day Month DayofWeek Column y     T
1     1     1         1    1.1 0  −2.0
2     2     1         2    1.2 0   0.5
3     3     1         3    1.3 0   5.5
4     4     1         4    1.4 0   6.0
5     5     1         5    1.5 0  −1.5
6     6     1         6    1.6 0  −0.5
7     7     1         7    1.7 0   2.5
8     8     1         1    1.1 0   3.5
181  30     6         6    6.6 1  22.5
182   1     7         7    7.7 0  23.0
183   2     7         1    7.1 0  26.5

184   3     7         2    7.2 0  26.5

...  ..     .

185   4     7         3    7.3 0  26.0

...  ..     .

186   5     7         4    7.4 0  21.5
187   6     7         5    7.5 0  21.0
188   7     7         6    7.6 0  24.5
359  25    12         2   12.2 0  −3.0
360  26    12         3   12.3 0  −6.5
361  27    12         4   12.4 0  −8.0

362  28    12         5   12.5 0   1.0
363  29    12         6   12.6 0   6.5
364  30    12         7   12.7 0   4.0

...  ..     .

365  31    12         1   12.1 0 −11.5

...  ..     .

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Call:
glm(formula = y ~ as.factor(Column) + T, family = poisson, data = DF)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
−0.95681  −0.00002  −0.00001  −0.00001   2.14527  

Coefficients:
                        Estimate Std. Error z value Pr(>|z|)  
(Intercept)           −2.336e+01  3.036e+04  −0.001   0.9994  
as.factor(Column)1.2  −4.185e−01  4.306e+04   0.000   1.0000  

as.factor(Column)1.3  −1.306e+00  4.297e+04   0.000   1.0000  

..... 

as.factor(Column)1.4  −1.730e+00  4.571e+04   0.000   1.0000  

..... 

as.factor(Column)1.5  −8.131e−01  4.409e+04   0.000   1.0000  
as.factor(Column)12.5 −1.897e−01  4.536e+04   0.000   1.0000  
as.factor(Column)12.6 −1.303e+00  4.290e+04   0.000   1.0000  
as.factor(Column)12.7 −1.125e+00  4.301e+04   0.000   1.0000  
T                      2.612e−01  1.216e−01   2.147   0.0318 *

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 71.946  on 364  degrees of freedom
Residual deviance: 23.657  on 280  degrees of freedom
AIC: 213.66

Number of Fisher Scoring iterations: 21

    Day Month DayofWeek Column y    T

123   3     5         4    5.4 0 15.0
130  10     5         4    5.4 0 23.0
137  17     5         4    5.4 1 13.5
144  24     5         4    5.4 0 20.0
151  31     5         4    5.4 0 20.5
153   2     6         6    6.6 0 28.0
160   9     6         6    6.6 0 20.0
167  16     6         6    6.6 0 29.0
174  23     6         6    6.6 0 25.5
181  30     6         6    6.6 1 22.5
154   3     6         7    6.7 0 25.0
161  10     6         7    6.7 0 18.5
168  17     6         7    6.7 1 30.0
175  24     6         7    6.7 0 21.5
183   2     7         1    7.1 0 26.5
190   9     7         1    7.1 0 27.5
197  16     7         1    7.1 0 26.5
204  23     7         1    7.1 0 21.5
211  30     7         1    7.1 1 32.0
184   3     7         2    7.2 0 26.5
191  10     7         2    7.2 0 24.0
198  17     7         2    7.2 1 28.5

    Day Month DayofWeek Column y    T

205  24     7         2    7.2 0 26.0
212  31     7         2    7.2 0 22.5
185   4     7         3    7.3 0 26.0
192  11     7         3    7.3 0 24.0
199  18     7         3    7.3 1 30.0
206  25     7         3    7.3 0 28.0
219   7     8         2    8.2 0 20.5
226  14     8         2    8.2 0 23.5
233  21     8         2    8.2 0 23.5
240  28     8         2    8.2 1 29.0
217   5     8         7    8.7 0 29.0
224  12     8         7    8.7 1 26.0
231  19     8         7    8.7 0 20.0
238  26     8         7    8.7 0 29.5
249   6     9         4    9.4 1 24.0
256  13     9         4    9.4 0 19.5
263  20     9         4    9.4 0 15.0
270  27     9         4    9.4 0 20.0
250   7     9         5    9.5 0 20.0
257  14     9         5    9.5 1 26.5
264  21     9         5    9.5 0 16.0
271  28     9         5    9.5 0 22.5

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Call:
glm(formula = y ~ as.factor(Column) + T, family = poisson, data = df)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
−0.9568  −0.6300  −0.4815  −0.2638   2.1453  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)  
(Intercept)          −6.78897    2.73883  −2.479   0.0132 *
as.factor(Column)6.6 −1.68157    1.60947  −1.045   0.2961  
as.factor(Column)6.7 −1.40398    1.65373  −0.849   0.3959  
as.factor(Column)7.1 −2.18375    1.75245  −1.246   0.2127  
as.factor(Column)7.2 −1.62247    1.56922  −1.034   0.3012  
as.factor(Column)7.3 −1.81403    1.66694  −1.088   0.2765  
as.factor(Column)8.2 −1.24574    1.58077  −0.788   0.4307  
as.factor(Column)8.7 −1.77586    1.67795  −1.058   0.2899  
as.factor(Column)9.4 −0.04266    1.41901  −0.030   0.9760  
as.factor(Column)9.5 −0.60229    1.47666  −0.408   0.6834  
T                     0.26120    0.12165   2.147   0.0318 *

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 29.632  on 43  degrees of freedom
Residual deviance: 23.657  on 33  degrees of freedom
AIC: 65.657

Number of Fisher Scoring iterations: 7

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
 
clogit(y ~ strata(Column) + T, data=df)

Call:
coxph(formula = Surv(rep(1, 44L), y) ~ strata(Column) + T, data = df, 
    method = "exact")

  n= 44, number of events= 10 

    coef exp(coef) se(coef)     z Pr(>|z|)  
T 0.2612    1.2985   0.1216 2.147   0.0318 *

  exp(coef) exp(−coef) lower .95 upper .95
T     1.298     0.7701     1.023     1.648
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for the coefficient of T, 2.61 10-1 or 0.2612 shows the fitted b. The standard errors for the coefficients of the 84 
indicator variables are all very large, because the total number of events is just 10.  
Right: The data for each of the 44 days for the 10 Month-DayOfWeek combinations in which an event occurred, 
followed by the fitted Poisson regression model, with 10 indicator variables, one per Month-DayOfWeek. The 
bottom right portion shows the fitted conditional logistic model.  All three regression approaches yield an identical 
coefficient of T, 0.2612, for the fitted b, as well as the identical standard error of 0.1216. 
 

Clearly, it would be preferable if we did not have to rely on this peculiarity of the Poisson 

model, and if we could instead use a smaller model in which the matching in the analysis was 

accomplished by real rather than by rmodel-based matching. As Chapters 13 and 15 of Clayton 

and Hills elegantly show, the matching in the analysis can sometimes be accomplished by 

treating the total number of events within the matched set as a fixed quantity rather than the 

random variable that it is, and thereby eliminating the 84/10 intercepts, which represent nuisance 

parameters. (This is the same approach to nuisance parameters that is used in Fisher’s exact test). 

In the examples addressed in these chapters, how the events distribute themselves within the 

‘exposed’ and ‘unexposed’ person-time can be described by a binomial random carriable, in 

which the number of events serves as the ‘n’ and the probability parameter is a function of the 

amounts of person time and the rate ratio. In our context, where the experimental units are days 

within a column, and exposure each day is measured on a quantitative scale, how the events 

distribute themselves over the possible days can be described by a multinomial random variable, 

in which the number of events serves as the ‘n’ and the multinomial probabilty parameters are a 

function of the amounts of person time and the rate ratios. For example, in column (5*) in Figure 

2, the temperatures on the 4 candidate days are 26, 24, 30 and 28 °C. Thus, given that an event 

occurred on one of these days (i.e., conditional on the event having occurred within the column), 

the multinomial probabilities that it occurred on the first, second third and fourth of these days 

are, respectively, 

{	$%&[()*],			$%&[(-*],			$%&[.!*],			$%&[(/*]	}	
$%&[()*]	1	$%&[(-*]	1	$%&[.!*]	1	$%&[(/*]  . 

In 2000, the Nobel Prize in economics was awarded to Daniel McFadden for his 

refinement of this model for his microeconometric analyses of choice behavior of consumers 

who face discrete ecomonic alternatives. In his Nobel lecture, McFadden tells how in 1965 he 

“called this a conditional logit model, since in the case of binomial choice it reduced to the 

logistic model used in biostatistics” but he used the multinomial logit (MNL) model terminology 
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that is more common in economics today. In 2002, Norman Breslow devoted much of his 

address to the International Biometric Conference to the parallel developments of this model in 

epidemiology and biostatistics. In a very instructive article, Pardoe and Simonton used this 

discrete choice model to predict Academy Award winners.  

McFadden tells us that he “developed a computer program to estimate the MNL model by 

maximum likelihood, a non-trivial task in those days.” The development began in 1965, when “a 

Berkeley graduate student asked me for suggestions on how she might analyze her thesis data on 

freeway routing choices by the California Department of Highways. She completed her thesis 

before the program was working. However, I was eventually able to use the model to analyze her 

data (McFadden, 1968, 1976).’’ 

Today, the fitting is a trivial task: Stata has a standalone clogit version; as readers will 

see in the bottom right portion of Figure 3, the version in R is simply a wrapper for a call to the 

function in the survival package that fits the Cox proportional hazards model. It takes 

advantage of the fact that the likelihood contribution from each riskset is of the same form as in 

conditional logistic regression (in Figure 2, each column of 4/5 days can be regarded as a 

‘riskset’ (or a ‘matched set’ in the parlance of the economists). However, the calculations behind 

the fitting of the conditional logistic regression model are somewhat of a black box. The next 

section provides heuristics intended to make the fitting by Maximum Likelihood more 

transparent -- and the planning of case-crossover studies more intuitive. 

The ML procedure for multinomial/conditional logistic regression, from first principles 

The Method of Least Squares seeks the parameter value that minimizes the sum/average of the 

squared distances between the observed and fitted responses. Thus, since the quantity being 

‘optimized’ uses the scale the responses are measured in, it is easily understood: if, for example, 

we fit a sine curve the pattern of temperatures over the year, the criterion involves the °C scale. 

Very differently, the Method of Maximum Likelihood seeks the parameter value that maximizes 

the sum/average of the logs of the probabilities of obtaining the data patterns that were observed. 

While the ML principle may be a natural one, the scale in which the criterion is measured is not 

so familiar. Nevertheless, as we will now see, the ‘balancing equation’ that must be 

satisfied/solved numerically is both natural and familiar. 
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To see why, we return to the data in column (5*) in Figure 2, where the temperatures on 

the 4 candidate days are 26, 24, 30 and 28 °C and, thus, the multinomial probabilities that the 

event occurred on the first, second third and fourth of these days are, respectively, 

{	234[267],			234[247],			234[307],			234[287]	}	
234[267] 	+ 	234[247] 	+ 	234[307] 	+ 	234[287] 

The event occurred on the day when the temperature was 30 °C, and so the probability that it 

would have happened on that day rather than on one of the other three days is  

234[307]	
234[267] 	+ 	234[247] 	+ 	234[307] 	+ 	234[287] 

Thus, the log-likelihood contribution from this ‘riskset’ i.e., the log of this probability as a 

function of b, is 

307	 − log	(234[267] 	+ 	234[247] 	+ 	234[307] 	+ 	234[287]) 

The full log-likelihood is the sum, over the 10 risksets, of the riskset-specific contributions. To 

maximize it with respect to b, one finds the value at which its derivative equals zero. For the log-

likelihood contribution from riskset (5*), the derivative with respect to b is 

30	 − 234[267] 	× 26	 + 	234[247] 	× 24 + 	234[307] 	× 30 + 	234[287] 	× 	28	234[267] 												+ 	234[247] 												+ 	234[307] 											+ 	234[287]												 	. 

Although it may seem formidable, the quantity after the minus sign is simply a weighted mean of 

the 4 temperatures, with weights given by the 4 exponentiated quantities. These weights are more 

manageable if we divide each of then by 234[247], so that the lowest temperature in the riskset 

receives a weight of 1, and so that the derivative (sometimes called the ‘score’) becomes 

30	 − 234[27] 	× 26	 + 	1	 × 24 + 	234[67] 	× 30 + 	234[47] 	× 	28	234[27] 												+ 	1												 + 	234[67] 											+ 	234[47]												 	.		(1) 

We can think of the quantity after the minus sign as the “fitted” or “expected” value of the 

temperature on the day of the event, and thus we can rewrite the equation in which the derivative 

is set to zero (often called the ‘estimating equation’) as the ‘balancing equation’  
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Sum(Observed T on day of event)  = Sum(Fitted T on day of event), 

where the Sum is over the 10 risksets. 

Today, unlike in 1965, the search for the ML estimate is easily carried out by trial and 

error in just a spreadsheet. As is shown at the right of Figure 2, the sum / mean  of the observed 

temperatures on the 10 ‘event’ days is 262 / 26.2 °C. If there were no linear relation with T, i.e., 

if b = 0, then the (null) fitted sum / mean would be 237.6 / 23.8 °C, and so we need to ‘move up’ 

b until the fitted sum / mean equals the observed value. This balance is achieved at b = 0.261, the 

same parameter estimate we saw earlier.    

In Least Squares regression, the “y” residuals must balance each other. Perhaps not so 

surprisingly, since the conditioning reverses the x ® y focus, in conditional logistic regression it 

is the residuals of the “x” values (the predictors in the regression) that must be balanced. Those 

familiar with fitting proportional hazards models may even recognize each difference between 

the observed and fitted temperature for the day of the event (shown in the last row of Figure 2) as 

a “Schoenfeld” residual.  They will also have noted that there as many sets of residuals as there 

are predictors in the model, and that each set has as many residuals as there are risksets. 

The Precision of the ML estimate of the exposure-response parameter  

Before statistical packages were readily accessible, a first course in simple linear regression 

usually introduced the formula for the standard error of the fitted slope. Very often however, it 

was shown in a form that involved the fewest computational steps rather than for illumination, 

and so opportunities to gain some intuition as to what determines the precision were lost (Hanley 

20xx). This loss is even greater in the case of model parameters fitted by ML, since the standard 

error is often model-based, and calculated only after the solution (often iterative) is reached. 

Thus, in the didactic spirit of this note, we will show how the standard error output by the 

clogit function is easily calculated from a mere spreadsheet. Since our conditional logistic 

regression model involves just 1 parameter, the ‘matrix inversion’ that is a feature of most 

regression fits takes the simple form of 1/I, where I is a scalar (1-dimensional) quantity. The 

reason for the choice of the letter I will become apparent later, and the ‘I’ quantity will play a 

central role in sample size projections. 
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Figure 4:Log-likelihood function for the parameter b of the exposure-response model, based on the data from the 

10 matched sets in figure 2, together with its first and second derivatives computed at selected parameter values. 

The log-likelihood function reaches its maximum at b  = 0.261, where its first derivative equals 0. The quantity 67.6 

measures how curved the curve is at this ML value, and the square root of its reciprocal provides the Standard 

Error of the fitted  b. The SE can then be used to form a Gaussian-based CI, or one can use the Likelihood ratio and 

the Ci-Square distribution to find the range of parameter values compatible with the data (limits are marked by the 

2 arrows at 0.05 and 0.53). 

Before we introduce the formula-based approach that reveals where the precision (SE = 

0.12) of the point estimate (0.261) comes from, we first use ‘brute force’ to numerically compute 

the standard error directly from the generic log-likelihood form. In other words, we rely solely on 

the log-likelihood function (‘LogLik’) plotted in the bottom of Figure 4. The ML estimate is the 

parameter value at which the first derivative (slope) of the log-likelihood function crosses from 

positive (at the left of the maximum) to negative (at the right), namely 0.261. Its variance is the 

reciprocal (inverse) of the (negative of the) second derivative of log-likelihood function 

evaluated at this same parameter value. This makes intuitive sense: the more concentrated (the 
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sharper, or more curved) the curve is at its maximum, the narrower is the range of parameter 

values supported by the data. Moreover, as we go from left to right, the log-likelihood curve goes 

from low to high to low, so its slope (the first derivative) goes from positive to negative, and so 

its curvature (the second derivative) is negative. The more negative its is the tighter the log-

likelihood and the more precise is the point estimate. 

One can check manually/visually that the first derivative is 4.5 at b = 0.2 and-2.5 at b = 

0.3, so the second derivative at b = 0.25 is approximately (-2.5 – 4.5)/0.1 or -70, and that its 

value of -67.6 at the ML value of b = 0.261 makes sense.  R.A. Fisher, who developed the ML 

theory in the 1920s, called the -(-67.6) = 67.6 the ‘Information’ (I) in the data concerning b, and 

showed that its reciprocal (i.e., 1/I = 1/67.6) can be taken as the variance of the b estimate, so 

that the Standard Error, the square root of the. variance, is  

CDE	7F	G = (1/Information)1/2 , 

or in this example, 

CDE	7F	G = (1 / 67.6) 1/2  = 0.1216, 

in perfect agreement with the output from the clogit function. 

Even though most textbooks begin their teaching of Maximum likelihood by defining the 

Likelihood as a product of probabilities, Fisher always began directly with the log-likelihood, so 

that it can be immediately written as a sum of the individual log-likelihood contributions, one 

from each ‘datapoint’. Quite apart from making the sum a more manageable number, the log- 

version immediately emphasizes that each datapoint (or riskset in our example) adds to the 

information about the parameter of concern, that not all datapoints contribute equally, and that 

we can readily quantify in a technical sense exactly how much ‘information’ each one adds. 

As we will now demonstrate, by working with this formal measure of information, and 

just taking the reciprocal of the combined information at the very end, the factors that determine 

the variance and the SE become very clear. So, instead of relying on the second derivative of the 

entire log-likelihood function as we did above, we will now show the specific formula that 
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measures the ‘information’ contributed by each riskset, using as an example that contributed by 

riskset 5*. From equation (1) above giving the formula for the first derivative for the log-

likelihood contribution, one can use the rules for derivatives to verify that the second derivative 

involves the same weights used in the weighed mean of the 4 temperatures, but that it is the 

negative of the weighed means of the squared of the deviations of these 4 temperatures from that 

riskset-specific weighed mean.  The calculation of this weighted mean square is illustrated in 

Figure 2, where it is calculated under 3 scenarios: the null and ML values of b, and an 

intermediate value where b  =  0.1. The 4 temperatures are 26, 24, 30 and 28, or (measured from 

their minimum, +2, 0, +6 and +4. Thus, at bML=  0.261, so that exp(bML) = 1.3, the  weights are 

1.32 = 1.69; 1; 1.36 = 4.79;  and 1.34 = 2.84, so the weighted mean is  mean is 28.2. The weighted 

mean of the squared deviations of the 4 temperatures from this 28.2 is 4.0. As such, it is the 

riskset with the second-smallest spread of temperatures, and it contributes the second smallest 

amount of information to the combined information of I = 67.6.  The smallest contribution of the 

10 risksets is the 3.6 from riskset (4) and the largest is the 10.9 from riskset (2). This ranking is 

the same as when the information is calculated at bNULL =  0. 

Readers may wonder why we do not refer to the weighed mean square deviation as a 

‘variance’. Technically it is, but since most associate a variance with a divisor that is one less 

than the numbers of objects, we prefer to use the more expressive term means square deviation. 

In his 1972 article, Cox refers to it as a “variance over the finite population of T’s using an 

‘exponentially weighed’ form of sampling.” This fits with the principle that in a regression 

model, that x’s are not treated as realizations of random variable whose variance is to be 

estimated (Hanley refs).   

Fisher made a distinction between the expected information concerning b calculated 

using pre-study projections and the observed information calculated post study using the 

observed data. The latter is used to calculate the Standard Error for the  b estimate, namely 

CDE	7F	G = (1 / I ) 1/2 = (1 / [6.3 + 10.9 + … 4.0 + … + 6.8 + 8.6] ) 1/2   = (1 / 67.6) 1/2  = 0.1216. 
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The number of events (n.e.) to achieve a desired precision/power  

For the precision, it is a matter of anticipating, pre-study, how large the information, I, 

concerning b will (or is expected to) be. Since I is a product of the number of events and the 

typical amount of information per riskset, the SE formula above can be inverted to give 

number of events = 2
	(	45&'()*'&)+

	×  2
789:;<	9=	>;=9?8@<A9;	A;	@	BC&AD@E	FAGHG$<	, 

i.e.,  

 2
	(	45&'()*'&)+

	×  2
I$AJK<$L	M$@;	4N.P$QA@<A9;	9=	%	Q@E:$G	A;	@	BC&AD@E	FAGHG$<. 

To plan for a given level of statistical power, the SE has to be envisioned under two scenarios, 

i.e., at the null, bnull  (typically 0), and at the alternative, b = balt, so that they satisfy 

Za/2 ´ SE null   + Zb ´ SE alt   = ∆, 

where D = balt -  b null   and where  Za/2 is typically 1.96 (for a 2-sided test with a = 0.05), and Zb 

is typically 0.84 (for 80% power). 

Thus, if, say, we wished to have 80% power against an alternative of b = 0.1, we might use the 

data in Figure 2 as pilot data, and calculate that the typical information per riskset is 11.1 under 

the null and 10.1 under the alternative. Thus, the number of events, n, needs to satisfy the 

equation 

1.96
√11.1	 × 	K

+	 0.84
√10.1	 × 	K

= 0.1, 

or 

KLMN2O	PQ	2R2KST = U	E	1.96 ÷ √11.1 + 0.84 ÷ √10.1			G 	÷ 0.1	W(. 

One notices from figure 2 that the amount of information per riskset diminishes rapidly the 

further one departs from the null. So, a conservative n is obtained by using the non-null 

information for both SE’s, so that, with these same error rates, the equation simplifies to 
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KLMN2O	PQ	2R2KST = U	E	2.8 ÷ XYPKYLZZ	[KQPOM\S]PK	]K	#^4]_\Z	`]TaT2S		G 	÷ Δ	W(. 

In our example, this comes out to 73 events if we use the more complex formula, or 78 if we use 

the conservative one. 

Discussion (to be done) 
 

What led us to write this article. 

 

More general that the work of Künzli which is based only of triplets, not that intuitive, and 

formula may even be wrong. 

 

Binary X is just a special case  

 

Eg take say T >25 versus < 25.. redo analyses. Same SE formula. 

 

Remarks on case crossover.. and on some of the studies cited below. 

 

Not really case-crossover. Nothing personal. 

 

Case crossover is for triggers, assuming that person is susceptible to start with. 

 

Several of the studies have nothing personal in them. 

 

If event was rain and motor vehicle collisions, or snow or ice, then its not a trigger.  

 

Reveal what the events in Figure 1 are. Can you guess? 

 

Our approach works for studies such as Redelmeier’s one on weather 

 

These studies yield rate ratios, NOT odds ratio, and not risk ratios.  
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Slippery slopes: multiplicity. P-value hacking using lags. 

 

etc 
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confidence interval (CI): 4.3–15.0%] and 8.8% (95% CI: 1.5–16.6%) increase in intentional 

homicide over lag 0–7 days in Chicago and New York, respectively. The association was not 

statistically significant in the other seven cities and seemed to be stronger for cases that 
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female workers, workers aged 25-35 and >55 years, "light" and "limited" physical demand 
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Donald A Redelmeier, Fizza Manzoor  

mportance Drunk driving is a major cause of death in North America, yet physicians rarely counsel patients on the 
risks of drinking and driving. 
Objective To test whether the risks of a life-threatening alcohol-related traffic crash were further accentuated by 
adverse weather.  

Design Double matched case–control analysis of hospitalised patients. 
setting Canada’s largest trauma centre between 1 January 1995 and 1 January 2015.  

Participants Patients hospitalised due to a life- threatening alcohol-related traffic crash. 
Exposure Relative risk of a crash associated with adverse weather estimated by evaluating the weather at the place 
and time of the crash (cases) compared with the weather at the same place and time a week earlier and a week later 
(controls).  

results A total of 2088 patients were included, of 
whom the majority were drivers injured at night. Adverse weather prevailed among 312 alcohol-related crashes and 
was significantly more frequent compared with control circumstances. The relative risk of a life-threatening alcohol-
related traffic crash was 19% higher during adverse weather compared with normal weather (95% 
CI: 5 to 35, p=0.006). The absolute increase in risk amounted to 43 additional crashes, extended to diverse groups of 
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patients, applied during night-time and daytime, contributed to about 793 additional patient-days in hospital and was 
distinct from the risks for drivers who were negative for alcohol. 
Conclusions Adverse weather was associated with an increased risk of a life-threatening alcohol-related traffic 
crash. An awareness of this risk might inform warnings to patients about traffic safety and counselling alternatives to 
drinking and driving.  

Life-threatening	motor	vehicle	crashes	in	bright	
sunlight	 
Donald	A.	Redelmeier,	MD,	FRCPC,	MS(HSR),	FACPa,b,c,d,e,∗,	Sheharyar	Raza,	HBSca,b	 

Abstract	 

Bright	sunlight	may	create	visual	illusions	that	lead	to	driver	error,	including	fallible	distance	judgment	from	aerial	
perspective.	We	tested	whether	the	risk	of	a	life-threatening	motor	vehicle	crash	was	increased	when	driving	in	bright	
sunlight.	 

This	longitudinal,	case-only,	paired-comparison	analysis	evaluated	patients	hospitalized	because	of	a	motor	vehicle	crash	
between	January	1,	1995	and	December	31,	2014.	The	relative	risk	of	a	crash	associated	with	bright	sunlight	was	
estimated	by	evaluating	the	prevailing	weather	at	the	time	and	place	of	the	crash	compared	with	the	weather	at	the	same	
hour	and	location	on	control	days	a	week	earlier	and	a	week	later.	 

The	majority	of	patients	(n	=	6962)	were	injured	during	daylight	hours	and	bright	sunlight	was	the	most	common	
weather	condition	at	the	time	and	place	of	the	crash.	The	risk	of	a	life-threatening	crash	was	16%	higher	during	bright	
sunlight	than	normal	weather	(95%	confidence	interval:	9–24,	P	<	0.001).	The	increased	risk	was	accentuated	in	the	early	
afternoon,	disappeared	at	night,	extended	to	patients	with	different	characteristics,	involved	crashes	with	diverse	
features,	not	apparent	with	cloudy	weather,	and	contributed	to	about	5000	additional	patient-days	in	hospital.	The	
increased	risk	extended	to	patients	with	high	crash	severity	as	indicated	by	ambulance	involvement,	surgical	procedures,	
length	of	hospital	stay,	intensive	care	unit	admission,	and	patient	mortality.	The	increased	risk	was	not	easily	attributed	
to	differences	in	alcohol	consumption,	driving	distances,	or	anomalies	of	adverse	weather.	 

Bright	sunlight	is	associated	with	an	increased	risk	of	a	life-threatening	motor	vehicle	crash.	An	awareness	of	this	risk	
might	inform	driver	education,	trauma	staffing,	and	safety	warnings	to	prevent	a	life-threatening	motor	vehicle	crash.	 

Level	of	evidence:	Epidemiologic	Study,	level	III.	
Abbreviations:	None. 
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Abstract

Time-stratified case-crossover studies are often used to quantify the relationship 
between the rates of acute health events and levels of environmental exposures such 
as heat or air pollution. Especially when exposures are to be measured on a continuous 
scale, few sample-size planning tools are available to anticipate the statistical precision 
of the resulting effect estimate, or to appreciate the study design aspects that influence 
statistical power. We provide formulae that can be used to plan the sizes of time-
stratified case-crossover studies with exposures measured on either a categorical or 
continuous scale. We explain where the formulae come from using a small hand-worked 
example. We illustrate the Maximum Likelihood (ML) calculations involved in estimating 
parameters from the relevant conditional logistic regression models. The expected 
amount of statistical ‘information’ that each matched set contributes to the ML 
parameter estimate is emphasized. The precision of the estimated regression coefficient 
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in time-stratified case-crossover studies depends on both the number of cases studied 
and the variation in the exposure values within a typical matched set (as measured by 
the Mean Squared Deviation). Importantly, the within-matched-set variation in 
continuous exposures will often be much less than the variance of exposures observed 
over the duration of the study period (e.g., daily variations in outdoor temperatures 
during 2022 compared with variation of daily temperatures for all Fridays in July 2022). 
Investigators conducting such studies should pay close attention to the expected within-
set variation in exposures to ensure that an adequate number of cases is identified. The 
same considerations apply to case-crossover studies of non-environmental exposures.

Keywords:

Parameter estimation; Conditional Logistic Regression; Exposure Variation; risksets; 
matched sets

Word count: 2008

Key Messages

 Simple formulae can be used to plan the sizes of time-stratified case-crossover 
studies with exposures measured on either a categorical or continuous scale.

 The precision of the estimated regression coefficient in time-stratified case-
crossover studies depends on both the number of cases studied and the 
variation in the exposure values within a typical matched set (as measured by the 
Mean Squared Deviation).

 Investigators should pay close attention to the expected within-set variation in 
exposures to ensure that an adequate number of cases is identified.
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 The same statistical considerations apply to case-crossover studies of non-
environmental exposures.

 The basis for the formulae can be understood by working through a small hand-
worked example.
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Introduction

Time-stratified case-crossover studies are commonly used to estimate the acute health impacts of 

environmental exposures such as heat or air pollution.1 This design begins by identifying cases 

(e.g., people admitted to hospital for a myocardial infarction). For each case, exposure data are 

obtained for the day of the event (or a time-period immediately prior to it), and for other days 

with similar characteristics (i.e., the same day of the week, month, and year). For example, if a 

person experienced the event on a Friday in May 2021, the exposure data pertaining to this case 

might be assembled for all Fridays in May 2021. We will refer to this set of days (which includes 

the day the event occurred) as a matched-set. The matched-set is the conceptual counterpart of 

the risk-set in a survival analysis, or in a standard incidence-density-based matched case-control 

study.  Typically, conditional logistic regression models are used to fit the event rate as a 

function of the exposure levels.
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Despite the common use of the case-crossover design in environmental epidemiology, 

guidance on factors that determine sample size and statistical power in these studies is not 

readily available. To address this gap, we provide formulae that can be used to calculate these 

quantities and illustrate the theory behind these equations using a simple hand-worked example. 

We emphasize that the amount of statistical ‘information’ each case contributes to the parameter 

estimate can be quantified by the typical Mean Square Deviation (MSD) within a typical 

matched set. If this MSD is expected to be small, a larger number of cases must be included. 

Although our focus is on continuous exposure measures typical of environmental epidemiology, 

the same statistical principles apply to binary or categorical exposures, and to non-environmental 

exposures. Further technical details are provided in the online supplement.

Preliminaries

The parameter of interest

For concreteness, we begin with an example where some aspect (e.g., mean, maximum) of the 

daily temperature is the exposure of interest. We simply refer to this as ‘T’. Suppose the model 

we will use to relate the event rate (i.e., the expected number of events per day) to T, is
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                                                    (1)𝜆(𝑇)= 𝜆0 ×  exp[ β (𝑇 ―  𝑇0  ) ] ,

where   refers to the event rate at some reference temperature,  and the shorthand ‘exp’ 𝜆0 𝑇0

stands for ‘the exponentiated value of.’ Thus, denotes the ratio of the event  exp[ β (𝑇 ―  𝑇0 ) ] 

rate at temperature T to the rate at the reference temperature; if T is measured in degrees Celsius, 

then , the parameter to be fitted to (estimated from) the data, refers to the log of the ratio of the 

event rates at temperatures that are 1˚ Celsius apart.

Importantly, we will divide our presentation into two scenarios, which we arbitrarily 

divide into ‘weaker’ and ‘stronger’ exposure-response relationships. By ‘weaker’ we mean a 

coefficient  such that, over the T range in a typical matched set, the rate at the upper end is less 

than 1.1 times the reference rate (of 1) at the lower end. As we will see below, the sample size 

calculations in the ‘weak’ scenario are considerably simpler.

The spread of the exposure data in a typical matched set

Suppose that for a typical matched set of 4 days in a case-crossover study, the exposures (values 

of T) for the 4 days in the set are: 21˚C, 23˚C, 25˚C and 27˚C. Of course, temperatures will not 

usually be so rounded or so regular: these 4 values were selected to make for convenient 
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calculations. The mean of these values is 24 and the mean squared deviation (MSD) from 24 is 5 

([(24-21)2 + (24-23) 2 + (24-25) 2 + (24-27) 2] / 4 = (9+1+1+9)/4 = 20/4 = 5). Note that the MSD 

of 5 is the same as if we had recoded the 4 Ts as 0, 2 4 and 6˚C above the minimum in the set. It 

is important to note that this MSD is smaller than the sample variance of the 4 values. The sum 

of the 4 squared deviations is divided by 4, not 3, since we are not estimating a population 

variance, but rather measuring how spread out the 4 Ts are.

With these preliminaries, we first address the number of cases (and thus the number of 

matched sets) to ensure that the regression coefficient  will be estimated with a specified level 

of precision. Since the ‘weaker-relationship’ scenario is more common, we begin with it; as it 

happens, the calculations in this context are also simpler.

Weaker-relationship scenario

Number of cases to ensure a desired precision

Suppose that we set the precision with which the regression coefficient  will be estimated by 

specifying that its 95% margin of error (ME) will not exceed some specified amount. This 
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implies that its Standard Error (SE) will not exceed 1/2 (technically 1/1.96) of this ME. The 

number (n) of events required to achieve this SE is given by the formula

  𝑛=  
1

 ( 𝑆𝐸𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2 ×
1

𝑀𝑒𝑎𝑛 𝑆𝑞. 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑒𝑡 .

It makes sense that the MSD is in the denominator of the formula, just as it is in the expression 

for the variance of a slope in a simple regression, where the narrower/wider the spread of the x’s 

the more/less stable will be the fitted slope.2 As an example, suppose the T’s in a typical matched 

are expected to have a MSD of 5. Suppose that, relative to the reference ,  the anticipated rate 𝑇0

ratio at   + 1 is 1.05, so that   = ln(1.05) = 0.049.  Suppose we wish the SE for the fitted  to 𝑇0

be no larger than 0.02 (or that the margin of error not exceed 0.04). Then, to achieve this, we 

would need to study 

  .𝑛=  
1

(0.02)2 ×
1
5 = 500 events

If we we wish the SE to be no larger than 0.01 (or the margin of error to not exceed 0.02), we 

would need to study n = (1/0.01)2 / 5 = 2,000 events, i.e., it takes 4 time as many cases to cut the 

margin of error in 2.
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Number of cases to ensure a specified power

The sample size to guarantee a pre-specified power (of say 80%) is larger than when (in the 

absence of null hypothesis testing) precision is the only concern. The larger requirement stems 

from the added insistence on an 80% chance that (under the alternative) the point estimate 

exceeds the criterion for a ‘statistically significant’ result. Typically Z/2 = 1.96 for a 2-sided test 

with  = 0.05, and Z = 0.84 for 80% power. Thus, if  is the difference between the alternative 

and null values of , the required number of events n is

𝑛=
(1.96 + 0.84)2

Δ2  ×  
1

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠 𝑖𝑛 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑒𝑡

In our example, if the alternative (to the null  = 0) is  = 0.049, and the anticipated Mean 

Squared Deviation of the T’s in a typical matched set is 5, then we require

𝑛=
2.82

0.0492 ×
1
5 = 653 events. 

The ‘anatomy’ of this formula is similar to that of equation (5) in a not-well known but quite 

instructive 1985 article.3
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Stronger-relationship scenario

Number of cases to ensure a desired precision

For a desired degree of precision, the formula has the same form as the earlier one, except that 

each MSW is now a weighted MSW, and thus narrower that the un-weighed one. (Why it is 

smaller is explained in the Supplement). However, since the  is larger than in our initial 

example, the required number of events may be smaller. To make these aspects concrete, 

suppose that, relative to the reference ,  the anticipated rate ratio at   + 1 is 1.2, so that   = 𝑇0 𝑇0

ln(1.2) = 0.18.  Suppose we wish the SE for the fitted  to be no larger than 0.05 (or that the 

margin of error not exceed 0.10). To get a sense of a typical weighted MSD, we might treat the 

data in Figure 1A as if they came from a pilot study. Consider first the relatively narrow spread 

of Ts in matched set 5, namely 24, 26, 28 and 30 (or 0, +2, +4 and +6 above the minimum in the 

matched set). With a Rate Ratio of 1.2 per degree C, the weights are 1.20 =1, 1.22=1.44, 1.24= 

2.07 and 1.26= 2.99, so that the weighted MSW is 4.5 (around a weighted mean of 27.9 C).  At 

the other (more favourable) extreme, consider the more spread out T’s of 18.5, 21.5, 25 and 30 in 

matched set  2 (or 0, +3, +6.5 and +11.5 above the minimum in the set): the weighted MSD in 

this set is 14.9. To be conservative, we might take the typical weighted MSD to be on the 
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‘smaller’ side, say 4.5. Under this almost-worst case scenario, to achieve the SE of 0.05, we 

would need to study    = 89 events.
1

0.052 ×
1

4.5

Number of cases to ensure a specified power 

To plan for a given level of statistical power, the SE of  has to be envisioned under two 𝛽

scenarios, i.e., at the null, null  (typically 0), and at the alternative,  = alt, so that they satisfy

Z/2  SE null   + Z  SE alt   = ∆,

where  = alt -  null .

Thus, if, say, we wished to have 80% power against an alternative of  = 0.18, we might use the 

data in Figure 1A as pilot data, and calculate (conservatively) that the typical weighted MSD per 

riskset will be 5 under the null and 4.5 under the alternative. Thus, the number of events, n, 

needs to satisfy the equation

1.96
MSW𝑛𝑢𝑙𝑙 ×  𝑛+  

0.84
MSW𝑎𝑙𝑡 ×  𝑛=  ∆.

Thus, with our anticipated MSWnull = 5, and MSWalt = 4.5,  the required number of events would 

be
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𝑛= ( [ 1.96 ÷ 5.0 + 0.84 ÷ 4.5  ] ÷ 0.18 )2 = 50 𝑒𝑣𝑒𝑛𝑡𝑠. 

One notices from Figure 1B that the amount of information per matched set diminishes rapidly 

the further  departs from the null. So, a conservative n is obtained by using the non-null 

information for both SE’s. With these same error rates, and noting that 1.96+0.84 = 2.8, the 

equation simplifies to

number of events = ( [ 2.8 ÷ NonNull MSD in Typical Riskset  ] ÷ Δ )2.

If we want an easier to remember (and again slightly conservative) formula, we can round 2.82 

up to 8, to obtain

number of events = (8 ÷ NonNull MSD in Typical Riskset)  × (1/Δ )2 .

In our example, with (1/0.18)2 rounded up to 31, this comes out to (8/4.5)  =   55 events.×  31

Discussion

Intuitively, greater variation in the exposure makes it easier to detect/measure an exposure-

response relationship. Since time-stratified case-crossover studies make comparisons within each 

time-matched set, the precision/power depends on the within-matched-set variation, and not on 
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the overall variation in the exposure.4 This ‘local’ variation can be much smaller: for example, in 

Figure 1A, while the MSD of the 44 temperatures around the overall mean of 23.8 is 19.4 C2, the 

typical within-matched-set MSD is only11.1 C2. Thus, investigators need to pay attention to the 

expected within-set variation in exposures to ensure that an adequate number of cases is 

identified. 

Unless the exposure-response relationship is quite strong, ‘local’ MSDs calculated at the 

null will suffice for planning purposes, since a sample size exercise is merely a rough projection 

of the likely precision/power. As the authors of a classic textbook5 cautioned “There is usually 

little point in introducing fine detail into what are essentially rather crude calculations.”

Investigators should not base them on implausibly large values of , or think that any one 

study will settle the matter. Instead, they should consider how much information their study will 

contribute to a future meta-analysis. A former colleague of ours likened the question to how 

much to give when the collection plate is passed around in a house of worship: it is the total 

collected that matters in the end; in most such places, there is no ‘requirement’ for the size of an 

individual contribution.6 
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Lastly, as we explain in the Online Supplement, rather than present separate formulae for 

exposures measured on continuous and all-or-none exposures, we urge investigators to use the 

common principles involved. And, of course, the same considerations apply to case-crossover 

studies of non-environmental exposures.
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APPENDIX / ONLINE SUPPLEMENT

A   WHERE DO THE FORMULAE COME FROM?

Sample size calculations are pre-study calculations that depend on the data-analysis method that 

will ultimately be used (i.e., post data-collection) Thus, to understand them, it is best to go 

through an actual data-analysis exercise, and to anticipate the results of the model-fitting. To this 

end we begin with a small dataset and to see close-up what aspects of the data determine the 

standard errors that emerge during the parameter-fitting. To keep the dataset small but real, we 

studied tornadoes, where the relationship between T and their rate is strong enough to ‘see’ in a 

study of just 10 cases. [To have the study design mimic a study of human events, we retain the 

matching on day-of-the-week and month]

Part A of Figure 1 shows the T’s for each of 10 matched sets generated by the 10 tornadoes 

that occurred in the southern portion of a Canadian province during one selected year. Without 

loss of generality, we consider the temperature (T) on a specified day, rather than a lagged 

version of T, as the determinant of the expected event rate for that day. We limit ourselves to the 

same multiplicative model for event rates shown in equation (1) above. 
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The SE of the fitted by conditional logistic regression to the dataset in Figure 1𝛃 

The average of the 10 T’s on the 10 ‘event’ days was 26.2˚C, whereas, as is shown in the first 

row of part B, the average of the 10 column-specific averages was only 23.8˚C. This indicates 

that the sign of the fitted gradient of the event rates over T will be positive.

A Thu
May

(1)

23.0

20.0

20.5

15.0

13.5

Sun
Jun

(2)

30.0

21.5

25.0

18.5

Sat
Jun

(3)

22.5

28.0

20.0

29.0

25.5

Tue
Jul

(4)

26.0

22.5

26.5

28.5

24.0

Wed
Jul

(5*)

30.0

24.0

26.0

28.0

Mon
Jul

(6)

26.5

26.5

21.5

32.0

27.5

Sun
Aug

(7)

20.0

29.5

26.0

29.0

Tue
Aug

(8)

20.5

23.5

23.5

29.0

Thu
Sep

(9)

19.5

24.0

20.0

15.0

Fri
Sep

(10)

16.0

22.5

20.0

26.5

Sum Mean

262.0 26.2

 *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 

A

B  = 0
RateRatio = exp() = 1

18.4w.mean 23.8 25.0 25.5 27.0* 26.8 26.1 24.1 19.6 21.2 237.6 23.8

12.7w.mean.sq.devn. 18.3 11.3 4.3 5.0* 11.2 14.3 9.4 10.2 14.6 111.3 11.1
*  mean = (1 x 26 + 1 x 24 + 1 x 30 + 1 x 28)/(1 + 1 + 1 + 1) = 27.0
mean.sq.devn = (1 x 1 + 1 x 9 + 1 x 9 + 1 x 1)/(1 + 1 + 1 + 1) = 5.0

 = 0.1
RateRatio = exp() = 1.11

19.6w.mean 25.6 26.1 25.9 27.5* 27.9 27.3 25.1 20.6 22.7 248.3 24.8

10.8w.mean.sq.devn. 18.2 9.6 4.2 4.8* 10.7 9.7 10.5 9.3 13.4 101.1 10.1
*  mean = (1.22 x 26 + 1 x 24 + 1.82 x 30 + 1.49 x 28)/(1.22 + 1 + 1.82 + 1.49) = 27.5

mean.sq.devn = (1.22 x 2.2 + 1 x 12.2 + 1.82 x 6.3 + 1.49 x 0.3)/(1.22 + 1 + 1.82 + 1.49) = 4.8
 = 0.261

RateRatio = exp() = 1.3

21.0w.mean 28.0 27.3 26.6 28.2* 29.5 28.4 26.8 21.9 24.5 262.0 26.2

6.3w.mean.sq.devn. 10.9 5.7 3.6 4.0* 8.6 4.1 9.0 6.8 8.6 67.6  6.8
*  mean = (1.69 x 26 + 1 x 24 + 4.79 x 30 + 2.84 x 28)/(1.69 + 1 + 4.79 + 2.84) = 28.2

mean.sq.devn = (1.69 x 4.9 + 1 x 17.8 + 4.79 x 3.2 + 2.84 x 0)/(1.69 + 1 + 4.79 + 2.84) = 4.0

−7.5 2.0 −4.8 1.9 1.8 2.5 −2.4 2.2 2.1 2.0residual 0 0

Figure 1: A: the temperatures,(T, in ˚ Celsius) for the day-of-week-that-month ‘strata’ or ‘matched sets’ containing 

the 10 events that occurred in a selected year. The temperature on the day of the event is indicated in bold. The 
asterisk in column 5 indicates that the ML calculations are presented in full for this selected column.

B: the calculations used in the pursuit of the Maximum Likelihood (ML) estimate of , starting with the null value. 

Each mean is a weighted average of the temperatures  within a stratum, with weights 𝑇1, 𝑇2, … 𝑇4/5 exp [𝛽𝑇1],

 or, equivalently, as shown, with re-scaled weights  where  are exp [𝛽𝑇2], … exp [𝛽𝑇′1],exp [𝛽𝑇′2], … 𝑇′1, 𝑇′2, … 𝑇′4/5

measured relative to the minimum T in the stratum, Thus, the minimum temperature in the stratum has a weight of 1. 
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Each mean.sq.devn is a weighted average of the squared deviations of   from mean, using these 𝑇1, 𝑇2, … 𝑇4/5

same weights. (For the calculations involving = 0, all values in the matched set receive the same weight). The 
detailed calculations are shown for the selected column (5*). The sum/mean at the right is the sum/mean over the 10 
instances/cases. The ML iterations continue until the sum/mean of the 10 fitted/weighted means equals (balances) 
the sum/mean of the 10 (observed) temperatures on the days the events occurred.

As we show in section B, the Maximum Likelihood value of  (0.261) is found by 

starting at  = 0 and proceeding, by a directed search, until one reaches a  value for which the 

sum of the T’s on the 10 days when the event occurred (the ‘observed’ Ts) equals the sum of the 

‘fitted’ T’s on these 10 days. More important is the formula for its standard error,  = 𝑆𝐸[ 𝛽 ]

0.1216. As we explain in the supplement, the SE is found by summing the MSD’s in the 10 

matched sets to arrive at a total of 67.6, and taking the square root of the reciprocal of this, i.e., 

(1 / 67.6) 1/2  = 0.1216. Note, however, that the 10 matched-set-specific MSD’s are not the 12.7, 

18.3, … 14.6 in the first set of calculations in Figure 1B. Since  = 0, these ‘initial’ MSD’s are 

calculated by weighing the T’s within the set equally; they sum to 111.3. The MSDs that sum to 

67.6 were calculated as weighted MSD’s, where the weights for the T’s in each matched set are 

the rate ratios implied by the value of  and the T’s in the set. The calculation of the weighted 

MSD is illustrated for matched set 5. In it, when  = 0.261, the weights for the 4 Ts of 24, 26, 28 

and 30 (or Ts of 0, +2, +4 and +6 above the minimum in the set) are exp(0  0.261) = 1, exp(2  

0.261) = 1.69, exp(4  0.261) = 2.84 and  exp(6  0.261) = 4.79 respectively.  The MSD for 
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matched set 5 was 4.0; the MSDs for the 9 other matched sets ranged from 3.6 to 10.9, and the 

typical MSD was 6.8.

It can be seen from Figure 1B that the further  is from 0, the smaller is the typical 

weighted MSD, and thus the larger is the SE of the fitted : Whereas the SE is (1 / 67.6)1/2  = 

0.12 at the ML value of  = 0.261, it is (1 / 111.3)1/2  = 0.09 at the null value of .  Thus, when  

is further from zero, the required sample sizes will be larger than those illustrated in the earlier 

sections. 

B     MAXIMUM LIKELIHOOD ESTIMATION DEMYSTIFIED

Multinomial probabilities: the possible days an event could have occurred

As Chapters 13 and 15 of Clayton and Hills1 show, and as Armstrong2 re-iterates, the rate ratio in 

a person-time analysis of a binary exposure can sometimes be estimated by treating the total 

number of events within the stratum as a fixed quantity rather than the random variable that it is. 

In the examples addressed in these chapters, how the events distribute themselves within the 

‘exposed’ and ‘unexposed’ person-time can be described by a binomial random variable, in 

which the number of events serves as the ‘n’ and the probability parameter is a function of the 
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amounts of person time and the rate ratio. Parameter estimation is usually via Maximum 

Likelihood (ML).  In our context, where the possible event days are days within a matched set, 

how the events distribute themselves over the possible days can be described by a multinomial 

random variable, in which the number of events (typically 1 per matched set) serves as the ‘n’ 

and the multinomial probabilty parameters are a function of the temperatures and the rate ratios. 

For example, in column (5*) in Figure 1 in the main text, the temperatures on the 4 candidate 

days are 26, 24, 30 and 28 ˚C. Thus, given that an event occurred on one of these days (i.e., 

conditional on the event having occurred within the stratum), the multinomial probabilities that it 

occurred on the first, second, third or fourth of these days are, respectively,

 .{ 𝑒𝑥𝑝[26𝛽],   𝑒𝑥𝑝[24𝛽],   𝑒𝑥𝑝[30𝛽],   𝑒𝑥𝑝[28𝛽] } 
𝑒𝑥𝑝[26𝛽] +  𝑒𝑥𝑝[24𝛽] +  𝑒𝑥𝑝[30𝛽] +  𝑒𝑥𝑝[28𝛽]

These probabilities have the same structure as the probabilities that each of the nominees will 

win the Oscar4-6 or the economic choices made by a consumer.7-8 

The ML procedure for multinomial/conditional logistic regression, from first principles

The Method of Least Squares seeks the parameter value that minimizes the sum/average of the 

squared distances between the observed and fitted responses (the ‘y’s). Thus, since the quantity 
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being ‘optimized’ uses the scale the responses are measured in, it is easily understood: if, for 

example, we fit a sine curve to the pattern of temperatures over the year, the criterion involves 

discrepancies in the ˚C scale. Very differently, the Method of Maximum Likelihood seeks the 

parameter value that maximizes the sum/average of the logs of the probabilities of obtaining the 

data patterns that were observed. While the ML principle may be a natural one, the scale in 

which the criterion is measured is not so familiar. Nevertheless, as we will now see, the 

‘balancing equation’ that must be satisfied/solved numerically is quite natural, even if not always 

emphasized.

To see why, we return to the data in column/stratum (5) in Figure 1 in the main text, 

where the temperatures on the 4 candidate days are 26, 24, 30 and 28 ˚C and, thus, the 

multinomial probabilities that the event occurred on the first, second, third or fourth of these 

days are, respectively,

{ 𝑒𝑥𝑝[26𝛽],   𝑒𝑥𝑝[24𝛽],   𝑒𝑥𝑝[30𝛽],   𝑒𝑥𝑝[28𝛽] } 
𝑒𝑥𝑝[26𝛽] +  𝑒𝑥𝑝[24𝛽] +  𝑒𝑥𝑝[30𝛽] +  𝑒𝑥𝑝[28𝛽]

The event occurred on the day when the temperature was 30 ˚C, and so the probability that it 

would have happened on that day (rather than on one of the other three days) is 
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𝑒𝑥𝑝[30𝛽] 
𝑒𝑥𝑝[26𝛽] +  𝑒𝑥𝑝[24𝛽] +  𝑒𝑥𝑝[30𝛽] +  𝑒𝑥𝑝[28𝛽]

Thus, the log-likelihood contribution from this matched-set, i.e., the log of this probability as a 

function of , is

30𝛽 ― log (𝑒𝑥𝑝[26𝛽] +  𝑒𝑥𝑝[24𝛽] +  𝑒𝑥𝑝[30𝛽] +  𝑒𝑥𝑝[28𝛽])

The full log-likelihood is the sum, over the 10 matched sets, of the set-specific contributions. To 

maximize it with respect to , one finds the value at which its derivative equals zero. For the log-

likelihood contribution from matched set (5*), the derivative with respect to  is

30 ―
𝑒𝑥𝑝[26𝛽] × 26 +  𝑒𝑥𝑝[24𝛽] × 24 +  𝑒𝑥𝑝[30𝛽] × 30 +  𝑒𝑥𝑝[28𝛽] ×  28 
𝑒𝑥𝑝[26𝛽]            +  𝑒𝑥𝑝[24𝛽]            +  𝑒𝑥𝑝[30𝛽]           +  𝑒𝑥𝑝[28𝛽]             .

Although it may seem formidable, the quantity to the right of the minus sign is simply a 

weighted mean of the 4 temperatures, with weights given by the 4 exponentiated quantities. 

These weights are more manageable if we divide each of them by , so that the lowest 𝑒𝑥𝑝[24𝛽]

temperature in the matched set receives a weight of 1, and so that the derivative (sometimes 

called the ‘score’) becomes

30 ―
𝑒𝑥𝑝[2𝛽] × 26 +  1 × 24 +  𝑒𝑥𝑝[6𝛽] × 30 +  𝑒𝑥𝑝[4𝛽] ×  28 
𝑒𝑥𝑝[2𝛽]            +  1            +  𝑒𝑥𝑝[6𝛽]           +  𝑒𝑥𝑝[4𝛽]             .  (𝐴1)
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We can think of the quantity after the minus sign as the “fitted” or “expected” value of the 

temperature on the day of the event, and thus we can rewrite the equation in which the derivative 

is set to zero (often called the ‘estimating equation’) as the ‘balancing equation’ 

Sum(Observed T on day of event)  = Sum(Fitted T on day of event),

where the Sum is over the 10 matched sets.

Today, unlike when this model was first fitted in the mid 1960s, the search for the ML 

estimate can be easily carried out by trial and error using just a spreadsheet. As is shown at the 

right of Figure 1, the sum / mean of the observed temperatures on the 10 ‘event’ days is 262 / 

26.2 ˚C. If there were no linear relation with T, i.e., if  = 0, then the (null) fitted sum / mean 

would be 237.6 / 23.8 ˚C. Since 26.2 is larger than expected, we need to ‘move up’  until the 

fitted sum / mean equals the observed value. As can see seen in Figure 1, this ‘balance’ is 

achieved at  = 0.261.

In Least Squares regression, the “y” residuals must balance each other. Perhaps not so 

surprisingly, since conditioning reverses the x  y focus, in conditional logistic regression it is 

the residuals of the “x” values (the predictors in the regression) that must be balanced. Those 
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familiar with fitting proportional hazards models may even recognize each difference between 

the observed and fitted temperature for the day of the event (shown in the last row of Figure 1) as 

a “Schoenfeld” residual.

The Precision of the ML estimate of the exposure-response parameter 

Before statistical packages were readily accessible, a first course in simple linear regression 

usually introduced the closed-form formula for the standard error of the fitted slope. Very often 

however, it was shown in a form that involved the fewest computational steps rather than for 

illumination, and so opportunities to gain some intuition as to what determines the precision 

were lost.9  This lack of transparency is even greater in the case of parameters fitted by ML, 

since the standard error is model-based, and calculated only after the solution (often iterative) is 

reached. Thus, in the didactic spirit of this note, we will show how the standard error output by a 

conditional logistic regression routine is easily calculated from a mere spreadsheet. Since our 

conditional logistic regression model involves just 1 parameter, the ‘matrix inversion’ that is a 

feature of most regression fits takes the simple form of 1/I, where I is a scalar (1-dimensional) 

quantity. The reason for the choice of the letter I will become apparent later, and the ‘I’ quantity 

will play a central role in sample size projections.
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−15

−14

−13

−12

−11

0 0.1 0.2 0.3 0.4 0.5 0.6



(1/2) x Chisq
upper tail = 0.05

deg. freedom = 1Log of the Likelihood
Function ('LogLik')

Slope of LogLik 24.4 13.7 4.5 −2.5 −7.5 −11 −13.3

0

Slope of the Slope
(i.e., the Curvature)

of the LogLik Function
−111.3 −101.1 −81 −59.5 −41.6 −28.6 −19.5

−67.6

Figure A1:Log-likelihood function for the parameter  of the exposure-response model, based on the data from the 
10 matched sets in figure 1, together with its first and second derivatives computed at selected parameter values. The 
log-likelihood function reaches its maximum at   = 0.261, where its first derivative equals 0. The quantity 67.6 
measures how curved the curve is at this ML value, and the square root of its reciprocal provides the Standard Error 
of the fitted  . The SE can then be used to form a Gaussian-based CI, or one can use the Likelihood ratio and the 
Chi-Square distribution to find the range of parameter values compatible with the data (limits are marked by the 2 
arrows at 0.05 and 0.53).

Before we introduce the formula-based approach that reveals where the precision (SE = 

0.12) of the point estimate (0.261) comes from, we first use ‘brute force’ to numerically compute 

the standard error directly from the generic log-likelihood form. In other words, we rely solely 

on the log-likelihood function (‘LogLik’) plotted in Figure A1. The ML estimate is the parameter 
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value at which the first derivative (slope) of the log-likelihood function crosses from positive (at 

the left of the maximum) to negative (at the right), namely 0.261. Its variance is the reciprocal 

(inverse) of the (negative of the) second derivative of log-likelihood function evaluated at this 

same parameter value. This makes intuitive sense: the more concentrated (the sharper, or more 

curved) the curve is at its maximum, the narrower is the range of parameter values supported by 

the data. Moreover, as we go from left to right along the  scale, the log-likelihood curve goes 

from low to high to low, so its slope (the first derivative) goes from positive to negative, and so 

its curvature (the second derivative) is negative. The more negative the curvature is, the tighter 

the log-likelihood and the more precise is the point estimate.

One can check manually/visually that the first derivative is 4.5 at  = 0.2 and -2.5 at  = 

0.3. Thus, the second derivative at  = 0.25 is approximately (-2.5 — 4.5)/0.1 or -70, and so its 

value of -67.6 at the ML value of  = 0.261 makes sense.  R.A. Fisher, who developed the ML 

theory in the 1920s, called the -(-67.6) = 67.6 the ‘Information’ (I) in the data concerning , and 

showed that its reciprocal (i.e., 1/I = 1/67.6) can be taken as the variance of the  estimate, so 

that the Standard Error, the square root of the variance, is 

 = (1/Information)1/2 ,SE[ β ]

Page 25 of 36

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

26

or, in this example,

 = (1 / 67.6) 1/2  = 0.1216.𝑆𝐸[ 𝛽 ]

One can verify that this agrees with the output from the clogit function in R or  Stata or the 

phreg (with the strata statement) procedure in SAS.

Even though most textbooks begin their teaching of Maximum likelihood by defining the 

Likelihood as a product of probabilities, Fisher always began directly with the log-likelihood, so 

that it can be immediately written as a sum of the individual log-likelihood contributions, one 

from each ‘datapoint’. Quite apart from making the sum a more manageable number, the log- 

version immediately emphasizes that each datapoint (or matched set in our example) adds to the 

information about the parameter of concern, that not all datapoints contribute equally, and that 

we can readily quantify, in a technical sense, exactly how much ‘information’ each one adds.

As we will now demonstrate, by working with this formal measure of information, and 

just taking the reciprocal of the combined information at the very end, the factors that determine 

the variance and the SE of the fitted  become very clear. So, instead of relying on the numerical 

version of the second derivative of the entire log-likelihood function as we did above, we will 
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now show the specific closed-form formula that measures the ‘information’ contributed by each 

riskset, using as an example that contributed by riskset 5. From equation (A1) above giving the 

formula for the first derivative for the log-likelihood contribution, one can use the rules of 

calculus to verify that the second derivative involves the same weights used in the weighed mean 

of the 4 temperatures, and that it is merely the negative of the weighed MSD of these 4 

temperatures from that matched-set-specific weighed mean.  The calculation of this weighted 

mean square is illustrated for selected matched set (5) in Figure 1 in the fulltext, where it is 

calculated under 3 scenarios: the null and ML values of , and an intermediate value where   =  

0.1. The 4 temperatures are 26, 24, 30 and 28, or, (measured from their minimum), +2, 0, +6 and 

+4. Thus, at ML=  0.261, so that exp(ML) = 1.3, the  weights are 1.32 = 1.69; 1.30 =1; 1.36 = 

4.79;  and 1.34 = 2.84, so the weighted mean is 28.2. The weighted mean of the squared 

deviations of the 4 temperatures from this 28.2 is 4.0. As such, matched set (5) is the one with 

the second-smallest spread of temperatures, and it contributes the second smallest amount of 

information to the combined information of I = 67.6.  The smallest contribution of the 10 

matched sets is the 3.6 from riskset (4), where the temperature range was just 4.5 ˚C, and the 

largest is the 10.9 from set (2), where the range was 11.5 ˚C. This ranking is the same as when 
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the information is calculated at NULL =  0. That the SE of the fitted slope is inversely related to 

the spread of the exposure variable makes explicit what researchers instinctively know: it is 

difficult to measure a slope (e.g., the fuel consumption of a vehicle) over a short distance.10

Readers may wonder why we do not refer to the weighed mean square deviation as a 

‘variance’. Technically it is, but since most readers associate a variance with a divisor that is one 

less than the number of objects, we prefer to use the more expressive term mean square 

deviation. In his seminal article, Cox11 refers to it as a “variance over the finite population of T’s 

using an ‘exponentially weighed’ form of sampling.” This fits with the principle that in a 

regression model, that x’s are not treated as realizations of a random variable whose variance is 

to be estimated;9-10 the regressors are considered fixed, as if they had been decided by the 

investigator. 

Fisher made a distinction between the expected information concerning  calculated 

using pre-study projections and the observed information calculated post study using the 

observed data. The latter is used to calculate the Standard Error for the   estimate, namely

 = (1 / I ) 1/2 = (1 / [6.3 + 10.9 + … 4.0 + … + 6.8 + 8.6] ) 1/2   = (1 / 67.6) 1/2  = 0.1216.SE[ β ]
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Smaller signal, more matched sets 

To illustrate this, we extended our case series to the 211 events that occurred in the same 

Canadian province during the full 30-year period for which events were documented. To more 

easily distinguish the matched sets, the 4/5 datapoints shown in each column of Figure A2 are 

the temperatures on the same day-of-week in the same-month for every fifth one of these 211 

matched sets. To dilute the relationship, we used temperatures from another Canadian province, 

and used mean temperature rather than maximum temperature.
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211 x 19.15 − 211 x 18.75
−−−−−−−−−−−−−−−−−−−−−

211 x 7.75(a) ̂  =  = 0.05189 ;   SE = 1 / sqr t[ 1634.7 ] = 0.02473

  n= 949, number of events= 211 

     coef exp(coef) se(coef)     z Pr(>|z|)  
T 0.05269   1.05410  0.02518 2.092   0.0364 

  exp(coef) exp(−coef) lower .95 upper .95
T     1.054     0.9487     1.003     1.107

(b)
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Figure A2: The black dots are the temperatures (T’s) for every fifth one of the 211 matched sets (see text). The 
temperature on the day of the event is indicated by a red circle. The 19.15 on the left hand side is the mean of the 
temperatures for the 211 event days, while the 18.75 is the mean of the 211 matched-set means. The typical MSD is 
7.75 (right hand side), and the sum of the 211 MSDs is 1634.7. The first approximation to the parameter of interest, 
along with its standard error (SE), is shown is shown in (a), while the ML parameter estimate and its SE (fitted via 
conditional logistic regression, clogit in R) are shown in (b).
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The fitted  is now 0.053, but because the SE is 0.025, the z statistic is just over 2, and very 

similar to the z statistic of 0.261/0.122 in our earlier example with just 10 events but a stronger 

signal. The greater precision is largely because of the larger number of events (211). Since the 

fitted  is much closer to zero, the typical MSD at the ML value (7.47) is very close to the 7.75 

calculated at  = 0. Thus, the SE of 1/sqrt(7.47 ) = 0.0251 is only very slightly larger than ×  211

the SE of 1/sqrt(1634.7) = 0.0247 calculated at the null.

Those who prefer to stay close to their data can avoid the conditional logistic regression 

software altogether when  is expected to be very close to 0. The first iteration of the ML 

procedure has the simple form shown in expression (a) in Figure A2, and yields a very good 

approximation to the deluxe final ML version. This very good closed form approximation  in the 

case of weak relationships is not well known, although it was mentioned in the report12 of a well-

chronicled study of the health effects of environmental contamination.13-14 That 1986 study had 

the same matched-set structure as the illustrations used here.
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C    A UNIFIED APPROACH TO ALL-OR-NONE AND QUNATITATIVE EXPOSURES

In our calculations thus far, there was nothing special about the fact that T is recorded on an 

interval scale. Had the exposure been recorded on an all-or-none (2-point, binary) scale, the 

approach would have been exactly the same: the only change would be the focus on a single Rate 

Ratio = exp[] contrasting the rates in the presence and absence of the factor of interest and the 

0/1 exposure scale in which  the (weighted) means and squared deviations are measured. To 

make these ideas more concrete, Figure A2 revisits the 10 events in Figure 1, but shows a binary 

exposure (to stay with the same illustrative example, we merely dichotomized the temperature 

scale.)
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 *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 

A

B  = 0
RateRatio = exp() = 1

0.00w.mean 0.25 0.40 0.20 0.50* 0.40 0.50 0.25 0.00 0.00 2.50 0.250

0.00w.mean.sq.devn. 0.19 0.24 0.16 0.25* 0.24 0.25 0.19 0.00 0.00 1.51 0.152
*  mean = (1 x 26 + 1 x 24 + 1 x 30 + 1 x 28)/(1 + 1 + 1 + 1) = 0.50
mean.sq.devn = (1 x 1 + 1 x 9 + 1 x 9 + 1 x 1)/(1 + 1 + 1 + 1) = 0.25

 = 0.8
RateRatio = exp() = 2.23

0.00w.mean 0.43 0.60 0.36 0.69* 0.60 0.69 0.43 0.00 0.00 3.78 0.378

0.00w.mean.sq.devn. 0.24 0.24 0.23 0.21* 0.24 0.21 0.24 0.00 0.00 1.63 0.163
*  mean = (4.95 x 26 + 1 x 24 + 121.51 x 30 + 24.53 x 28)/(4.95 + 1 + 121.51 + 24.53) = 0.70

mean.sq.devn = (4.95 x 12.3 + 1 x 30.3 + 121.51 x 0.2 + 24.53 x 2.3)/(4.95 + 1 + 121.51 + 24.53) = 0.21
 = 1.6

RateRatio = exp() = 4.95

0.00w.mean 0.62 0.77 0.55 0.83* 0.77 0.83 0.62 0.00 0.00 5.00 0.500

0.00w.mean.sq.devn. 0.23 0.18 0.25 0.14* 0.18 0.14 0.23 0.00 0.00 1.35 0.135
*  mean = (24.53 x 26 + 1 x 24 + 14764.78 x 30 + 601.85 x 28)/(24.53 + 1 + 14764.78 + 601.85) = 0.80

mean.sq.devn = (24.53 x 15.3 + 1 x 35 + 14764.78 x 0 + 601.85 x 3.7)/(24.53 + 1 + 14764.78 + 601.85) = 0.14

0.0 0.4 −0.8 0.4 0.2 0.2 −0.8 0.4 0.0 0.0residual 0 0

Figure A3: A: Exposures, recorded on a 0/1 scale, for the day-of-week-that-month ‘column’ containing each of the 

10 events shown in Figure 1. The exposure on the day of the event is indicated in bold. The 2 columns in which 
there is no variation in exposure are non-contributory.  In the remaining 8, the exposure factor was present on 5 of 
the days when the event occurred, and was absent on 3.

B: The calculations used in the pursuit of the Maximum Likelihood (ML) estimate of , exactly as in Figure 2, 

beginning with  = 0, and ending with  =  ML = 1.6. The SE for the fitted  is 1/sqrt[1.35] =0.86. 

In the first two rows of Part B, readers can note one major simplification: in columns (3), 

(4) and (5), where the (unweighted) means of the 0s and 1s are 0.4, 0.2, and 0.5, the respective 

mean square deviations are the ‘Bernoulli’ variances, 0.4  0.6 = 0.24, 0.2  0.8 = 0.16 and 0.5  

0.5  = 0.25. However, they are not necessarily smaller when the weights are calculated at non-

null values of . The maximum information that any matched can provide is 0.5  0.5 = 0.25; 
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this occurs when the exposure factor is equally likely to be present/absent, and the information is 

calculated at the null. Further away from these situations, the contribution per matched set can be 

less. Thus, in equation [A] the divisors of the 1.96 and 0.84 will be much smaller than they 

would with a quantitative T scale (of course, in the case of a truly binary exposure, the  of Δ

concern would likely be larger than the 0.1 employed there).

Using the Bernoulli (and weighted Bernoulli) variances in formula A, one arrives at the 

same sample size suggestions as those given by the specialized packages or tables. As an 

example, suppose we wished to have 80% power against an alternative of  = 0.8. Again. we 

could use the data in Figure 2 as pilot data, and calculate that the typical information per matched 

set is 0.15 under the null and 0.16 under the alternative. Thus, the suggested number of events, n, 

is ( [ 1.96 / sqrt(0.15) + 0.84 / sqrt(0.16) ] / 0.8 )2 = 80. Using an exposure prevalence of 0.25, a 

Rate Ratio of exp(0.8) = 2.25, interpolation between rows 3 and 23, and columns 2 and 3, in 

Table 7.9 of Breslow and Day (1987), and scaling up slightly to have the average of 4.4 (rather 

than 1 + 4 = 5) observations per matched set, yields an n of 82.
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Figure A2 shows why smaller matched sets involving a binary exposure are more likely 

to lack exposure variation and thus to be uninformative. A wider range of ‘days’ may reduce the 

effects of autocorrelation and increase the variation but may involve a bias/precision tradeoff.

In Table 2 of Lagakos et al.12 the17 risksets ranged in size from 84 to 290. The 

proportions exposed varied from 0.18 to 0.40, so all risksets were informative. Interestingly, the 

authors approximated the ML parameter estimate using the closed form shown in Figure A2 (a) 

and intimated that the resulting  value of 1.11 may be an underestimate; in fact, the ML 

estimate is 0.99., and the SE at this value is smaller than it was at the null. Thus, when large 

effects of a binary exposure are anticipated, calculations at the null and at the alternative can be 

helpful to see how much information each matched set may contribute.
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IJE Submission - IJE-2022-03-0366

International Journal of Epidemiology <onbehalfof@manuscriptcentral.com>
Fri 2022-06-10 4:47 AM

To: James Hanley, Dr. <james.hanley@mcgill.ca>

IJE-2022-03-0366
Planning and understanding sample sizes for case-crossover studies of environmental
exposures

10-Jun-2022

Dear Prof. Hanley,

We have now had a chance to review the paper you submitted to the International Journal of
Epidemiology. The paper has been refereed by at least one external reviewer and has also been
read by an Editor or Associate Editor of the Journal.

I am afraid that we found that your submission was not suitable for publication in the
International Journal of Epidemiology. This decision was made both in response to referee
comments and also on the grounds of suitability with respect to the journal and priority in
relation to the other submissions we have received. The decision is thus not solely influenced by
the particular comments of referee(s).

We enclose a set of referee comments which we hope will be of use when revising your paper
for submission elsewhere.

Thank you for your interest in the International Journal of Epidemiology.

Yours sincerely,

Stephen Leeder
Editor-in-Chief

Comments from Editor:
Four biostatistical reviewers have now gone over this manuscript and while they agree on the
importance of the topic, the paper is unfortunately not suitable for Education Corner. Most
importantly for the pedagogical goals of Education Corner: the paper covers only one
aspect/method without setting in the context of other approaches or other decision making
factors, such as when sample size calculations are warranted (e.g. costly primary data
collection) vs. are not warranted (e.g. secondary data analyses of administrative data) for
observational environmental epidemiology.

The reviewers appreciated the technical aspects of the proposed method and the case studies,
but noted some inconsistencies in presentation where, e.g. some equations were presented
without sufficient elaboration and other important details were relegated to appendices.
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The reviewers provided substantial, detailed comments that we hope will be helpful to you in
submitting this work elsewhere.

Comments from Referees:

Referee: 1

Comments to the Author
This manuscript submitted for the IJE Education Corner section aims at planning sample sizes
for time stratified case-crossover studies using categorical or continuous exposures
(environmental or not). Case crossover designs (with a time-stratified setting or more modern
approaches) are used extensively in environmental epidemiology and other fields focusing on
short-term exposures. There are many papers (some of them cited in this paper) discussing the
sample size considerations for such design.

While I found the discussion of the ML estimation applied to this issue very interesting, I think
this paper is out of the scope of IJE and especially as an educational piece. It reads more like a
statistical note on a very specific aspect of such study design and does not propose a
comprehensive roadmap for sample calculation for case crossover designs. Discussions about
the pertinence of such a priori power calculations when using observational data is lacking as I
wonder in which case such calculations can help an investigator considering such method and
potential implications (e.g. collecting more data, using alternative methods, abandoning the
study…).

In summary, this manuscript addresses a specific a priori power question and I don’t think this
paper could be helpful for readers that are not already familiar with the case crossover
estimation details. Furthermore, there are multiple considerations that are not discussed,
including complex lagged and time-varying confounding structures. The introduction and the
general context sections seem to be written in haste and does not provide enough details of
more recent developments in this literature.

Referee: 2

Comments to the Author
The manuscript describes power and sample size computation for studies applying the case-
crossover design, together with algebraic definitions. The topic is of interest, with interesting
discussions on several aspects and an illustration of real-data applications. However, in the
current form, the manuscript is very hard to follow, with superficial information provided in the
main text, a lack of description of the basic design settings, and confusion due to the use of
different data examples. Detailed comments are provided below.

1. I found the structure chosen for this contribution very confusing. First, the authors provide
limited information in the manuscript about the design per se (see Comments 7-9 below) and
the statistical quantities (see Comments 11-12), with most of the latter confined to the appendix.
Second, the authors use two different data examples, one very basic for the main paper and one
more structured and coming from a real dataset in the appendix. Third, the appendix includes a
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long description of the underpinning likelihood theory, which, while interesting, is not essential.
These issues result in a very superficial description being offered just by reading the article,
which is not well complemented by the very complex theoretical overview provided in the
appendix. I suggest the authors consider revising the article using a different structure and
content.

2. One very simple way of doing it would be to use a single real-data example (I would
recommend the tornado data), and illustrate all the examples and steps using it. For instance,
the results of the equations for the minimum sample size and power can be computed for this
(relatively) small dataset, as well as the MSD/MSW and the likelihood contribution for each risk
set.

3. Similarly, the algebraic definitions of the MSD/MSW should be provided in the main text, as
they are central to the power calculations.

4. I am not sure all the information provided in the appendix is relevant. For instance, most of
the likelihood theory (part B) is interesting, but very general and not specific to this context. If
the authors choose to keep it, I would move it to the very end of the appendix and focus first on
more specific aspects related to the case-crossover design.

5. The provision of a code, for instance using the R software, would enormously facilitate the
application of these methodologies by the users. I suggest providing a script and real-data
example, possibly replicating the results described in the manuscript.

6. The authors chose to focus their contribution on the application of the case-crossover design
in environmental research. However, exactly the same models and power calculations for this
design can be used in other epidemiological areas. I wonder if the authors can make the
presentation more general, and use the application for studying risks associated with
environmental exposures only as an example. This would make the contribution relevant to a
broader audience.

7. The authors need to contextualise the use of power calculations in this setting. In the majority
of the cases, the data collection and analysis of a case-crossover study do not require the
drafting of a pre-specified protocol and are easy to perform. This does not mean that power
calculation is not required, but the authors should clarify at which step of a project a researcher
can find it useful.

8. The authors provide very little detail on the structure of the case-crossover design, and given
the type of contribution (Education Corner), it cannot be assumed that all the readers are
familiar with it. In particular, several control sampling schemes exist, and the authors only
describe the most commonly applied in environmental epidemiology, i.e. the time-stratified with
month/weekday strata. The authors should provide a more general presentation, describing the
general structure of the design and motivating the decision about presenting this specific
scheme.

9. There are very few references in the article. The authors can include up to 30 of them, and I
strongly suggest adding more.
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10. For the description of the method, if the authors choose to follow my suggestion in
Comment 1, I would refer to an ‘exposure of interest x’ rather than temperature or any specific
factor. This can make the illustration more general. The authors can then add a specific example
using real data.

11. The description of the statistical model and the quantities of interest are confused. For
example, in Equation 1 the outcome lambda does not represent a rate (e.g., number of events
per day), but an individual hazard, as in Cox proportional hazard model. The case-crossover
design works with individual data. It is true that with aggregated data its likelihood can be
replicated using conditional Poisson models (see reference 2 in the appendix), which work with
rates. However, in this case, the analysis is not performed using a logistic regression, which only
accepts a binary response and not a count. I suggest the authors describe the individual-level
setting and then mention the case of aggregated data as a specific extension.

12. The authors should make clearer to the reader what are the theoretical foundation of the
separation in weaker and stronger-relationship scenarios. My understanding is that it is related
to the possibility of making an approximation in the weaker-scenario setting, but is it unclear
how the threshold of an RR. I could not find a clear explanation neither in the main manuscript or
in the appendix.

13. There is another complication that is not addressed in this contribution. The typical case-
crossover setting can be cast as a nested case-control in which a selection of potential control-
days are taken in each risk set. For instance, in the time-stratified sampling scheme, the same
weekdays in the months are selected, although it is possible to select all the other days in the
month and to control by day of the week directly (a sort of full-stratum scheme). In this case, it
can be expected that the latter method provides more power, as more controls are selected for
each case. The authors can refer to power calculation in nested case-control studies for
references. I assume that this is not clear in this contribution as the authors keep referring to an
aggregated data structure, in which days and not individual events are the unit of analysis. In
this case, days are repeatedly taken both as cases and controls, and therefore the problem
above does not apply. However, for individual-level analyses, I assume that another parameter
that influence power is the number of control taken in each risk set. The authors should at least
mention this issue.

14. It would be good that the authors clearly state somewhere in the article that the estimators
from logistic regression in case-crossover design define a log risk ratio, not a log odds ratio.
This is implied in some parts when describing the method, but never clearly stated. I think this is
not clear to the majority of users of the design.

15. I strongly suggest defining the multiplier for the confidence level explicitly, instead than
approximating it to 2 for the 95% option. Similarly, the concepts of type-I and type-II errors
should be described, and the related quantities (e.g., alpha and 1-alpha) defined. For instance, it
is not clear to the reader what Z_beta=0.94 really is on page 9.

16. The ‘margin of error’ seems the width of the confidence interval. If so, I would refer to it
explicitly.
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17. Add numbers for all the equations.

18. The title is not appropriate. I would refer to ‘power and sample size’.

Referee: 3

Comments to the Author
Summary points 
The paper discusses important considerations for adequate power in time-stratified case-
crossover studies, which are commonly applied to the study of acute outcomes and exposures
such as heat and air pollution. The paper highlights key statistical considerations, and walks
readers through a worked example for a sample size calculation. This paper is a welcome
addition to the case-crossover literature, which lacks easy to implement sample size
calculations. This work will help investigators ensure time-stratified case-crossover studies are
adequately powered to detect an effect. However, additional work is needed to increase clarity
and improve organization to ensure understanding of the key points.

General comments 
1. Overall, this paper first comes across as easy to follow. However, while overall the language is
simple, it is inconsistently simple and, in some cases, this is problematic because of its lack of
precision and clarity.  Further, not all terms are clearly defined.

2. The paper does not use much of the standard terminology in the case-crossover literature,
i.e., it omits words such as “index” and “referent” day (or time), “referent window” and
“stratum”.  Thus, it makes it more difficult for readers of this paper to connect its content with
the methodological papers that have already been published on the topic. This is a disservice to
readers of this paper.

3. Please use standard capitalization of terminology. (Examples: don’t capitalize maximum
likelihood, mean square deviation, least squares.)

4. The organization of the paper should be revisited. In particular, it appears that the material in
Appendix A was moved to the appendix late in the manuscript drafting stage.  There is
reference to the example in this Appendix in the main text, but it is not appropriately referenced
so the reader doesn’t know what the authors are referring to.  Further, there is considerable text
in the appendix covering binary exposures, but no reference to this in the main paper.

5. The source of every sample size formula should be referenced. One source is on page 9,
although the formula in the reference is sufficiently different from the one given on page 9 that
further explanation by the authors is needed in order for readers to make sense of these.

6. Basic definitions should be given. For instance, the variance of interest for all the sample size
examples is 1/(MSD*n) where n is the number of events. This is never defined and leaves the
reader to just trust the authors claims about various formulas without allowing deeper
understanding.
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7. The authors should reference other papers that discuss case-crossover study sample size
calculations and state how their contribution is distinct. For instance: Dharmarajan, S, Lee, J-Y,
Izem, R. Sample size estimation for case-crossover studies. Statistics in Medicine. 2019; 38:
956– 968. DOI:  10.1002/sim.8030

Specific comments 
Abstract
1. Abstract is a helpful and adequately detailed summary of the paper.
2. The key messages also nicely convey the key takeaways, with one exception (see below)
3. P 1 Line 37:  Add “of time-varying” before “environmental”
4. P 2 Line 16:  While the same considerations may apply to non-environmental exposures, can
the authors think of an example where the time-stratified design would apply?  If not, then I
think this sentence should be dropped.  If so, it would be good to mention this in the paper
(though it is too detailed for the abstract).  Also drop this from the key points, unless the
authors can support this statement better in the paper.

Introduction
1. Consider adding a sentence or two about the benefits and/or disadvantages of the case-
crossover study design compared to alternatives, such as Poisson or quasi-Poisson time series
analyses. While readers will likely be familiar with the design, it may provide helpful context.
2. P 4, L 22-28:  The description here seems loose and also assumes that the appropriate time
unit is day.  It will also be useful to incorporate the idea of a stratum or referent window here
when talking about “days with similar characteristics”.  Part of the idea is that strata can (and
should) be defined in advance without looking at the data.
3. P 4 L 45:  Suggest replacing “fit” with the more precise term “estimate”
4. P. 5, L 21: change so the word “typical” is not repeated

Preliminaries
1. This section is for the most part clearly communicated and easy to follow
2. P 6 L 34:  It will probably help some readers to express this statement mathematically, e.g.
exp[\beta(T_max – T_min)] < 1.1, where T_max and T_min are the maximum and minimum
temperature within a referent window
3. P 7 L 31:  Suggest adding “in many environmental exposure settings” after “common”

Scenario sections
1. These sections are easy to follow. Providing 2 scenarios (one more common, but with a
weaker relationship, and with a stronger relationship) is helpful for solidifying comprehension
2. P7 L 43:  Is this section, “Number of cases to ensure a desired precision”, useful to include?
 When would investigators want to design a study based merely on precision and not on power?
3. P 7 L 51:  Since the authors are so careful to define many basic terms, I suggest defining
margin of error also.  Further, it is difficult for readers to connect this section with the next one
without this ME definition explicitly stated since the formula given here doesn’t include the
effect size of interest.
4. P 8 L 7-11:  It is not clear what is the basis of the statement and formula.  Why not explain
this?  (Assuming the section is kept).  Further, the authors only implicitly equate “its standard
error (SE)” on line 4 with “SE_desired” in the formula.  This should be explicit.  It would also be
helpful for there to be a definition of the variance term of interest, which is 1/MSD.  The
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explanation that starts on line 15 is helpful; an additional connection is what is needed.
5. P 8 L 51:  Don’t the authors mean cut the margin of error in half?  Spelling out the words four
and half will increase clarity.
6. P 9:  The framing of the section “number of cases to ensure a specified power” is confusing.
 Ensuring adequate power is asking a different question than merely focusing on targeting
precision.  The “added insistence” language is trivializing this feature.  
7. P 9 L 8-11:  The justification for this sentence is absent given the precision section didn’t
focus on effect size whereas this is an inherent feature of the sample size formula in this
section.
8. P 9 L 21:  Note that the beta in Z_beta is in reference to something different than the beta
used elsewhere in the paper.  Some readers will be confused if this is not explained.
9. P. 10, L 15: MSW is referenced. Do you mean MSD here or MSW? Please write this out the first
time it is referenced and the term is not defined.
10. P 10 l 38:  The reference to matched set 5 refers to the example in the appendix, which
hasn’t been introduced yet, so the reader doesn’t know what “matched set 5” is.
11. P 11, L 23:  Several of the terms used in this equation are not defined.  Further, the authors
should comment on why the SEs might be different for the null and alternative hypotheses and
when in practice this should be considered.
12. In the stronger relationship scenario the authors use SE = 1/sqrt(MSW*n), where it appears
that MSW (which isn’t defined in the paper) = MSD.  This usage seems to be consistent
throughout the paper, but is never explicitly defined.

Discussion
1. P 12, L 50+:  The authors are making an important point, but the example risks consumers
thinking that the MSD for all strata will be the same as it is in one stratum.  It is important to
emphasize that the within-matched-set variation is an average across strata.  As the authors
imply, this is less that the overall variation, at least when the mean exposure varies from stratum
to stratum.
2. P. 13, L 21: Provide guidance or an example of a strong exposure-response relationship where
this method may not suffice
3. P. 13, L 36: Clarify what ‘them’ refers to
4. P. 13: first and second full paragraphs on this page do not flow well together. Consider
revising
5. P 14 L 4+. This sentence doesn’t make sense
6. P 14 L 11:  This is a throw-away comment that should be developed more or dropped.  Please
present an example of a case-crossover study of non-environmental exposures that would use
the time-stratified design or drop this.
7. Here or elsewhere, consider adding discussion of how this method translates to case-
crossover studies with lagged exposures

Appendix/supplement
1. Add references to the supplement sections in the main text so as to make it easier for readers
find additional detail on a topic as needed
2. Throughout the supplement, considering streamlining to include only information relevant to
the goal of this paper
3. Please drop the “/” usage, e.g. mean/sum, fitted/weighted, 4/5.  It is really confusing,
unnecessarily so.
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4. P 15 L 25+: This phrasing doesn’t make sense.  Tornadoes are the outcome and the scientific
question of interest is whether the rate of tornadoes increases with temperature.
5. Figure 1 should be more clearly documented.  For instance,
a. How are the columns in A related to T?  
b. How are the strata defined?  
c. What is the rationale for the rescaled weights?  
d. Add text to indicate part A shows the data.  
e. Use notation that incorporates indexing of the stratum and the observations within stratum,
e.g. Ti,j for stratum i and observation j.  
f. Make it clear that the events are indicated by boldface type.
g. Explain why the weights are the same for beta=1
h. Where are the fitted/weighted means defined?
i. Why is there new terminology in this figure (e.g., w.mean.sq.devn) that isn’t used in this
paper?
6. p 17 l 12:  Is this (“section B”) related to Figure 1 or the next part of the Appendix?
7. P 17 L 22:  Define ‘fitted’ T’s here or earlier
8. P. 17, L 25. This is the supplement. Drop the phrase “As we explain in the supplement”.  Also
MSD isn’t connected readily to what is shown in Figure 1.
9. P 17 L 39+. Figure 1 presents results for 3 betas.  The reference to beta in this sentence is
unnecessarily unclear.
10. P 18 L 18+:  This sentence is confusing and seems counter-intuitive.  As a beta gets larger
the required sample size to detect it ought to be smaller, even if the SE gets smaller.  Please
address.
11. Section B:  
a. Why start with a definition of multinomial probabilities?
b. P 19 L 34:  The notation is odd and very confusing.  The numerator is a vector (though
nontraditionally expressed with curly brackets) and the denominator is a sum.  Please define the
notation clearly.
c. P 19 L 39+. This statement may be correct, but each example assumes a model and that is
lost.  It is bound to confuse readers
d. P 20 first sentence:  Why talk about a sine curve and specifically what discrepancies are
being referred to?
e. P 20:  Why is maximum likelihood very different?  Aren’t the “discrepancies” connected to the
“balancing equation”?
f. P 21 L 44:  I think it would be clearer to state that the ratio is a form of 1 and doesn’t change
the equation.  Or show it.  The wording can be misunderstood.
g. P 25 L 35+:  I think the slopes should be shown on Figure A1 to improve clarity
h. P 26 L 12+. Why not show code for this?  If this is supposed to be a helpful tutorial paper, it
seems like the code should be included in the supplement, at least for the tornado example
dataset.
i. P 27 L 24:  What full text?
j. P 27 l 27:  Why is values plural?  Why not say “ML value of beta = 0.261” here?
k. P 29 L 14:  Why not say that each column shows the 4 or 5 data points for a single stratum in
the dataset where only one in every five strata is depicted?
l. P 29 L 21:  Please start the section on this page with this concept.
m. P 31 l 10:  Largely or entirely??
12. P. 32, L 24. This should be Figure A3 (rather than Figure A2)
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13. P. 33, L 55. Missing word. Should be “any matched set can…”
14. The binary exposure example is helpful. In this setting, was an adequate range of proportion
of risk sets exposed, and with exposure variation?  Further commentary would be helpful,
specifically stating that the strata with no exposure variation don’t contribute any information to
the analysis.  (This is implied at the top of p. 35, but could be developed more.)
15. P. 35, L4. Referenced figure should be Figure A3.
16. P 35, L 7:  This statement isn’t well supported and is confusing.  What is meant by “days”
here?
17. Consider including example R code in the appendix to facilitate easier implementation of
these methods (as mentioned above)
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2022.07.12 
Editor: Environmental Epidemiology 
Dear Editor 
 
We are submitting a piece entitle “Planning and understanding sample sizes for case-crossover 
studies of environmental exposures” for consideration in Environmental Epidemiology. 
 
My co-author is quite experienced in environmental epidemiology, but tells me that he is 
constantly being asked by grant review panels to justify the sizes of his studies and associated 
budgets, but that he is unable to cite suitable sources. For such a widely used design, this is 
embarrassing. It also points to a common problem in epidemiology: textbooks treat every study 
design as a separate ‘silo’ and don’t emphasize the statistical connections between them. Of 
course, commercial firms that market software for ‘sample size planning’ have a vested interest 
in keeping these markets separate, and maintaining ‘black boxes.’ 
 
Our piece fills that gap, and without the need for anything more than a hand calculator. In 
addition, in an appendix that we designed to be an online supplement, it provides the ‘why’ 
behind the formulae and de-mystifies the algebra. That appendix also shows that we don’t need 
separate considerations for binary or categorical exposures: they all have a common 
structure/anatomy. 
 
We hope you agree that the teaching approach in our piece makes it a suitable candidate for 
Environmental Epidemiology. 
 
 
James A. Hanley  

and Scott Weichenthal 

Cover Letter
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Planning and understanding sample sizes for case-crossover studies of environmental exposures 

James A. Hanley1*and Scott Weichenthal1  
1Department of Epidemiology, Biostatistics, and Occupational Health, 
McGill University, Montreal, Canada 
 
*Corresponding author. Department of Epidemiology, Biostatistics, and Occupational Health. 
McGill University, Montreal, H3A 1G1, Canada. E-mail: James.Hanley@mcgill.ca  
 
Abstract 

Background: Time-stratified case-crossover studies are increasingly used to quantify the 
relationship between the rates of acute health events and levels of environmental exposures 
such as heat or air pollution. Especially when exposures are to be measured on a continuous 
scale, few sample-size planning tools are available to anticipate the statistical precision of the 
resulting effect estimate, or to appreciate the study design aspects that influence statistical 
power. 

Methods: We develop and provide formulae that can be used to plan the sizes of time-stratified 
case-crossover studies with exposures measured on either a categorical or continuous scale. We 
explain where the formulae come from using a small hand-worked example. In a supplement we 
illustrate the Maximum Likelihood (ML) calculations involved in estimating parameters from the 
relevant conditional logistic regression models. The expected amount of statistical ‘information’ 
that each matched set contributes to the parameter estimate is emphasized. 

Results: The precision of the estimated regression coefficient in time-stratified case-crossover 
studies depends on both the number of cases studied and the variation in the exposure values 
within a typical matched set (as measured by the Mean Squared Deviation). Importantly, the 
within-matched-set variation in continuous exposures will often be much less than the variance 
of exposures observed over the duration of the study period (e.g., daily variations in outdoor 
temperatures during 2022 compared with variation of daily temperatures for all Fridays in July 
2022). 

Conclusions:  Investigators conducting such studies should pay close attention to the expected 
within-set variation in exposures to ensure that an adequate number of cases is identified.  

Keywords: 
 
Parameter estimation; Conditional Logistic Regression; Exposure Variation; risksets; matched sets 
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Key Messages What this study adds  

 

It provides simple (but unavailable until now) formulae that can be used to plan the sizes of time-
stratified case-crossover studies with exposures measured on either a categorical or continuous 
scale. 

It emphasizes that the precision of the estimated regression coefficient in time-stratified case-
crossover studies depends on both the number of cases studied and the variation in the 
exposure values within a typical matched set (as measured by the Mean Squared Deviation). 
 

It urges Investigators to pay close attention to the expected within-set variation in exposures to 
ensure that an adequate number of cases is identified. 

The basis for the formulae can be understood by working through a small hand-worked example. 
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Introduction 

Time-stratified case-crossover studies are commonly used to estimate the acute health impacts of 

environmental exposures such as heat or air pollution.1 This design begins by identifying cases 

(e.g., instances of persons admitted to hospital for a myocardial infarction). For each instance, 

exposure data are obtained for the day of the event (or a time-period immediately prior to it), and 

for other days with similar characteristics (i.e., the same day of the week, month, and year). For 

example, if an event occurred on a Friday in July 2022 in a certain region/area, the exposure data 

pertaining to this case might be assembled for all Fridays in July 2022 in this region/area. We 

will refer to this set of days (which includes the day the event occurred) as a matched-set. The 

matched-set is the conceptual counterpart of the risk-set in a survival analysis, or in a standard 

incidence-density-based matched case-control study.  Typically, conditional logistic regression 

models are used to fit the event rate as a function of the exposure level.  

In the initial applications of the case-crossover study design, the focus was on 

personal triggers of events, and thus the unit of observation is one person. Conceptually, the 

parameter is a rate or hazard ratio contrasting days that persons were exposed and 

unexposed (or if the exposure is quantitative, between levels on different days). Any 

important personal circumstances of each person who suffered the event that differ 

between the person’s exposed and unexposed days are recorded and taken into account. 
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However, in many of time-stratified case-crossover studies in environmental 

epidemiology, the unit of observation is (effectively) the entire population on the days in 

question in the geographic region where the event occurred. Over the days in question within a 

region from which the case arose, the population (which is not enumerated or described) is 

assumed to remain constant in size and composition, and all persons in it share the same level of 

exposure. Other than the age and sex of the person who suffered the event, and possibly some 

unchanging characteristics of the region (which can only be used to study effect modification), 

no other covariates are recorded.  Daily (or possibly finer) variations in exposure level (or levels, 

if exposure has more than 1 dimension) within the case region become the exposure (or 

triggering) variable of interest.  The formulae in the main article apply when the measured 

exposure is 1-dimensional; the Supplement Digital Content addresses the multi-dimensional 

case.    

Despite the common use of the case-crossover design in environmental epidemiology, 

and despite the fact that it can be viewed as a simpler version of the more general case-crossover 

design, guidance on factors that determine sample size and statistical power in these 

environmental studies is not readily available. To address this gap, we provide formulae that can 

be used to calculate these quantities and illustrate the theory behind these equations using a 

simple hand-worked example. We emphasize that the amount of statistical ‘information’ each 

case contributes to the parameter estimate can be quantified by the typical Mean Square 

Deviation (MSD) within a typical matched set. If this MSD is expected to be small, a larger 

number of cases must be included. Although our focus is on continuous exposure measures 

typical of environmental epidemiology, the same statistical principles apply to binary or 
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categorical exposures, and to non-environmental exposures. Further technical details and 

explanations are provided in the Supplemental Digital Content. 

Preliminaries 

The parameter of interest, i.e., the estimand 

For concreteness, we begin with an example where some aspect (e.g., mean, maximum) of the 

daily temperature is the (locally shared) exposure of interest. Thus, without loss of generality, we 

simply refer to it as ‘T’ rather than the statistical  regressor X, or generic epidemiological E. 

Suppose the model we will use to relate the event rate (i.e., the expected number of events per 

day) to T, is 

𝜆(𝑇) = 𝜆0  ×  exp[ β (𝑇 −  𝑇0  ) ] ,                                                    (1) 

where  𝜆0 refers to the event rate at some reference temperature, 𝑇0 and the shorthand ‘exp’ 

stands for ‘the exponentiated value of.’ Thus, exp[ β (𝑇 −  𝑇0) ] denotes the ratio of the event 

rate at temperature T to the rate at the reference temperature; if T is measured in degrees Celsius, 

then , the parameter to be fitted to (estimated from) the data, refers to the log of the ratio of the 

event rates at temperatures that are 1° Celsius apart. Thus, ultimately, the estimand is  or 

exp[].  

Since different regions have populations of different sizes and compositions, the reader 

may wonder why these are not included in equation (1) and why the specification of the expected 

number of events per day is somewhat incomplete. The answer is that while these demographic 

factors could be in principle ve included in a more general equation, the matching (conditioning) 

on region, day of week, etc,  means that they to cancel out in the rate ratio (the estimand). 
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Moreover, since demographic information on each region is not typically recorded as part of the 

case-crossover study, and since regions and times of the year that do not produce events are not 

even considered, it is not possible to fit rate-difference models. 

For reasons that will become evident later, we will divide our presentation into two 

scenarios, which we arbitrarily divide into ‘weaker’ and ‘stronger’ exposure-response 

relationships. By ‘weaker’ we mean a coefficient  such that, over the T range in a typical 

matched set, the rate at the upper end is less than 1.1 times the reference rate (of 1) at the lower 

end. As we will see below, the sample size calculations in the ‘weak’ scenario are considerably 

simpler. 

The spread of the exposure data in a typical matched set 

Suppose that for a typical matched set of 4 days in a time-stratified case-crossover study, the 

exposures (values of T) for the 4 days in the set are: 21°C, 23°C, 25°C and 27°C. Of course, 

temperatures will not usually be so rounded or so regular: these 4 values were selected to make 

for convenient calculations. The mean of these values is 24 and the mean squared deviation 

(MSD) from 24 is 5 ([(24-21)2 + (24-23) 2 + (24-25) 2 + (24-27) 2] / 4 = (9+1+1+9)/4 = 20/4 = 5. 

Note that the MSD of 5 is the same as if we had recoded the 4 Ts as 0, 2, 4 and 6°C above the 

minimum in the set. It is important to note that this MSD is smaller than the typically calculated 

sample variance of the 4 values. In the case-crossover context the sum of the 4 squared 

deviations is divided by 4, not 3, since we are not estimating a population variance, but rather 

measuring how spread out the 4 Ts are. 

With these preliminaries, we first address the number of cases (and thus the number of 

matched sets) to ensure that the regression coefficient  will be estimated with a specified level 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

of precision. Since the ‘weaker-relationship’ scenario is more common, we begin with it; as it 

happens, the calculations in this context are also simpler. 

Weaker-relationship scenario 

Number of cases to ensure a desired precision 

Suppose that we set the precision with which the regression coefficient  will be estimated by 

specifying that its 95% margin of error (ME) will not exceed some specified amount. This 

implies that its Standard Error (SE) will not exceed 1/2 (technically 1/1.96) of this ME. The 

number (n) of events required to achieve this SE is given by the formula 

         𝑛 =  1
 ( 𝑆𝐸𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2  ×  1

𝑀𝑒𝑎𝑛 𝑆𝑞.𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑒𝑡
 .               (2) 

It makes sense that the MSD is in the denominator of the formula, just as it is in the expression 

for the variance of a. fitted slope in a simple regression, where the narrower/wider the spread of 

the x’s the more/less stable will be the fitted slope.2 As an example, suppose the T’s in a typical 

matched are expected to have a MSD of 5. Suppose that, relative to the reference 𝑇0,  the 

anticipated rate ratio at  𝑇0 + 1 is 1.05, so that   = ln(1.05) = 0.049.  Suppose we wish the SE for 

the fitted  to be no larger than 0.02 (or that the margin of error not exceed 0.04). Then, to 

achieve this, equation (2) indicates that we would need to study  

𝑛 =  1
(0.02)2  ×  1

5
= 500 events. 

If we we wish the SE to be no larger than 0.01 (or the margin of error to not exceed 0.02), we 

would need to study n = (1/0.01)2 / 5 = 2,000 events, i.e., it takes 4 times as many cases to cut the 

margin of error in 2. 
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Number of cases to ensure a specified power 

The sample size to guarantee a pre-specified power (of say 80%) is larger than when (in the 

absence of null hypothesis testing) precision is the only concern. The larger requirement stems 

from the added insistence on an 80% chance that (under the alternative) the point estimate 

exceeds the criterion for a ‘statistically significant’ result. Typically Z/2 = 1.96 for a 2-sided test 

with  = 0.05, and Z = 0.84 for 80% power. Thus, if  is the difference between the alternative 

and null values of , the required number of events n is 

              𝑛 = (1.96+0.84)2

Δ2  × 1
𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠 𝑖𝑛 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑒𝑡

                                    (3) 

In our example, if the alternative (to the null  = 0) is  = 0.049, and the anticipated Mean 

Squared Deviation of the T’s in a typical matched set is 5, then equation (3) indicates  

𝑛 =
2.82

0.0492 ×
1
5

 = 653 events.  

 

The ‘anatomy’ of this formula is similar to that of equation (5) in a not-well known but quite 

instructive 1985 article.3 

Stronger-relationship scenario 

Number of cases to ensure a desired precision 

For a desired degree of precision, the formula has the same form as the earlier one, except that 

each MSW is now a weighted MSW, and is thus somewhat narrower that the un-weighed one. 
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   𝑛 =  1
 ( 𝑆𝐸𝑑𝑒𝑠𝑖𝑟𝑒𝑑)2  ×  1

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝑒𝑎𝑛 𝑆𝑞.𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑖𝑛 𝑎 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑆𝑒𝑡
 .    (4) 

Why it is smaller is explained in the Supplemental Digital Content. However, since the  is 

larger than in our initial example, the stronger signal means that the required number of events 

may be smaller. To make these aspects concrete, suppose that, relative to the reference 𝑇0,  the 

anticipated rate ratio at  𝑇0 + 1 is 1.2, so that   = ln(1.2) = 0.18.  Suppose we wish the SE for the 

fitted  to be no larger than 0.075 (or that the margin of error not exceed 0.15). To get a sense of 

a typical weighted MSD, consider the data in Figure 1A, and treat them as if they came from a 

pilot study. 

 
 
Figure 1: A: the temperatures T (in ° Celsius,  for the day-of-week-that-month ‘strata’ or ‘matched sets’ pertaining 
to  the 10 events that occurred in a selected year. The provenance of these data is described in the Supplement. The 
temperature on the day of the event is indicated in bold. The asterisk in column 5 indicates that the calculations are 
presented in full for this selected column (matched set). 
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(10)

16.0

22.5

20.0

26.5

                                                                                B
b = 0

RateRatio = exp(b) = 1

18.4w.mean 23.8 25.0 25.5 27.0* 26.8 26.1 24.1 19.6 21.2

12.7w.mean.sq.devn. 18.3 11.3 4.3 5.0* 11.2 14.3 9.4 10.2 14.6
* mean = (1 x 26 + 1 x 24 + 1 x 30 + 1 x 28)/(1 + 1 + 1 + 1) = 27.0

* mean.sq.devn = (1 x 1 + 1 x 9 + 1 x 9 + 1 x 1)/(1 + 1 + 1 + 1) = 5.0

b = 0.18
RateRatio = exp(b) = 1.2

20.4w.mean 27.0 26.8 26.3 27.9* 28.7 28.0 26.0 21.3 23.7

8.4w.mean.sq.devn. 14.9 7.5 3.9 4.5* 9.8 6.3 10.3 8.1 11.1
* mean = (1.44 x 26 + 1 x 24 + 2.99 x 30 + 2.07 x 28)/(1.44 + 1 + 2.99 + 2.07) = 28.0

* mean.sq.devn = (1.44 x 3.5 + 1 x 15.1 + 2.99 x 4.5 + 2.07 x 0)/(1.44 + 1 + 2.99 + 2.07) = 4.5

b = 0.34
RateRatio = exp(b) = 1.4

21.4w.mean 28.7 27.6 26.8 28.5* 30.1 28.6 27.4 22.4 25.0

4.7w.mean.sq.devn. 7.4 4.2 3.2 3.5* 7.2 2.8 7.3 5.6 6.5
* mean = (1.96 x 26 + 1 x 24 + 7.53 x 30 + 3.84 x 28)/(1.96 + 1 + 7.53 + 3.84) = 28.0

* mean.sq.devn = (1.96 x 6.2 + 1 x 20.2 + 7.53 x 2.3 + 3.84 x 0.2)/(1.96 + 1 + 7.53 + 3.84) = 3.5
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B:  Weighted Mean Square Deviation (MSD) calculations at selected values of .  Each mean is a weighted average 
of the temperatures 𝑇1, 𝑇2, … 𝑇4/5 within a matched set, with weights exp[𝛽𝑇1] , exp[𝛽𝑇2] , … or, equivalently, as 
shown, with re-scaled weights exp[𝛽𝑇′1] , exp[𝛽𝑇′2] , … where 𝑇′1, 𝑇′2, … 𝑇′4/5 are measured relative to the 
minimum T in the riskset, Thus, the minimum temperature in the riskset has a weight of 1. Each mean.sq.devn is 
a weighted average of the squared deviations of  𝑇1, 𝑇2, … 𝑇4/5 from mean, using these same weights. (For the 
calculations involving = 0, all values in the matched set receive the same weight). The detailed calculations are 
shown for the selected column (5*). 
 

Consider first the relatively narrow spread of Ts in matched set 5, namely 24, 26, 28 and 30 (or 

0, +2, +4 and +6 above the minimum in the matched set). With a Rate Ratio of 1.2 per degree C, 

the weights are 1.20 =1, 1.22=1.44, 1.24= 2.07 and 1.26= 2.99, so that the weighted MSW is 4.5 

(around a weighted mean of 27.9 C).  At the other (more favourable) extreme, consider the more 

spread out T’s of 18.5, 21.5, 25 and 30 in matched set 2 (or 0, +3, +6.5 and +11.5 above the 

minimum in the set): the weighted MSD in this set is 14.9. To be conservative, we might take the 

typical weighted MSD to be on the ‘smaller’ side, say 4.5. Under this almost-worst case 

scenario, to achieve the SE of 0.075, equation(4) indicates we would need to study 1
0.0752  ×  1

4.5
 = 

40 events. 

Number of cases to ensure a specified power  

To plan for a given level of statistical power, the SE of 𝛽̂ has to be envisioned under two 

scenarios, i.e., at the null, null  (typically 0), and at the alternative,  = alt, so that they satisfy 

                                     Z/2  SE null   + Z  SE alt   = ∆,                                                           (5) 

where  = alt -  null . 

Suppose we wished to have 80% power against an alternative of  = 0.18. For planning 

purposes, we might use the data in Figure 1A as pilot data, and calculate (conservatively) that the 
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typical weighted MSD per riskset will be 5 under the null and 4.5 under the alternative. Thus, the 

number of events, n, needs to satisfy the equation 

                                            1.96
√MSW𝑛𝑢𝑙𝑙 × 𝑛

+  0.84
√MSW𝑎𝑙𝑡 × 𝑛

=  ∆.                                                  (6) 

With our anticipated MSWnull = 5, and MSWalt = 4.5,  equation (6) indicates 

𝑛 = ( [ 1.96 ÷ √5.0 + 0.84 ÷ √4.5  ]  ÷ 0.18 )
2

= 50 𝑒𝑣𝑒𝑛𝑡𝑠.  

One notices from Figure 1B that the MSD (and thus the amount of information) per matched set 

diminishes rapidly the further  departs from the null. So, a conservative n is obtained by using 

the non-null information for both SE’s. With these same error rates, and noting that 1.96+0.84 = 

2.8, the equation simplifies to 

                         number of events = ( [ 2.8 ÷ √NonNull MSD in Typical Riskset  ]  ÷ Δ )
2

.                     (7) 

If we want an easier to remember (and again slightly conservative) formula, we can round 2.82 

up to 8, to obtain 

                      number of events = (8 ÷ NonNull MSD in Typical Riskset)   × (1/Δ )2 .                          (8) 

In our example, with (1/0.18)2 rounded up to 31, this comes out to (8/4.5) ×  31 =   55 events. 

Discussion 

Intuitively, greater variation in the exposure makes it easier to detect/measure an exposure-

response relationship. Since time-stratified case-crossover studies make comparisons within each 

time-matched set, the precision/power depends on the within-matched-set variation, and not on 
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the overall variation in the exposure.4 This ‘local’ variation can be much smaller: for example, in 

Figure 1A, while the MSD of the 44 temperatures around the overall mean of 23.8 is 19.4 C2 (it 

would be even higher if it were derived from an even larger portion of the year), the typical 

within-matched-set MSD is only11.1 C2. Thus, investigators need to pay attention to the 

expected within-set variation in exposures to ensure that an adequate number of cases is 

identified.  

Unless the exposure-response relationship is quite strong, ‘local’ MSDs calculated at the 

null will suffice for planning purposes, since a sample size exercise is merely a rough projection 

of the likely precision/power. As the authors of a classic textbook5 cautioned “There is usually 

little point in introducing fine detail into what are essentially rather crude calculations.” 

Investigators should not base them on implausibly large values of , or think that any one 

study will settle the matter. Instead, they should consider how much information their study will 

contribute to a future meta-analysis. A former colleague of ours likened the question to how 

much to give when the collection plate is passed around in a house of worship: it is the total 

collected that matters in the end; in most such places, there is no ‘requirement’ for the size of an 

individual contribution.6  

As we explain in the Supplemental Online Content, rather than present separate formulae 

for exposures measured on continuous and all-or-none exposures, we urge investigators to use 

the common principles involved. The Supplement also aims to demystify the calculations 

involved in the Maximum Likelihood estimation of the regression parameter, and the precision 

of the fitted coefficient. 
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SUPPLEMENTAL DIGITAL CONTENT 

 

A   WHERE DO THE FORMULAE COME FROM? 

Sample size calculations are pre-study calculations that depend on the data-analysis method that 

will ultimately be used (i.e., post data-collection) Thus, to understand them, it is best to go 

through an actual data-analysis exercise, and to anticipate the results of the model-fitting. To this 

end we begin with a small dataset and to see close-up what aspects of the data determine the 

standard errors that emerge during the parameter-fitting. To keep the dataset small but real, we 

studied tornadoes, where the relationship between T and their rate is strong enough to ‘see’ in a 

study of just 10 cases. [To have the study design mimic a study of human events, we retain the 

matching on day-of-the-week and month] 

Part A of eFigure 1 shows the T’s for each of 10 matched sets generated by the 10 

tornadoes that occurred in the southern portion of a Canadian province during one selected year. 

Without loss of generality, we consider the temperature (T) on a specified day, rather than a 

lagged version of T, as the determinant of the expected event rate for such days. We limit 

ourselves to the same multiplicative model for event rates shown in equation (1) in the full text.  

The SE of the 𝛃 fitted by conditional logistic regression to the dataset in eFigure 1 

The average of the 10 T’s on the 10 ‘event’ days was 26.2°C, whereas, as is shown in the first 

row of part B, the average of the 10 column-specific averages was only 23.8°C. This indicates 

that the sign of the fitted gradient of the event rates over T will be positive. 
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eFigure 1: A: the temperatures,(T, in ° Celsius) for the day-of-week-that-month ‘strata’ or ‘matched sets’ 
containing the 10 events that occurred in a selected year. The temperature on the day of the event is indicated in 
bold. The asterisk in column 5 indicates that the ML calculations are presented in full for this selected column. 
 

B: the calculations used in the pursuit of the Maximum Likelihood (ML) estimate of , starting with the null value. 
Each mean is a weighted average of the temperatures 𝑇1, 𝑇2, … 𝑇4/5 within a stratum, with weights 
exp[𝛽𝑇1] , exp[𝛽𝑇2] , … or, equivalently, as shown, with re-scaled weights exp[𝛽𝑇′1] , exp[𝛽𝑇′2] , … where 
𝑇′1, 𝑇′2, … 𝑇′4/5 are measured relative to the minimum T in the stratum, Thus, the minimum temperature in the 
stratum has a weight of 1. Each mean.sq.devn is a weighted average of the squared deviations of  𝑇1, 𝑇2, … 𝑇4/5 
from mean, using these same weights. (For the calculations involving = 0, all values in the matched set receive the 
same weight). The detailed calculations are shown for the selected column (5*). The sum/mean at the right is the 
sum/mean over the 10 instances/cases. The ML iterations continue until the sum/mean of the 10 fitted/weighted 
means equals (balances) the sum/mean of the 10 (observed) temperatures on the days the events occurred. 

As we show in section B, the Maximum Likelihood value of  (0.261) is found by 

starting at  = 0 and proceeding, by a directed search, until one reaches a  value for which the 

sum of the T’s on the 10 days when the event occurred (the ‘observed’ Ts) equals the sum of the 

‘fitted’ T’s on these 10 days. More important is the formula for its standard error, 𝑆𝐸[ 𝛽̂ ] = 

0.1216. As we explain in the supplement, the SE is found by simply summing the MSD’s in the 
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A

B b = 0
RateRatio = exp(b) = 1

18.4w.mean 23.8 25.0 25.5 27.0* 26.8 26.1 24.1 19.6 21.2 237.6 23.8

12.7w.mean.sq.devn. 18.3 11.3 4.3 5.0* 11.2 14.3 9.4 10.2 14.6 111.3 11.1
*  mean = (1 x 26 + 1 x 24 + 1 x 30 + 1 x 28)/(1 + 1 + 1 + 1) = 27.0
mean.sq.devn = (1 x 1 + 1 x 9 + 1 x 9 + 1 x 1)/(1 + 1 + 1 + 1) = 5.0

b = 0.1
RateRatio = exp(b) = 1.11

19.6w.mean 25.6 26.1 25.9 27.5* 27.9 27.3 25.1 20.6 22.7 248.3 24.8

10.8w.mean.sq.devn. 18.2 9.6 4.2 4.8* 10.7 9.7 10.5 9.3 13.4 101.1 10.1
*  mean = (1.22 x 26 + 1 x 24 + 1.82 x 30 + 1.49 x 28)/(1.22 + 1 + 1.82 + 1.49) = 27.5

mean.sq.devn = (1.22 x 2.2 + 1 x 12.2 + 1.82 x 6.3 + 1.49 x 0.3)/(1.22 + 1 + 1.82 + 1.49) = 4.8
b = 0.261

RateRatio = exp(b) = 1.3
21.0w.mean 28.0 27.3 26.6 28.2* 29.5 28.4 26.8 21.9 24.5 262.0 26.2

6.3w.mean.sq.devn. 10.9 5.7 3.6 4.0* 8.6 4.1 9.0 6.8 8.6 67.6  6.8
*  mean = (1.69 x 26 + 1 x 24 + 4.79 x 30 + 2.84 x 28)/(1.69 + 1 + 4.79 + 2.84) = 28.2

mean.sq.devn = (1.69 x 4.9 + 1 x 17.8 + 4.79 x 3.2 + 2.84 x 0)/(1.69 + 1 + 4.79 + 2.84) = 4.0

−7.5 2.0 −4.8 1.9 1.8 2.5 −2.4 2.2 2.1 2.0residual 0 0
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10 matched sets to arrive at a total of 67.6, and taking the square root of the reciprocal of this, 

i.e., (1 / 67.6) 1/2  = 0.1216. Note, however, that the 10 matched-set-specific MSD’s are not the 

12.7, 18.3, … 14.6 in the first set of calculations in eFigure 1B. Since  = 0, these ‘initial’ 

MSD’s are calculated by weighing the T’s within the set equally; they sum to 111.3. The MSDs 

that sum to 67.6 were calculated as weighted MSD’s, where the weights for the T’s in each 

matched set are the rate ratios implied by the value of  and the T’s in the set. The calculation of 

the weighted MSD is illustrated for matched set 5. In it, when  = 0.261, the weights for the 4 Ts 

of 24, 26, 28 and 30 (or Ts of 0, +2, +4 and +6 above the minimum in the set) are exp(0  0.261) 

= 1, exp(2  0.261) = 1.69, exp(4  0.261) = 2.84 and  exp(6  0.261) = 4.79 respectively.  The 

MSD for matched set 5 was 4.0; the MSDs for the 9 other matched sets ranged from 3.6 to 10.9, 

and the typical MSD was 6.8. 

It can be seen from eFigure 1B (and also for Figure 1 in the main text) that the further  

is from 0, the smaller is the typical weighted MSD, and thus the larger is the SE of the fitted : 

Whereas the SE is (1 / 67.6)1/2  = 0.12 at the ML value of  = 0.261, it is (1 / 111.3)1/2  = 0.09 at 

the null value of .  Thus, when  is further from zero, the required sample sizes will be larger 

than those illustrated in the earlier sections.  

B     MAXIMUM LIKELIHOOD ESTIMATION DEMYSTIFIED 

Multinomial probabilities: the possible days an event could have occurred 

As Chapters 13 and 15 of Clayton and Hills1 show, and as Armstrong2 re-iterates, the rate ratio in 

a person-time analysis of a binary exposure can sometimes be estimated by treating the total 

number of events within the stratum as a fixed quantity rather than the random variable that it is. 
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In the examples addressed in these chapters, how the events distribute themselves within the 

‘exposed’ and ‘unexposed’ person-time can be described by a binomial random variable, in 

which the number of events serves as the ‘n’ and the probability parameter is a function of the 

amounts of person time and the rate ratio. Parameter estimation is usually via Maximum 

Likelihood (ML).  In our context, where the possible event days are days within a matched set, 

how the events distribute themselves over the possible days can be described by a multinomial 

random variable, in which the number of events (typically 1 per matched set) serves as the ‘n’ 

and the multinomial probabilty parameters are a function of the temperatures and the rate ratios. 

For example, in column (5*) in eFigure 1, the temperatures on the 4 candidate days are 26, 24, 

30 and 28 °C. Thus, given that an event occurred on one of these days (i.e., conditional on the 

event having occurred within the stratum), the multinomial probabilities that it occurred on the 

first, second, third or fourth of these days are, respectively, 

{ 𝑒𝑥𝑝[26𝛽],   𝑒𝑥𝑝[24𝛽],   𝑒𝑥𝑝[30𝛽],   𝑒𝑥𝑝[28𝛽] } 
𝑒𝑥𝑝[26𝛽] + 𝑒𝑥𝑝[24𝛽] + 𝑒𝑥𝑝[30𝛽] + 𝑒𝑥𝑝[28𝛽]  . 

These probabilities have the same structure as the probabilities that each of the nominees will 

win the Oscar4-6 or the economic choices made by a consumer.7-8  

The ML procedure for multinomial/conditional logistic regression, from first principles 

The Method of Least Squares seeks the parameter value that minimizes the sum/average of the 

squared distances between the observed and fitted responses (the ‘y’s). Thus, since the quantity 

being ‘optimized’ uses the scale the responses are measured in, it is easily understood: if, for 

example, we fit a sine curve to the pattern of temperatures over the year, the goodness of fit 

criterion involves discrepancies in the °C scale. Very differently, the Method of Maximum 
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Likelihood seeks the parameter value that maximizes the sum/average of the logs of the 

probabilities of obtaining the data patterns that were observed. While the ML principle may be a 

natural one, the scale in which the criterion is measured is not so familiar. Nevertheless, as we 

will now see, the ‘balancing equation’ that must be satisfied/solved numerically is quite natural, 

even if it is not always emphasized. 

To see why, we return to the data in column/stratum (5) in eFigure 1A, where the 

temperatures on the 4 candidate days are 26, 24, 30 and 28 °C and, thus, the multinomial 

probabilities that the event occurred on the first, second, third or fourth of these days are, 

respectively, 

{ 𝑒𝑥𝑝[26𝛽],   𝑒𝑥𝑝[24𝛽],   𝑒𝑥𝑝[30𝛽],   𝑒𝑥𝑝[28𝛽] } 
𝑒𝑥𝑝[26𝛽]  +  𝑒𝑥𝑝[24𝛽]  +  𝑒𝑥𝑝[30𝛽]  +  𝑒𝑥𝑝[28𝛽] 

The event occurred on the day when the temperature was 30 °C, and so the probability that it 

would have happened on that day (rather than on one of the other three days) is  

𝑒𝑥𝑝[30𝛽] 
𝑒𝑥𝑝[26𝛽]  +  𝑒𝑥𝑝[24𝛽]  +  𝑒𝑥𝑝[30𝛽]  +  𝑒𝑥𝑝[28𝛽] 

Thus, the log-likelihood contribution from this matched-set, i.e., the log of this probability as a 

function of , is 

30𝛽 − log (𝑒𝑥𝑝[26𝛽]  +  𝑒𝑥𝑝[24𝛽]  +  𝑒𝑥𝑝[30𝛽]  +  𝑒𝑥𝑝[28𝛽]) 

The full log-likelihood is the sum, over the 10 matched sets, of the set-specific contributions. To 

maximize it with respect to , one finds the value at which its derivative equals zero. For the log-

likelihood contribution from matched set (5*), the derivative with respect to  is 
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30 −
𝑒𝑥𝑝[26𝛽]  × 26 +  𝑒𝑥𝑝[24𝛽]  × 24 +  𝑒𝑥𝑝[30𝛽]  × 30 +  𝑒𝑥𝑝[28𝛽]  ×  28 
𝑒𝑥𝑝[26𝛽]             +  𝑒𝑥𝑝[24𝛽]             +  𝑒𝑥𝑝[30𝛽]            +  𝑒𝑥𝑝[28𝛽]            

 . 

Although it may seem formidable, the quantity to the right of the minus sign is simply a weighted 

mean of the 4 temperatures, with weights given by the 4 exponentiated quantities. These weights 

are more manageable if we divide each of them by 𝑒𝑥𝑝[24𝛽], so that the lowest temperature in 

the matched set receives a weight of 1, and so that the derivative (sometimes called the ‘score’) 

becomes 

30 −
𝑒𝑥𝑝[2𝛽]  × 26 +  1 × 24 +  𝑒𝑥𝑝[6𝛽]  × 30 +  𝑒𝑥𝑝[4𝛽]  ×  28 
𝑒𝑥𝑝[2𝛽]             +  1            +  𝑒𝑥𝑝[6𝛽]            +  𝑒𝑥𝑝[4𝛽]            

 .  (𝑆1) 

We can think of the quantity after the minus sign as the “fitted” or “expected” value of the 

temperature on the day of the event, and thus we can rewrite the equation in which the derivative 

is set to zero (often called the ‘estimating equation’) as the ‘balancing equation’  

Sum(Observed T on day of event)  = Sum(Fitted T on day of event), 

where the Sum is over the 10 matched sets. 

Today, unlike when this model was first fitted in the mid 1960s, the search for the ML 

estimate can be easily carried out by trial and error using just a spreadsheet. As is shown at the 

right of eFigure 1, the sum / mean of the observed temperatures on the 10 ‘event’ days is 262 / 

26.2 °C. If there were no linear relation with T, i.e., if  = 0, then the (null) fitted sum / mean 

would be 237.6 / 23.8 °C. Since 26.2 is larger than expected, we need to ‘move up’  until the 

fitted sum / mean equals the observed value. As can see seen in eFigure 1B, this ‘balance’ is 

achieved at  = 0.261. 
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In Least Squares regression, the “y” residuals must balance each other. Perhaps not so 

surprisingly, since conditioning reverses the x  y focus, in conditional logistic regression it is 

the residuals of the “x” values (the predictors in the regression) that must be balanced. Those 

familiar with fitting proportional hazards models may even recognize each difference between 

the observed and fitted temperature for the day of the event (shown in the last row of eFigure 1B) 

as a “Schoenfeld” residual. 

The Precision of the ML estimate of the exposure-response parameter  

Before statistical packages were readily accessible, a first course in simple linear regression 

usually introduced the closed-form formula for the standard error of the fitted slope. Very often 

however, it was shown in a form that involved the fewest computational steps rather than for 

illumination, and so opportunities to gain some intuition as to what determines the precision 

were lost.9  This lack of transparency is even greater in the case of parameters fitted by ML, 

since the standard error is model-based, and calculated only after the solution (often iterative) is 

reached. Thus, in the didactic spirit of this note, we will show how the standard error output by a 

conditional logistic regression routine is easily calculated from a mere spreadsheet. Since our 

conditional logistic regression model involves just 1 parameter, the ‘matrix inversion’ that is a 

feature of most regression fits takes the simple form of 1/I, where I is a scalar (1-dimensional) 

quantity. The reason for the choice of the letter I will become apparent later, and the ‘I’ quantity 

will play a central role in sample size projections. 
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eFigure 2:Log-likelihood function for the parameter  of the exposure-response model, based on the data from the 
10 matched sets in eFigure 1, together with its first and second derivatives computed at selected parameter values. 
The log-likelihood function reaches its maximum at   = 0.261, where its first derivative equals 0. The quantity 67.6 
measures how curved the curve is at this ML value, and the square root of its reciprocal provides the Standard 
Error of the fitted  . The SE can then be used to form a Gaussian-based CI, or one can use the Likelihood ratio and 
the Chi-Square distribution to find the range of parameter values compatible with the data (limits are marked by the 
2 arrows at 0.05 and 0.53). 

Before we introduce the formula-based approach that reveals where the precision (SE = 

0.12) of the point estimate (0.261) comes from, we first use ‘brute force’ to numerically compute 

the standard error directly from the generic log-likelihood form. In other words, we rely solely on 

the log-likelihood function (‘LogLik’) plotted in eFigure 2. The ML estimate is the parameter 

value at which the first derivative (slope) of the log-likelihood function crosses from positive (at 

the left of the maximum) to negative (at the right), namely 0.261. Its variance is the reciprocal 

(inverse) of the (negative of the) second derivative of log-likelihood function evaluated at this 

same parameter value. This makes intuitive sense: the more concentrated (the sharper, or more 

curved) the curve is at its maximum, the narrower is the range of parameter values supported by 
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the data. Moreover, as we go from left to right along the  scale, the log-likelihood curve goes 

from low to high to low, so its slope (the first derivative) goes from positive to negative, and so 

its curvature (the second derivative) is negative. The more negative the curvature is, the tighter 

the log-likelihood and the more precise is the point estimate. 

One can check manually/visually that the first derivative is 4.5 at  = 0.2 and -2.5 at  = 

0.3. Thus, the second derivative at  = 0.25 is approximately (-2.5 – 4.5)/0.1 or -70, and so its 

value of -67.6 at the ML value of  = 0.261 makes sense.  R.A. Fisher, who developed the ML 

theory in the 1920s, called the -(-67.6) = 67.6 the ‘Information’ (I) in the data concerning , and 

showed that its reciprocal (i.e., 1/I = 1/67.6) can be taken as the variance of the  estimate, so 

that the Standard Error, the square root of the variance, is  

SE[ β̂ ] = (1/Information)1/2 , 

or, in this example, 

𝑆𝐸[ 𝛽̂ ] = (1 / 67.6) 1/2  = 0.1216. 

One can verify that this agrees with the output from the clogit function in R or  Stata or the 

phreg (with the strata statement) procedure in SAS. 

Even though most textbooks begin their teaching of Maximum likelihood by defining the 

Likelihood as a product of probabilities, Fisher always began directly with the log-likelihood, so 

that it can be immediately written as a sum of the individual log-likelihood contributions, one 

from each ‘datapoint’. Quite apart from making the sum a more manageable number, the log- 

version immediately emphasizes that each datapoint (or matched set in our example) adds to the 
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information about the parameter of concern, that not all datapoints contribute equally, and that 

we can readily quantify, in a technical sense, exactly how much ‘information’ each one adds. 

As we will now demonstrate, by working with this formal measure of information, and 

just taking the reciprocal of the combined information at the very end, the factors that determine 

the variance and the SE of the fitted  become very clear. So, instead of relying on the numerical 

version of the second derivative of the entire log-likelihood function as we did above, we will 

now show the specific closed-form formula that measures the ‘information’ contributed by each 

riskset, using as an example that contributed by riskset 5. From equation (S1) above giving the 

formula for the first derivative for the log-likelihood contribution, one can use the rules of 

calculus to verify that the second derivative involves the same weights used in the weighed mean 

of the 4 temperatures, and that it is merely the negative of the weighed MSD of these 4 

temperatures from that matched-set-specific weighed mean.  The calculation of this weighted 

mean square is illustrated for selected matched set (5) in eFigure 1, where it is calculated under 3 

scenarios: the null and ML values of , and an intermediate value where   =  0.1. The 4 

temperatures are 26, 24, 30 and 28, or, (measured from their minimum), +2, 0, +6 and +4. Thus, 

at ML=  0.261, so that exp(ML) = 1.3, the  weights are 1.32 = 1.69; 1.30 =1; 1.36 = 4.79;  and 1.34 

= 2.84, so the weighted mean is 28.2. The weighted mean of the squared deviations of the 4 

temperatures from this 28.2 is 4.0. As such, matched set (5) is the one with the second-smallest 

spread of temperatures, and it contributes the second smallest amount of information to the 

combined information of I = 67.6.  The smallest contribution of the 10 matched sets is the 3.6 

from riskset (4), where the temperature range was just 4.5 °C, and the largest is the 10.9 from set 

(2), where the range was 11.5 °C. This ranking is the same as when the information is calculated 

at NULL =  0. That the SE of the fitted slope is inversely related to the spread of the exposure 
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variable makes explicit what researchers instinctively know: it is difficult to measure a slope 

(e.g., the fuel consumption of a vehicle) over a short distance.10 

Readers may wonder why we do not refer to the weighed mean square deviation as a 

‘variance’. Technically it is, but since most readers associate a variance with a divisor that is one 

less than the number of objects, we prefer to use the more expressive term mean square 

deviation. In his seminal article, Cox11 refers to it as a “variance over the finite population of T’s 

using an ‘exponentially weighed’ form of sampling.” This fits with the principle that in a 

regression model, that x’s are not treated as realizations of a random variable whose variance is 

to be estimated;9-10 the regressors are considered fixed, as if they had been decided by the 

investigator.  

Fisher made a distinction between the expected information concerning  calculated 

using pre-study projections and the observed information calculated post study using the 

observed data. The latter is used to calculate the Standard Error for the   estimate, namely 

SE[ β̂ ] = (1 / I ) 1/2 = (1 / [6.3 + 10.9 + … 4.0 + … + 6.8 + 8.6] ) 1/2   = (1 / 67.6) 1/2  = 0.1216. 

Smaller signal, more matched sets  

To illustrate this, we extended our case series to the 211 events that occurred in the same 

Canadian province during the full 30-year period for which events were documented. To more 

easily distinguish the matched sets, the 4/5 datapoints shown in each column of eFigure 3 are the 

temperatures on the same day-of-week in the same-month for every fifth one of these 211 

matched sets. To dilute the relationship, we used temperatures from another Canadian province, 

and used mean temperature rather than maximum temperature. 
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eFigure 3: The black dots are the temperatures (T’s) for every fifth one of the 211 matched sets (see text). The 
temperature on the day of the event is indicated by a red circle. The 19.15 on the left hand side is the mean of the 
temperatures for the 211 event days, while the 18.75 is the mean of the 211 matched-set means. The typical MSD is 
7.75 (right hand side), and the sum of the 211 MSDs is 1634.7. The first approximation to the parameter of interest, 
along with its standard error (SE), is shown is shown in (a), while the ML parameter estimate and its SE (fitted via 
conditional logistic regression, clogit in R) are shown in (b). 

The fitted  is now 0.053, but because the SE is 0.025, the z statistic is just over 2, and very 

similar to the z statistic of 0.261/0.122 in our earlier example with just 10 events but a stronger 

signal. The greater precision is largely because of the larger number of events (211). Since the 

fitted  is much closer to zero, the typical MSD at the ML value (7.47) is very close to the 7.75 

calculated at  = 0. Thus, the SE of 1/sqrt(7.47 ×  211) = 0.0251 is only very slightly larger than 

the SE of 1/sqrt(1634.7) = 0.0247 calculated at the null. 

Those who prefer to stay close to their data can avoid the conditional logistic regression 

software altogether when  is expected to be very close to 0. The first iteration of the ML 
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211 x 7.75(a) b̂  =  = 0.05189 ;   SE = 1 / sqr t[ 1634.7 ] = 0.02473

  n= 949, number of events= 211 

     coef exp(coef) se(coef)     z Pr(>|z|)  
T 0.05269   1.05410  0.02518 2.092   0.0364 

  exp(coef) exp(−coef) lower .95 upper .95
T     1.054     0.9487     1.003     1.107
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procedure has the simple form shown in expression (a) in eFigure 3, and yields a very good 

approximation to the deluxe final ML version. This very good closed form approximation  in the 

case of weak relationships is not well known, although it was mentioned in the report12 of a well-

chronicled study of the health effects of environmental contamination.13-14 That 1986 study had 

the same matched-set structure as the illustrations used here. 

 

C    A UNIFIED APPROACH TO ALL-OR-NONE AND QUANTITATIVE EXPOSURES 

In our calculations thus far, there was nothing special about the fact that T is recorded on an 

interval scale. Had the exposure been recorded on an all-or-none (2-point, binary) scale, the 

approach would have been exactly the same: the only change would be the focus on a single 

Rate Ratio = exp[] contrasting the rates in the presence and absence of the factor of interest and 

the 0/1 exposure scale in which  the (weighted) means and squared deviations are measured. To 

make these ideas more concrete, eFigure 4 revisits the 10 events in eFigure 1, but shows a binary 

exposure (to stay with the same illustrative example, we merely dichotomized the temperature 

scale.) 
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eFigure 4: A: Exposures, recorded on a 0/1 scale, for the day-of-week-that-month ‘column’ containing each of the 
10 events shown in Figure 1. The exposure on the day of the event is indicated in bold. The 2 columns in which there 
is no variation in exposure are non-contributory.  In the remaining 8, the exposure factor was present on 5 of the 
days when the event occurred, and was absent on 3. 
 
B: The calculations used in the pursuit of the Maximum Likelihood (ML) estimate of , exactly as in eFigure 1, 
beginning with  = 0, and ending with  =  ML = 1.6. The SE for the fitted  is 1/sqrt[1.35] =0.86.  

In the first two rows of eFigure 4B, readers can note one major simplification: in columns 

(3), (4) and (5), where the (unweighted) means of the 0s and 1s are 0.4, 0.2, and 0.5, the 

respective mean square deviations are the ‘Bernoulli’ variances, 0.4  0.6 = 0.24, 0.2  0.8 = 

0.16 and 0.5  0.5  = 0.25. However, they are not necessarily smaller when the weights are 

calculated at non-null values of . The maximum information that any matched can provide is 

0.5  0.5 = 0.25; this occurs when the exposure factor is equally likely to be present/absent, and 

the information is calculated at the null. Further away from these situations, the contribution per 

matched set can be less. Thus, in equation (6) in the fulltext the divisors of the 1.96 and 0.84 will 
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A

B b = 0
RateRatio = exp(b) = 1

0.00w.mean 0.25 0.40 0.20 0.50* 0.40 0.50 0.25 0.00 0.00 2.50 0.250

0.00w.mean.sq.devn. 0.19 0.24 0.16 0.25* 0.24 0.25 0.19 0.00 0.00 1.51 0.152
*  mean = (1 x 26 + 1 x 24 + 1 x 30 + 1 x 28)/(1 + 1 + 1 + 1) = 0.50
mean.sq.devn = (1 x 1 + 1 x 9 + 1 x 9 + 1 x 1)/(1 + 1 + 1 + 1) = 0.25

b = 0.8
RateRatio = exp(b) = 2.23

0.00w.mean 0.43 0.60 0.36 0.69* 0.60 0.69 0.43 0.00 0.00 3.78 0.378

0.00w.mean.sq.devn. 0.24 0.24 0.23 0.21* 0.24 0.21 0.24 0.00 0.00 1.63 0.163
*  mean = (4.95 x 26 + 1 x 24 + 121.51 x 30 + 24.53 x 28)/(4.95 + 1 + 121.51 + 24.53) = 0.70

mean.sq.devn = (4.95 x 12.3 + 1 x 30.3 + 121.51 x 0.2 + 24.53 x 2.3)/(4.95 + 1 + 121.51 + 24.53) = 0.21
b = 1.6

RateRatio = exp(b) = 4.95
0.00w.mean 0.62 0.77 0.55 0.83* 0.77 0.83 0.62 0.00 0.00 5.00 0.500

0.00w.mean.sq.devn. 0.23 0.18 0.25 0.14* 0.18 0.14 0.23 0.00 0.00 1.35 0.135
*  mean = (24.53 x 26 + 1 x 24 + 14764.78 x 30 + 601.85 x 28)/(24.53 + 1 + 14764.78 + 601.85) = 0.80

mean.sq.devn = (24.53 x 15.3 + 1 x 35 + 14764.78 x 0 + 601.85 x 3.7)/(24.53 + 1 + 14764.78 + 601.85) = 0.14
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be much smaller than they would with a quantitative T scale (of course, in the case of a truly 

binary exposure, the Δ of concern would likely be larger than the 0.1 employed there). 

Using the Bernoulli (and weighted Bernoulli) variances in formula A, one arrives at the 

same sample size suggestions as those given by the specialized packages or tables. As an 

example, suppose we wished to have 80% power against an alternative of  = 0.8. Again. we 

could use the data in eFigure 1 as pilot data, and calculate that the typical information per 

matched set is 0.15 under the null and 0.16 under the alternative. Thus, the suggested number of 

events, n, is ( [ 1.96 / sqrt(0.15) + 0.84 / sqrt(0.16) ] / 0.8 )2 = 80. Using an exposure prevalence 

of 0.25, a Rate Ratio of exp(0.8) = 2.25, interpolation between rows 3 and 23, and columns 2 and 

3, in Table 7.9 of Breslow and Day (1987), and scaling up slightly to have the average of 4.4 

(rather than 1 + 4 = 5) observations per matched set, yields an n of 82. 

eFigure 4 shows why smaller matched sets involving a binary exposure are more likely to 

lack exposure variation and thus to be uninformative. A wider range of ‘days’ may reduce the 

effects of autocorrelation and increase the variation but may involve a bias/precision tradeoff. 

In Table 2 of Lagakos et al.12 the17 risksets ranged in size from 84 to 290. The 

proportions exposed varied from 0.18 to 0.40, so all risksets were informative. Interestingly, the 

authors approximated the ML parameter estimate using the closed form shown in eFigure 3(a) 

and intimated that the resulting  value of 1.11 may be an underestimate; in fact, the ML 

estimate is 0.99, and the SE at this value is smaller than it was at the null. Thus, when large 

effects of a binary exposure are anticipated, calculations at the null and at the alternative can be 

helpful to see how much information each matched set may contribute. 
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D    THE PRICE OF ADJUSTING FOR OTHER VARIABLES 

The  n’s in the various formulae in the fulltext can be corrected upwards to allow for the 

loss in precision that occurs when one has to adjust for confounding variables. The loss is readily 

understood in the context of an occupational epidemiology example (8): imagine one wishes to 

quantify the effect of each year worked in a noisy workplace on hearing loss, while taking care to 

remove from the crude estimate the (also substantial) effect of age. If one pays no attention to 

age when selecting workers, one is likely to end up with a sample where age and duration of 

work are highly correlated, so that the joint distribution of work duration and age looks like an 

tilted ellipse or diamond or the like. Within each age-slice (i.e., when ‘adjusting’ for age) there is 

a narrow spread of numbers of years worked, and this a less precisely estimated slope. Suppose 

instead one selects workers from each of several age slices, not randomly, but on the basis of 

years worked, so that, within each age-slice, there is the widest possible spread of numbers of 

years worked. This creates a greater degree of ‘‘balance’’ (a lower correlation) between age and 

work duration, and the joint distribution of work duration and age is more orthogonal. Now, 

within each age-slice (i.e., when adjusting for age) there is a full spread of numbers of years 

worked, and this a more precisely estimated slope. [Similar reasoning applies when trying to 

separate the effect of egg yolk consumption on carotid plaque from the effect of bacon 

consumption (15)]. 

The same issue arises in trying to separate the effect of temperature and humidity on 

event rates. If the two are closely correlated, then when one conditions on (holds constant) 

humidity, the effective range of temperature is much reduced, and this makes the estimate of the 

net effect of temperature much less precise. 
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As we explain elsewhere (9), the variance inflation (VI) can be measured mathematically 

as the ratio of the area (volume) of the untitled region to the area(volume) of the tilted region 

containing the exposure and confounding variable(s). This ratio is none other than the reciprocal 

of the complement of the square of the simple/multiple correlation of the exposure of interest (E) 

with the confounder(s) (C) being adjusted for. Thus, the upwards corrected number of cases n* 

becomes 

𝑛∗ =
𝑛

1 −  (𝑟𝐸 𝑤𝑖𝑡ℎ 𝐶)2 ,  

where n is the number derived from the (E only) formula in the fulltext, and r is the anticipated 

multiple correlation coefficient between E and the confounding variable(s) C. 
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Reviewer #1: The manuscript describes power and sample size computation for studies applying
the case-crossover design, together with algebraic definitions. The topic is of interest, with
compelling discussions on several aspects and an illustration of real-data applications. However,
in the current form, the manuscript is very hard to follow, with superficial information provided in
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the main text, a lack of description of the basic design settings, and confusion due to the use of
different data examples. Detailed comments are provided below.
1.      I found the structure chosen for this contribution very confusing. First, the authors provide
limited information in the manuscript about the design per se (see Comments 7-9 below) and the
statistical quantities (see Comments 11-12), with most of the latter confined to the appendix.
Second, the authors use two different data examples, one very basic for the main paper and one
more structured and coming from a real dataset in the appendix. Third, the appendix includes a
long description of the underpinning likelihood theory, which, while interesting, is not essential.
These issues result in a very superficial description being offered just by reading the article,
which is not well complemented by the very complex theoretical overview provided in the
appendix. I suggest the authors consider revising the article using a different structure and
content.
2.      One very simple way of doing it would be to use a single real-data example (I would
recommend the tornado data), and illustrate all the examples and steps using it. For instance, the
results of the equations for the minimum sample size and power can be computed for this
(relatively) small dataset, as well as the MSD/MSW and the likelihood contribution for each risk
set.
3.      Similarly, the algebraic definitions of the MSD/MSW should be provided in the main text, as
they are central to the power calculations.
4.      I am not sure all the information provided in the appendix is relevant. For instance, most of
the likelihood theory (part B) is interesting, but very general and not specific to this context. If the
authors choose to keep it, I would move it to the very end of the appendix and focus first on more
specific aspects related to the case-crossover design.
5.      The provision of a code, for instance using the R software, would enormously facilitate the
application of these methodologies by the users. I suggest providing a script and real-data
example, possibly replicating the results described in the manuscript.
6.      The authors chose to focus their contribution on the application of the case-crossover
design in environmental research. However, exactly the same models and power calculations for
this design can be used in other epidemiological areas. I wonder if the authors can make the
presentation more general, and use the application for studying risks associated with
environmental exposures only as an example. This would make the contribution relevant to a
broader audience.
7.      The authors need to contextualise the use of power calculations in this setting. In the
majority of the cases, the data collection and analysis of a case-crossover study do not require
the drafting of a pre-specified protocol and are easy to perform. This does not mean that power
calculation is not required, but the authors should clarify at which step of a project a researcher
can find it useful.
8.      The authors provide very little detail on the structure of the case-crossover design, and
given the type of contribution (Education Corner), it cannot be assumed that all the readers are
familiar with it. In particular, several control sampling schemes exist, and the authors only
describe the most commonly applied in environmental epidemiology, i.e. the time-stratified with
month/weekday strata. The authors should provide a more general presentation, describing the
general structure of the design and motivating the decision about presenting this specific
scheme.
9.      There are very few references in the article. The authors can include up to 30 of them, and I
strongly suggest adding more.
10.     For the description of the method, if the authors choose to follow my suggestion in
Comment 1, I would refer to an 'exposure of interest x' rather than temperature or any specific
factor. This can make the illustration more general. The authors can then add a specific example
using real data.
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11.     The description of the statistical model and the quantities of interest are confused. For
example, in Equation 1 the outcome lambda does not represent a rate (e.g., number of events per
day), but an individual hazard, as in Cox proportional hazard model. The case-crossover design
works with individual data. It is true that with aggregated data its likelihood can be replicated
using conditional Poisson models (see reference 2 in the appendix), which work with rates.
However, in this case, the analysis is not performed using a logistic regression, which only
accepts a binary response and not a count. I suggest the authors describe the individual-level
setting and then mention the case of aggregated data as a specific extension.
12.     The authors should make clearer to the reader what are the theoretical foundation of the
separation in weaker and stronger-relationship scenarios. My understanding is that it is related to
the possibility of making an approximation in the weaker-scenario setting, but is it unclear how
the threshold of an RR. I could not find a clear explanation neither in the main manuscript or in the
appendix.
13.     There is another complication that is not addressed in this contribution. The typical case-
crossover setting can be cast as a nested case-control in which a selection of potential control-
days are taken in each risk set. For instance, in the time-stratified sampling scheme, the same
weekdays in the months are selected, although it is possible to select all the other days in the
month and to control by day of the week directly (a sort of full-stratum scheme). In this case, it
can be expected that the latter method provides more power, as more controls are selected for
each case. The authors can refer to power calculation in nested case-control studies for
references. I assume that this is not clear in this contribution as the authors keep referring to an
aggregated data structure, in which days and not individual events are the unit of analysis. In this
case, days are repeatedly taken both as cases and controls, and therefore the problem above
does not apply. However, for
individual-level analyses, I assume that another parameter that influence power is the number of
control taken in each risk set. The authors should at least mention this issue.
14.     It would be good that the authors clearly state somewhere in the article that the estimators
from logistic regression in case-crossover design define a log risk ratio, not a log odds ratio. This
is implied in some parts when describing the method, but never clearly stated. I think this is not
clear to the majority of users of the design.
15.     I strongly suggest defining the multiplier for the confidence level explicitly, instead than
approximating it to 2 for the 95% option. Similarly, the concepts of type-I and type-II errors
should be described, and the related quantities (e.g., alpha and 1-alpha) defined. For instance, it
is not clear to the reader what Z_beta=0.94 really is on page 9.
16.     The 'margin of error' seems the width of the confidence interval. If so, I would refer to it
explicitly.
17.     Add numbers for all the equations.
18.     The title is not appropriate. I would refer to 'power and sample size'.

Reviewer #2: This manuscript deals with providing a means of properly considering sample size
and statistical power issues when dealing with time-stratified case-crossover studies. The focus
is on studies that deal with assessment of acute (i.e., short term) health impacts of environmental
exposures, but the issues discussed have the potential to inform studies in any other domain area
with similar study designs.

Several important issues pertinent to sample size and statistical power aspects related to this
unique, yet very important, study design are discussed. In particular, the need to pay attention to
the proper study unit in determining sample size and power and also the unique importance of the
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within matched-set variation in exposures (which is expected to be relatively much small than the
variance of exposures to be observed over the entire study period. Both of the above issues are
important and have direct impact on determining sample sizes (and hence the eventual value of
any given relevant study). The Maximum Likelihood based calculations for the proposed formulae,
albeit ad-hoc and very informal, are based on parameters to be estimated under the proper
conditional logistic regression modeling framework.
  
Major Issues

The biggest problem with the paper is the ad-hoc nature of the proposed techniques for sample
sizes and statistical power, and the way they are justified.

The insights provided, while important and worthy of serious consideration, are not particularly
novel. These are facts that ought to be well known and practiced by any properly trained and
experienced biostatistician and epidemiologist involved in such studies.

As written, the manuscript reads like a primer for best practices in conducting such studies and
as a precautionary document for pitfalls against ending up with inappropriately designed time
stratified case-crossover studies.     

The differences and nuances between the "weaker" and "stronger" relationship scenarios are not
well developed and articulated.

The supplement provides more details, but they all remain to be summaries of well known
principles, based on informal reasonings and calculations  - even though several relevant issues
are discussed such as issues related to the nature of the exposure (continuous vs. categorical)
and issues with adjustments for other variables.

Reviewer #3: This is a very pedagogical paper that illustrates how to make simple size
calculations for case-crossover studies. The article can be useful for planning purposes, as it
provides examples of how to calculate the relevant parameters using a spreadsheet. Besides, in
contains an interesting supplement that provides more insights.

Comments:

1) typo in page 6: 've'.

2) 'MSW' in page 9. Should it be 'MSD' instead? If not, MSW has not been defined.

3) A case-control study can be seen as a particular case of a time series study
(https://pubmed.ncbi.nlm.nih.gov/16809430/). Thus, it may be interesting that the authors
discuss the approach taken by Armstrong et al (https://doi.org/10.1186/s12874-019-0894-6).
They discuss that it may be useful for case-crossover analysis. It would be good to describe the
similarities, and even if one reaches the same conclusions trying to replicate one of their
examples.

4) Supplement, page 17. The last sentence in section A can be misleading. Actually, as the authors
mention elsewhere, when beta is further from zero we are trying to detect a stronger effect and

https://pubmed.ncbi.nlm.nih.gov/16809430/
https://doi.org/10.1186/s12874-019-0894-6
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the required sample size will be smaller. What the authors really mean is that assuming a beta
further from zero leads to larger values of the standard error. The overall effect of increasing beta
on required sample size would be the combination of these two effects.

5) the symbol in eFigure 3 is not seen properly in my file.

6) Page 28: the authors mention that in this case the MSD is not necessarily smaller when weights
are calculate at non-null vales of beta. However, in the main text (pages 9 and 10) it seems the
authors suggest this is always the case. It would be good to clarify if this is always the case, or if it
was just a trend observed in the example.

7) Page 29: the reference to eFigure 1 should be eFigure 4, I think.

8) It could be useful to provide a spreadsheet with the data used in the examples and the
formulas implementing the calculations.
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