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SUMMARY

Statisticians and epidemiologists generally cite the publications of Prentice & Breslow (1978)
and Breslow et al. (1978) as the first description and use of conditional logistic regression, while
economists cite the book chapter by Nobel laureate McFadden (McFadden, 1973). We describe the
until-now-unrecognized use of, and way of fitting, this model in 1934 by Lionel Penrose and Ronald
Fisher.

Some key words: Birth order; Down’s syndrome; Estimating equation; Family-based selection; Maternal age;
Peer review; Relative odds; Standard error.

1. Introduction

In epidemiological research, conditional logistic regression is historically thought of in the context
of matched case control studies (Breslow et al., 1978; Prentice & Breslow, 1978; Keogh & Cox, 2014).
It can also be seen as providing the likelihood contributions involved in the fitting of the Cox model in
survival analysis, if one regards each risk set as a matched set (Liddell et al., 1977). Its first application
in economics research was to ‘choice-based’ or ‘outcome-based’ sampling (McFadden, 1973). The
regression approach, aided by computing advances, was a major step up from applying conditioning
to a series of 2 × 2 tables involving just binary determinants.

Breslow (2003) traced these parallel, but relatively short, roots of conditional logistic regression
and noted that those in one field were unaware of the statistical developments by professionals in the
other. The aim of this present paper is to identify and revisit a much earlier application of conditional
logistic regression. In addition, with the help of archival material, it describes the intense collabora-
tion and calculations that preceded its publication, how the two publications came to be and the
personae involved. To make the technical material in that application more accessible to modern-day
readers, it begins with how the model is used and fitted today.

2. Conditional logistic regression today

Pardoe & Simonton’s (2008) prediction of Academy Award winners is a useful orientation to the
simplest version of conditional logistic regression. One has a ‘set’ of data for each year; for any given
year, it has as many rows as there were nominees that year, with each row containing the vector (z)
of predictors, and a 0/1 indicator (y) of whether the nominee in that row was the eventual winner. In
a year in which there were a set of, say, five nominees, the probability that a specified nominee with a
vector z will be the winner is taken to be

exp[βz]
/ ∑

exp[βz′],

⃝c The Author(s) 2024. Published by Oxford University Press on behalf of the Biometrika Trust.
All rights reserved. For permissions, please email: journals.permissions@oup.com
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2 J. A. Hanley

where β is the corresponding vector of regression coefficients, and the summation extends over all
five nominees in the set. Thus, the after-the-fact likelihood contribution from that year is simply this
same expression, with the specified z replaced by that of the nominee who did win (y = 1). The overall
loglikelihood is the sum of the year-specific ones, and is easily maximized.

The idea of a ‘set’ of candidates for an award has a direct analogue in epidemiological research
and in survival analysis, and software developers have exploited this commonality (Lumley, 2024).
However, the likelihood can be more complicated. While there is only one winner per Oscar compe-
tition, there can be more than one case in a matched case control set; and if the survival time scale
is coarse, ‘ties’ can occur: two or more candidates in a risk set may suffer the event of interest at the
discrete time that defines that risk set.

3. Historical background

3.1. The role of parental ages in Down’s syndrome
In the late 1950s, what we today call Down syndrome or Down’s syndrome, or trisomy 21, was

found to be a genetic disorder caused by the presence of all/part of a third copy of chromosome 21.
It is typically associated with physical growth delays, characteristic facial features and a range of
intellectual disability. A striking epidemiological feature is the large role of maternal age in the prob-
ability of its occurrence. One of the earliest investigators to document this role was the English human
geneticist Lionel Penrose (Harris, 1973). Penrose’s main work was on the genetics of intellectual
deficit, but he had wide ranging interests. As a Quaker, he opposed war, and spent the World War II
years working in Canada. In 1945, he returned and became the chair of genetics at University Col-
lege, London, a post that had remained vacant since Ronald Fisher moved to Cambridge University
in 1943.

He first studied the relative effects of the mother’s and father’s ages, and, after accounting for the
high correlation in the ages, concluded that the father’s age is ‘not a significant factor’, while the
mother’s age ‘is to be regarded as very important’ (Penrose, 1933). For further details, and Fisher’s
role in it, see the Supplementary Material. Penrose’s next disentanglement project presented a much
more difficult statistical problem, involving, again, two highly correlated suspects.

3.2. The role of the mother’s age and birth order
Fisher had a much larger role in this. The 14 letters they exchanged between December 1933 and

April 1934 show just how large it was. Also unrecognized, until now, is that the statistical analysis
involved the fitting of what is known today as the conditional logistic regression model.

The model is described briefly in Penrose (1934a) and in technical detail in
Penrose (1934b). To appreciate why Fisher suggested it, we begin with the first version of
Penrose’s manuscript, which was received by the Royal Society on November 25, 1933. Penrose’s
investigation

involved the accurate determination of the maternal age at the birth of all offspring in 217 sib-
ships, each containing one or more Down’s children. The birth order was also recorded with
particular care: miscarriages and stillbirths were deemed to affect the ordinal number of subse-
quent births, but they have been excluded from the data as presented here. It is very uncertain
whether they represent offspring affected or not by Down’s syndrome and I wish to include in
the data only those individuals in the 217 sibships of whom it could be said with certainly that
they were either Down’s syndrome or not. (Penrose, 1934a)

In that version, Penrose examined differences in mean ages and mean birth ranks. After correcting
for the effect brought about by the presence in the data of families of different sizes, it seemed that ‘the
effect of birth rank on the incidence of Down’s syndrome is therefore apparently of great significance,
though it is not quite as marked as the maternal age affect.’ In order to assess how much of this could
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Miscellanea 3

Fig. 1. Beginning of Fisher’s six-page letter to Penrose. The letter contains a term that is no longer used.

be an artifact of the high correlation between maternal age and birth order, he then proceeded ‘to
calculate the expected number of affected children occupying each birth rank on the assumption
that we only know the maternal ages for these individuals and not the orders of their births’. The
‘satisfactory’ results of this calculation gave him ‘no indication that any birth rank is more frequently
occupied by a Down’s syndrome child than would be expected from the mere consideration of the
maternal ages at which these children are born.’

Today, thanks to the Genetics Collection in the UCL digital collections (Wellcome Library, 2024),
we are able to observe a very special instance of the review process ‘back then’, and to assess in some
detail the pioneering contributions of both the author and the reviewer.

3.3. Fisher’s pivotal role in this study
The Penrose archives at UCL include the original of a letter sent to him less than two weeks after

the manuscript was received. The carbon copy is at the University of Adelaide, Australia. The first
paragraph is reproduced in Fig. 1. The second paragraph moves directly to the crux of the problem,
the need to condition on the family: keeping each family as a set respects the design.

The whole difficulty turns on the point made in section three, but that section makes it far from
clear. You do not mention the essential point, that choosing families only containing [Down’s
syndrome cases] the proportion of [Down’s syndrome cases] must be highest in the smallest
families, which generally contain early, but not late children by birth rank.

The Supplementary Material may be of interest to readers who themselves have undergone peer
review and are curious about the tone of Fisher’s comments on Penrose’s flawed approach. Still
relevant today is Fisher’s preamble to his suggested course of action:
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4 J. A. Hanley

Now it seems to me that your family data are much too important for you to be satisfied with an
unconvincing statistical analysis. I mean, that no one reading your paper critically will feel sure
that a more exact treatment would not have yielded a different result. I may add that I entirely
expect your actual conclusions to be the right ones, but that is no sufficient reason why they
should not be adequately established.

The next section will describe how Penrose, with Fisher’s help, followed his suggestion:

The only convincing test for a theory, is a direct comparison between what has been observed,
and what must be expected on that theory. The appropriate theory here is, that the probability
of a Down’s syndrome child depends on age, in some manner unknown prior to the data, but not,
given the age, on the birth rank. As I think you already see the only relevant facts available to
test this theory consist of the distribution of Down’s syndrome children within families of given
constitution in respect of (a) number of children recorded, (b) birth rank of these children, (c)
maternal ages, and (d) number of Down’s syndrome children. Families wholly Down’s syndrome,
like families wholly normal will give no information. [italics added]

Penrose (1934a) fitted and reported the results of what may well be the first conditional logistic
regression. He shared the technical details, and the child-level data in Penrose (1934b).

4. The first conditional logistic regression: in brief

In almost the same words as in Fisher’s initial letter, the essence of the model is summarized in
the second paragraph of § IV of Penrose (1934a). That section first paraphrased Fisher’s criticisms,
referring to them as ‘inaccuracies in the statistical treatment I have so far employed here’. Thus,

to avoid these sources of ambiguity the data have been subjected to analysis by an entirely dif-
ferent method which was suggested by Professor R. A. Fisher. By use of this new process we
are able, after a single complex reconstruction, to compare the observed number of Down’s syn-
drome cases in any given birth rank with the number which is to be expected on the hypothesis
that the probability of a Down’s syndrome child depends upon maternal age (in some manner
unknown prior to the data) but not, given age, upon birth rank.

In a cryptic passage that puzzled me for years, and that I explain in the next section, Penrose then
presents a model, of an as-yet-to-be-specified functional form, for a specific pair of maternal ages.
He adopted Fisher’s symbol x to denote a relative odds. Here, I have replaced it by the Greek letter
ω, and replaced his letter S for the sum by today’s

∑
.

Let us suppose that there are a number of families containing only two children born at the
maternal ages of 32 and 42, respectively, and that one child in each family has Down’s syndrome.
Call p32 and p42 the [age-specific] probabilities that a Down’s syndrome child is born at these
maternal ages. The frequencies of families which have the Down’s syndrome child at age 32 to
those which have the Down’s syndrome child at 42 will be in the ratio p32/(1−p32) : p42/(1−p42),
or, say, ω32 : ω42 where ω is proportional to [the odds] p/(1−p). In any such family the expectation
that the child born at 32 is a, or in this case, the, child with Down’s syndrome is ω32/(ω32 + ω42).

He then explains that, in general, this means that

for families containing only one Down’s syndrome child, the expectation that a child whose
(relative odds) was ω, is the affected one is ω/

∑
ω′, where

∑
ω′ is the sum of the values of ω

for the maternal ages of [each of the] children in the family.

With the children in the family regarded as a set, this expectation has the same structure as the condi-
tional probability defined in § 2; thus, the likelihood contribution also has the same structure. Fisher
had not yet specified a functional form for the age specific p.

The more complex expressions for the expectations involving families with more than one Down’s
syndrome child were left for the technical paper, and will be addressed in the next section of the
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Miscellanea 5
Table 1. Trial ω values, and age-specific fitted (‘calculated’) frequencies of Down’s syndrome

(DS) children

Maternal age group 15–19 20–24 25–29 30–34 35–39 40–44 45–49

Observed no. of normal children 10 114 199 228 170 67 15
Observed no. of DS children 3 13 14 27 64 81 22

Trial no.
1 ω values 83[4] 31[2] 19[1] 33[2] 104[5] 321[15] 407[20]

Calculated no. of DS children 3.69 16.87 19.50 29.11 59.48 76.99 18.35
...

7 ω values 22[4] 10[2] 6[1] 19[3] 88[15] 296[50] 558[90]
Calculated no. of DS children 2.98 12.87 13.82 26.58 64.14 81.46 22.17

.............. .................
clogit Scaled ω values [3.47] [1.59] [1] [2.96] [13.19] [43.62] [81.53]

Source: Page 440 of Penrose (1934a).
Since the ω values are relative odds, values in brackets have been scaled so that the lowest risk age group
(25–29) serves as the reference category, with a scaled odds of 1:1. See Penrose (1934b) for how he chose the
ω’s for each trial. The scaled ω values fitted in five iterations by the clogit function in the R survival pack-
age (R Development Core Team, 2024) yielded calculated frequencies that were, in absolute terms, within 10−9

of the observed ones.

present essay, along with why Fisher moved from probabilities, p, to relative odds, ω. Before he
addressed the form of the ω function, Penrose stated the operational criterion of fit, which in his
review, Fisher had simply stated, without justification: the best-fitting ω values will be those where
the ‘number of Down’s syndrome children observed at any given maternal age tallies with the sum
of the expectations attributed to each child at that maternal age.’ As shown below, the ω’s that satisfy
this estimating equation are maximum likelihood estimates.

‘In order to simplify the arithmetic’, but also probably because of ‘the considerable curvature of
the regression on age’, he chose to model the age function, what Fisher simply referred to as the ω

‘series’, with seven parameters, one per five-year-wide age bin. Without describing how he chose his
successive approximations, he reported the ω values shown in Table 1. The technical paper tells us he
stopped after seven iterations, when the fitted frequencies were within 1% of the observed ones. Since
the ω scale is necessarily relative rather than absolute, it is easier to appreciate their range when the
fitted ω’s are scaled so the lowest value is 1.

With these fitted age effects, he calculated the 17 birth-order-specific fitted numbers of Down’s
syndrome children and displayed them as columns of his Table IV, side by side with the 17 observed
marginal frequencies. Since cases were scarce at higher birth orders, he formally examined the fit in
five grouped birth ranks, and found that the agreement between the theoretical and observed numbers
was ‘satisfactory’.

Using the raw data in selected sibships, the calculations and other technical details are nicely laid
out in Penrose (1934b). A number of them, and their ‘provenance’, are of modern interest.

5. The first conditional logistic regression: technical details

5.1. Why is the model in terms of relative odds?
Fisher wished to provide prospective probabilities for the population, and so his ulti-

mate estimand was the probability (p) as a function of age. Why he switched from p to
ω = p/(1 − p), is not as ‘evident’ to us as it was to him. Characteristically, he did not justify this
odds, or log odds, scale. As it turns out, the choice derives directly from the outcome-based study
design: the data come from families and these families have at least one Down’s syndrome child. And
so, when one conditions on this fact, the within-family conditional distribution, within these specially
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6 J. A. Hanley

selected families, is more easily written in terms of the relative odds, the ω, than the probabilities. This
can be better understood if we revisit Fisher’s example of a two-child family.

The entities p32 and p42 in that example refer to the absolute age-specific probabilities of a Down’s
syndrome (D) child in the population that the sibships arose from. Denote by q32 = 1 − p32 and
q42 = 1−p42 the corresponding probabilities of a normal (N) child. Thus, among two-child families in
this source population, with each family providing two independent Bernoulli trials with probabilities
p32 and p42, respectively, the relative numbers of each of the four possible family compositions are

N32N42 : q32q42, D32N42 : p32q42, N32D42 : q32p42, D32D42 : p32p42.

Only families with a discordant pattern are included in the series; thus, among these informative
sibships the frequencies of the two compositions D32N42 : N32D42 will be in the ratio

p32q32 : q32p42 or (p32/q32) : (p42/q42).

When, ultimately, Penrose referred to the fitted relative odds, the fitted ω, as the relative probabilities
of a Down’s syndrome child, he was most likely exploiting the fact that even at the highest maternal
ages, the population-level probabilities do not exceed a few percent, so that the probability p and the
odds p/(1 − p) are numerically close to each other.

5.2. Sibships containing two Down’s syndrome children
Seven of the 217 sibships contained two affected children each. In today’s survival analysis termi-

nology, these are equivalent to risk sets containing ‘ties’; in case-control studies they correspond to
matched sets with multiple cases per set, a duality exploited by Lumley (2024).

As can be seen in the Supplementary Material, Penrose’s description of the expression for the
expected number of Down’s syndrome children at a given maternal age is minimally adapted from
the wording on page 4 of Fisher’s review, and therefore exasperatingly cryptic. It becomes ‘more
evident’ if we use an actual four-child sibship, D31, N34, N38, D44, that Penrose used to illustrate the
calculation. Then, the expectation at, say, age 31 is

ω31(ω34 + ω38 + ω44)

ω31ω34 + ω31ω38 + ω31ω44 + ω34ω38 + ω34ω44 + ω38ω44
.

The ‘multiplicities’ in the Fisher–Penrose context arise naturally. Some of the ties addressed in the
discussion of Cox’s 1972 paper (Peto, 1972), and subsequently (Breslow, 1974; Efron, 1977; Gail et
al., 1981; Kalbfleisch & Prentice, 2002), are merely the result of a coarse time scale.

5.3. The form and fitting of the ‘relative odds as a function of age’ model
Fisher suggested grouping the ages in

five or three year groups in obtaining trial values, and increasing or decreasing these for individ-
ual years, in proportion to the actual ratio of Down’s syndrome children observed to expected,
in each year after the first trial.

Penrose stayed with seven five-year bins, and piecewise constant ω’s, throughout. As with much of his
writing, Fisher did not justify his criterion for a good fit, or derive its implications. Characteristically,
it was ‘evident’ to him what should ‘tally with what’ in what are effectively seven estimating equations:

Given the series of (7 ω) values, therefore, for all ages, the expectations of each recorded child
being a Down’s syndrome child can be set down […]. The assigned ω values will be correct when
the observed numbers at each age tally with those expected.

These balancing equations resemble a method-of-moments approach, but they also follow directly
from maximizing the likelihood in § 2, with the ω for a given child represented as exp(

∑j=7
j=1 βjzj),
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Miscellanea 7

where βj is the log of the relative odds for a child in maternal age category j, and the binary variate zj

indicates if that child belongs in category j. To see this, suppose that the affected child is in category
3, and denote the sum of the ω’s in the sibship as #. Thus, the likelihood contribution by this sibship
is exp[β3] /#. The loglikelihood contribution is β3 − log(#), and its partial derivative with respect to
β3 is 1 − d log(#)/dβ3. Two applications of the chain rule for derivatives and a little calculus show
this to be 1−E3, where E3 = ω3/# is the expected number of affected children at position 3. Summed
over all sibships, the derivative becomes the number of affected children occupying age bin 3 minus
the sum of the expected numbers of affected children in that age bin. Setting each of the partial
derivatives to zero yields the estimating equations just stated by Fisher in 1933, but formally derived
in equations 12–15 of Cox (1972).

Having arrived at close-to-maximum-likelihood coefficients for his maternal-age-only model, Pen-
rose could now test his theory; see the Supplementary Material, which also shows how we might test
Penrose’s theory today.

6. Discussion

This ‘archeological’ item is of both historical and modern interest. To begin with, the logistic form
of Fisher’s no-name model was developed from first principles; it reflected the constraints in the
family-based data collection, but its parameters reflected what occurs in the source population. This
has current relevance to the ongoing, and sometimes passionate, debate about parametric models
for binary data, and whether to prefer odds ratios or risk ratios, or indeed something else. In this
application, modelling the odds was a practical way to reflect the design.

The investigation it was applied to is a vivid and engaging and, with multiple cases in some sib-
ships, comprehensive example that even someone new to conditional logistic regression can easily
relate to. Mapping the variable (age) into seven ‘variates’ made it a model that was quite large for
its day.

It is not surprising that Fisher and Penrose recognized the need for a conditional approach: as
geneticists, they were aware of the distortions that arise from the ‘outcome-based’ sampling that
begins with the affected family member, or ‘index’ person.

Although the word ‘likelihood’ was not mentioned, it was central to how Fisher linked
the model for the source population and the data from the studied families, and undid this
distortion.

In most pioneering statistical works all we get to read is the published version, with little indication
of how it came to be, or the personae involved. In this instance, apart from one possible face-to-face
meeting they may have had, we have a written record of their extensive exchanges. It bears out the
legendary keen insight and intuition, and sometime cryptic explanations, that characterize Fisher’s
written works. The correspondence with Penrose gives the impression that, contrary to the persona
displayed in disputes with his critics, Fisher was a warm and collaborative colleague to those whose
work he respected.

Before we celebrate how far we have come in statistical methods/computing in the last 90 years.
we might wish to reflect on the price of this progress and on what we have forgotten or missed in
understanding along the way. For example, by simply using the clogit program to fit Penrose’s
seven-parameter model for the ω values we miss the fact that the seven sufficient statistics are the
numbers of Down’s syndrome children in each of these seven maternal age categories. Equating the
partial derivatives of the loglikelihood to zero results in seven balancing equations that equate these
sufficient statistics to their seven expected/fitted values. Finding this balance requires an iterative
search. And by simply reading off the standard errors, we miss the fact that the precision is a function
of the within-sibship (co)variation of the seven indicator variables.

Both our understanding of the aetiology of Down’s syndrome and its various genotypes, and its
epidemiology (de Graf et al., 2015) have changed considerably in the past 90 years. Nevertheless,
it can be instructive to study the first application of a statistical model, particularly when it was
developed by luminaries in both statistics and in the subject matter area.
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Supplementary material

The Supplementary Material contains a description of the dataset extracted from the two 1934
papers and further details.

Note regarding the references: the titles of L. S. Penrose’s articles contain terms no longer used.
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SUMMARY

This supplement expands on the above-mentioned Biometrika article. That article describes 10

a conditional regression model used in two 1934 papers written by Lionel Penrose, but with
considerable input from the referee, R A Fisher. Section 1 of this supplement describes an earlier
paper (Penrose, 1933), where the topic was the role of mother’s age and father’s age in the
probability that their child will have Down’s Syndrome. In it, Penrose concluded that the father’s
age did not matter, and so he moved on to topic of mother’s age and birth order. The two 1934 15

papers (one substantive (Penrose, 1934a), one methodological (Penrose, 1934b) ) on mother’s
age and birth order are the topic of the Biometrika article. The dataset we extracted from the two
1934 papers, and are making available, is described in section 7.

1. PENROSE’S 1933 PAPER ON PARENTAL AGES

Penrose’s conclusions were based on data he had collected on 150 families, each one contain- 20

ing at least one child with Down’s syndrome. He applied two different statistical methods to the
data on the 154 Down’s syndrome and 573 normal children: (i) partial correlations, previously
used in animal studies by the American geneticist Sewall Wright, and (ii) other-parent-adjusted
age-differences between Down’s and normal children, suggested to him by Ronald Fisher. [ For
more details, see the unpublished manuscript “Prob[Down syndrome | parental ages]: Statistical 25

Sudoku and re-analyses of data from 1933” by Hanley and Roy.]
In his 1932 letter to Fisher thanking him again for his advice on how to disentangle the parental

age effects, Penrose added

I am also working on the relative effects of maternal age and place in family: a prob-
lem which intrigues me even more than that concerned with paternal age. Sooner or 30

later I would like to send you the results I have got. Here, again, the maternal age
seems to be the significant factor, the order of birth having no effect.

2. INFERIOR APPROACH IN FIRST SUBMISSION OF PENROSE’S 1934 PAPER

Penrose began by reporting a 6.1 year difference in the mean ages of mothers of Down’s
syndrome and normal children, and a 1.04 difference in their mean birth ranks. Following a 35

correction for the effect brought about by the presence in the data of families of different sizes,

C� 2021 Biometrika Trust
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the ‘displacement’ in birth order increased to 1.98 ordinal places, indicating that “the effect of
birth rank on the incidence of Down’s syndrome is therefore apparently of great significance,
though not it is not quite as marked as the maternal age affect.” In order to assess how much of
this could be an artifact of the high correlation between maternal age and birth order, he then40

proceeded “to calculate the expected number of affected children occupying each birth rank on
the assumption that we only know the maternal ages for these individuals and not the orders of
their births”. The “satisfactory” results of this calculation gave him “no indication that any birth
rank is more frequently occupied by a Down’s syndrome child than would be expected from the
mere consideration of the maternal ages at which these children are born.”45

3. FISHER’S FURTHER CRITICISM OF THIS INFERIOR APPROACH

Readers may wish to compare the tenor of Fisher’s comments on Penrose’s (initial) approach
with the tenor of modern day comments:

In section four, you make out a reconstruction of the expected distribution of Down’s
syndrome children on the assumption that neither birth rank nor age influences the50

incidence. From this reconstruction, you find expected numbers in each birth rank,
but you do not do the same for ages, or discuss whether or not there is also a contri-
bution to the regression on age in the reconstruction. Two other points on this part
of the paper are, the absence of any discussion of the effect on the sampling error
for using this reconstruction (I imagine it is greatly to reduce it) , and [...] In the55

interesting question of first births, you do not discuss the considerable curvature of
the regression on age.

4. THE 1934 PRESENTATION OF EXPECTATIONS IN FAMILIES WITH 2-AFFECTED
CHILDREN

Seven of the 217 sibships contained two Down’s syndrome children each. In today’s survival60

analysis terminology, these are equivalent to risksets containing ‘ties’; in case-control studies
they correspond to matched sets with multiple cases per set. [The Stata manual explains that
their cmclogit command fits McFadden’s choice model with just 1 choice per set, which is a
specific case of the more general conditional logistic regression model fit by clogit.] Penrose’s
description of the expression for the expected number of Down’s syndrome children at a given65

maternal age is adapted from the wording in page 4 of Fisher’s December 6 letter. In this online
supplement, I retain the original notation, where the relative odds is denoted by x, rather than the
more modern ! I use in the main text.

For families containing two Down’s syndrome children, the expectations of Down’s
syndrome children at each place will be xS0(x)/SS(xx), adding up to two, where70

S0(x) is the sum of the other values, and S(xx) stands for the sum of all the products,
two at a time.

For families containing two Down’s syndrome children, the expectations of Down’s
syndrome children at each place will be xS0(x)/

PP
(xx0), adding up to two,

where S0(x) is the sum of the other values, and
P

(xx0) stands for the sum of all the75

products, taken two at a time.
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Table 1. Trial x values, and age-specific fitted (‘calculated’) frequencies of Down’s syndrome
(DS) children

Maternal Age Group : 15–19 20–24 25–29 30–34 35–39 40–44 45–49

Observed no. of normal children : 10 114 199 228 170 67 15
Observed no. of DS children : 3 13 14 27 64 81 22

Trial No.
1 x values : 83[4] 31[2] 19[1] 33[2] 104[5] 321[15] 407[20]

Calculated no. of DS children : 3.69 16.87 19.50 29.11 59.48 76.99 18.35
2 x values : 46[4] 22[2] 12[1] 28[2] 106[10] 319[30] 467[40]

Calculated no. of DS children : 3.20 15.48 16.03 28.29 63.00 78.46 19.55
3 x values : 19[4] 8[2] 5[1] 14[3] 82[15] 330[70] 542[110]

Calculated no. of DS children : 3.04 12.52 13.39 23.27 53.85 86.05 21.87
...

7 x values : 22[4] 10[2] 6[1] 19[3] 88[15] 296[50] 558[90]
Calculated no. of DS children : 2.98 12.87 13.82 26.58 64.14 81.46 22.17

.............. .................
clogit scaled x values : [3.47] [1.59] [1] [2.96] [13.19] [43.62] [81.53]

Expanded version of Table 1 in the article that this online material refers to, but using the original Fisher-Penrose
notation where x, rather than !, denotes the relative odds. Source: Page 440 of Penrose (1934a). Since the x values
are relative odds, values in parentheses have been scaled so that the age-group with the lowest risk (25–29) serves
as the reference category, with a scaled odds of 1:1. Penrose limited himself to 1-3 digit integer values of x, and
so, in the same spirit, the scaled values have also been liberally rounded. See Penrose (1934b) for how he chose
the x’s for each trial. The scaled x values fitted (in 5 iterations) by the clogit function in the R survival
package yielded calculated frequencies that were, in absolute terms, within 10�9 of the observed ones. Note that
there are slight discrepancies between the frequencies in Penrose (1934a) and Penrose (1934b), and between the
number of unaffected children reported in both articles (807) and the number of unaffected children that appear in the
Appendices (806).

5. HOW PENROSE EXAMINED THE (RESIDUAL) BIRTH-ORDER EFFECTS

Penrose’s theory was that “ the probability of a Down’s syndrome child depends on age [...]
but not, given the age, on the birth rank.” To test it, he aggregated the fitted expectations for each
of the 1031 children by birth order. To Fisher, “the lack of systematic deviations” of the 17 birth- 80

order-specific numbers of Down’s syndrome children from these calculated frequencies in Table
II in Penrose (1934b) was “very reassuring”, but “it will be still more interesting to compare
these with the random sampling deviations to be expected subject to the rather severe restrictions
imposed.” For formal testing purposes, Penrose collapsed the frequencies into the 5 birth-order
categories shown in Table 2. In order to show that the agreement between the theoretical and 85

observed numbers was “satisfactory”, he calculated a separate standard error for each of the five
(Observed � Expected) discrepancies, and noted that each discrepancy was within 1 standard
error of zero. His numbers are shown in Table 2.

6. PENROSE’S STANDARD ERRORS FOR THE BIRTH-ORDER-SPECIFIC RESIDUALS

The complexity of the five standard errors (Table II) stemmed in part from 90

the fact that the totals of the 7 columns (of the 17⇥ 7 table of fitted expectations)
have been fixed by the process of fitting x values, the object of which was to make
these totals correspond as closely as possible to the observed numbers.
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Table 2. Test of theory that birth order is not an aetio-
logical factor: observed (O) and expected (E) numbers

of Down’s syndrome children, and standard errors
Standard Error

Birth rank O E Difference 1934 2024

1st 26 23.97 +2.03 2.68 2.9
2nd or 3rd 55 57.56 -2.56 3.85 3.9
4th, 5th or 6th 59 61.98 -2.98 4.07 4.1
7th to 10th 61 58.37 + 2.63 3.41 3.3
11th to 17th 23 22.14 +0.86 1.84 1.8

Total 224 224.02

Source: Table X page 122 of Penrose (1934a). E’s computed from
fitted x function in Table 1. 2024 Standard errors estimated by sim-
ulation (see text).

To correct the standard errors for “the rather severe restrictions imposed” ( i.e., to “allow[...] for
the fixing of the totals of the [7] columns”), Fisher showed Penrose how to calculate the several95

different types of variances and covariances involved, and numerically inverted a 7⇥ 7 matrix
for him.

The descriptions and results take up eight pages in Penrose (1934b), and are not easy to follow.
Today, instead of following them, we can use our considerable computing power to derive a
simulation-based approximation to the “restricted” random sampling deviations that the fitting100

imposes on the 17 (or 5) birth-order residuals. To do so, we began with the clogit-fitted x
values at the foot of Table 1. We used these, together with the maternal ages in the sibship, to
compute the expected number of Down’s syndrome children at each position in the sibship. For
each of the 217 sibships, we used these based-on-age-only expectations to randomly allocate the
case(s) of Down’s syndrome among the childrens’ positions in the sibship. In 544 of the 1 million105

sets of random allocations carried out, the overall numbers of Down’s syndrome in the 7 age bins
very closely matched the corresponding numbers in Penrose’s dataset. (We defined ’very closely’
as an excess of at most 1 Down’s syndrome case in at most 1 bin, counterbalanced by a deficit
of at most 1 in at most 1 other bin.) The 5 estimated standard errors shown in the ‘2024’ column
in Table 2 were calculated using the standard deviations of the birth-order-specific numbers of110

Down’s syndrome children across these 544 simulated datasets.They are similar in magnitude to
those calculated theoretically by Penrose and Fisher.

Today, with computational considerations no longer an issue, we would approach this test of
the theory differently (see next section). Thus, the complex and tedious calculations that went
into these five standard errors, and the description of it that takes up 8 pages in the methods paper115

will not be discussed in detail here. It was, however, a set of calculations than Fisher not only
insisted on, by also had a hand in himself.

7. FROM BRUNSVIGA (1934) TO MACBOOK AIR (2024): DATASET AND HARDWARE

The Fisher-Penrose correspondence suggests that they shared the data on 217 cards, one
per sibship, probably in the same format that the data appeared in the Appendices to120

the two 1934 articles. In 2024, we might arrange this information electronically in an R
data frame, with 224 + 807 = 1031 rows, one per child, and 4 columns: sibship number,
Downs (1) or Normal (0), maternal age, and birth-order; such a csv file, is available at
https://jhanley.biostat.mcgill.ca/Penrose .
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In his study at home, Penrose had a “handle-powered desk calculating machine called the 125

Brunsviga. This was the latest thing in computing technology at the time” and his son, then aged
5-6, remembers how “it made a very satisfying crunching noise when you turned the handle to
do a big multiplication or division sum” (Penrose, 2007). Fisher would have had a computing
machine at UCL; and in his March 12 letter explaining how to compute the entries in the 29⇥ 29
Table V of Penrose (1934b) that corresponded to different family configurations, he told Penrose, 130

“I have run out these 6 families out at home with logarithm tables.” The analyses in 2024 were
carried out on a MacBook Air machine.

8. FROM BRUNSVIGA (1934) TO MACBOOK AIR (2024): SOFTWARE, AND FITTED
CONDITIONAL MODEL INVOLVING JUST MATERNAL AGE

Fisher’s procedure has already been described, and the fits it produced are given in Table 1. 135

The last row of Table 1 shows the x values fitted by the clogit function in the survival
package in R version 4.3.1. The duality mentioned in the documentation is of note

[clogit] [e]stimates a logistic regression model by maximising the conditional
likelihood. Uses a model formula of the form case.status ⇠ exposure +
strata(matched.set). The default is to use the exact conditional likelihood 140

[the one Fisher used when dealing with two Down’s syndrome children in the same
sibship.]
It turns out that the log likelihood for a conditional logistic regression model equals
that from a Cox model with a particular data structure. [...] When a well tested Cox
model routine is available many packages use this ‘trick’ rather than writing a new 145

software routine from scratch, and this is what the clogit routine does. In detail, a
stratified Cox model with each case/control group assigned to its own stratum, time
set to a constant, status of 1=case 0=control, and using the exact partial likelihood
has the same likelihood formula as a conditional logistic regression. The clogit
routine creates the necessary dummy variable of times (all 1) and the strata, then 150

calls coxph (Lumley, 2024).

Penrose stopped after 7 trials of x, when the 7 fitted frequencies were within 1% of the ob-
served ones. [Fisher and Penrose discussed at some length whether this was close enough to not
affect the conclusions.] Today, iteration in the coxph routine continues until the relative change
in the log partial likelihood is less than some pre-specified ‘epsilon’, or the absolute change is 155

less than the square root of this. In Perrose’s dataset, with the default epsilon, it converges in
5 steps, and produces 7 fitted frequencies that, in absolute terns, are all within 10�8 of the 7
observed ones.

9. TESTING PENROSE’S THEORY TODAY

Today, most data-analysts would test Penrose’s theory directly, by adding some representa- 160

tion of birth order to a conditional logistic regression model that already included maternal age.1
Adding Penrose’s 5-level factor (4 parameter) representation increases the log-likelihood in Pen-
rose’s age-only by a mere 1.6 units, whereas adding a (1 degree of freedom) linear representation

1 It is possible, in a regular regression context where one adds a regressor x2 to a model that already contains x1, to fit the two
�’s in the joint model using a two-step procedure. In the the first step one calculates the residuals unexplained by x1 alone; In
the second step, these residuals are regressed, not on x2 itself, but on the portion of x2 not already explained by x1. i.e., on the
x2|x1 residuals.
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Fig. 1. Reproduction of Figure in Penrose 1934b, entitled “final estimate of values of x for maternal age
groups,” and, superimposed on it, in blue, (i) the distribution of the maternal ages (ii) a scale in which the
relative probabilities begin at 1 (iii) a smooth x curve fitted with a 3 degrees of freedom spline by the clogit
function, and (iv) a horizontal relocation of the fitted x value that Penrose had plotted above a ‘central’ age of
47 so that its stands above age 45.8: of the 37 children in that ‘45–49’ age bin, some 15, 14, 7 and 1 of their
mothers were aged 45, 46, 47 and 48 respectively. Since he regarded the fitted x values as population based
estimates, Penrose compared them with ones from a large series of cases, where the rescaled values were 0.8,

0.9, 1, 2.2, 5, 19, and 58.

increases it by some 2.3 units. However, this increasing-probability-with birth-order may be an
artifact of the wide age bins, especially at the upper ages, that Penrose used: when 4- or 3-years-165

wide bins are used, the addition of birth order no longer improves the log-likelihood substantially.
After Penrose’s “first shots” at x, it became very clear to Fisher that “x increases very rapidly

from 35 years upwards, so that the evidence [the birth-order residuals] must be somewhat dis-
torted by a change in x value within your [age-]group.” Thus, he suggested “unless either you
take smaller age groups for the older ages , or if you prefer, take a smooth curve with two or three170

constants to give the x values for the individual years in this region.” Penrose stayed with seven
5-year bins, and, as is seen in Fig. 2, he plotted the final x values over the midpoints of these age
groups, rather than their statistical centres of gravity. Fisher’s suggested smooth curve (see Fig.
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2), easily computed today, shows considerable statistical parsimony over Penrose’s 6-parameter
model. 175

Given what we have seen so far, it is no surprise that the addition to this parsimomious age-
only model of a spline representation of birth order does not improve it. Nor was this a surprise
to Fisher

in fact one might say a priori that birth rank is in fact so closely associated with
maternal age that even a biggish lot of data gives not much scope for one cause to 180

manifest Itself when the other is eliminated.

10. LESS-APPRECIATED ISSUES IN CONDITIONAL LOGISTIC REGRESSION

With the ease with which this model can be fitted today, a number of subtleties specific to
the conditional version of logistic regression are not widely appreciated. The first of these is the
issue of correlated predictors raised by Fisher. Penrose thought that the correlation between birth 185

order and maternal age of “only” 0.66 left some scope to separate the effect of maternal age from
the effect of birth order. Although Fisher does not specify his measure of the association between
birth rank and maternal age, his “so closely’ phrase suggests he may well have appreciated that
it is not the ‘crude’ or marginal correlation of 0.66 that matters, but the within-sibship correla-
tion. In Penrose’s dataset, the ‘local’ or within-sibship correlation is 0.94! [Thus, in the (albeit 190

insufficient) model with age and birth order each represented as a 1 degree of freedom (linear)
term, the correlation between the 2 fitted coefficients is �0.92!]

The second, and related, issue is the precision with which the coefficients in a conditional
logistic regression are estimated. The two determinants are best appreciated by examining the
form of the information matrix, conveniently given in equations 16 and 17 in Cox (1972). Ap- 195

plied to Penrose’s example, it is the sum of (a special version of) the 217 within-sibship variance-
covariance matrices of the variates in the linear predictor. When calculated at the null (as in a
score test), all members of the sibship are weighted equally in computing the within-sibship co-
variance matrix; at a non-null value of the parameter(s), the members are weighted according to
the exponentiated values of their linear predictors. In what Cox (1972) called “an ‘exponentially 200

weighted’ form of sampling”, an member with a weight w is the statistical equivalent of w per-
sons in the reference category (Hanley, 2008). Thus the larger the number the sibships, the larger
the variances, and the smaller the correlations of the predictors within each sibship, the greater
will be the amount of information, and the better the precision or power.
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