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This work brought together two di↵erent interests of mine: the history of epidemiology,

and using ‘minimalist’ examples to teach statistical concepts and techniques.

I have long admired John Snow. Two aspects of his numerical work have always impressed

me: his ‘shoe leather’ data collection and his use of existing (usually governmental) data.

Sadly, the current-day telling of his work, and its focus on the Broad Street Pump story,

sidelines what I think is a much stronger piece of evidence for his waterborne theory of the

spread[
1
of cholera, namely the Grand Experiment in South London. Indeed he was in the

middle of his South London data collection (of the numerators) when he was called away

to the Broad Street outbreak. And he devoted less of his book to it (as Steven Johnson’s

book The Ghost Map so nicely tells it, it was Henry Whitehead who (later, after reading

Snow’s book) extracted the best evidence from the Broad Street episode.

Whenever I encounter a new statistical technique (such as GEE), I try to understand it

using as simple a dataset as possible, and using another established method as a cross

check. So, even though Rubin’s formula seemed intuitive to me, I wanted to see what

happened in the ‘null’ case. And I was very pleased to see that in this simple case where,

if we pretended that the full denominators
2
were missing, and so had to be imputed,

Rubin’s formula lines up with Woolf’s formula, which has been around since 1955.

If you would like to take revitalize it, I would be delighted to hear from you!

Sincerely,

James Hanley

webpage: https://jhanley.biostat.mcgill.ca | email: james.hanley@mcgill.ca

1
Starting from his initial, and beautifully argued, pamphlet in 1849, he always wrote

of the ‘mode of communication’ of cholera.
2JSM Attendees may not, but I still remember the vehemence of the attack, by a non-statistician,

on what he perceived as my ‘poor scholarship’ in using the ‘known’ denominators (41,676 and 24,477) I
used. I told him the two numbers I used as ‘known’ (or ‘pretend known’) denominators were purely to
illustrate a statistical concept. Later, when I looked into the critic’s own publication on the subject, I
was astounded at the lack of rigour/care displayed in his and his co-author’s publication on the topic. My
physician (also a colleague) was worried about what responding would do to my cardiac system. So, for
that and other reasons, I left it be.
But in 2024, a properly-reviewed article that addressed the critics’ ‘scholarship’ concluded that “Unfor-
tunately [...] are wrong in their initial claims, their analysis, and their conclusions. Snow’s statistical
intuition (and his approach), were absolutely correct. In 1856 he did not have the tools to demonstrate
the overwhelming influence of water, but applying modern statistical tools to Snow’s approach and data
fully vindicates Snow’s claim for the overwhelming influence of water.”

1

https://en.wikipedia.org/wiki/Henry_Whitehead_(priest)
https://jhanley.biostat.mcgill.ca
https://pubmed.ncbi.nlm.nih.gov/38308960/
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ABSTRACT

Multiple imputation techniques are increasingly used in epidemiology. In or-

der to appreciate the concepts and principles behind them, it is helpful to see

how they work in a simple situation where we already have well-established

formulae, such as ‘Woolf’s’ formula for the standard error of the log of a

cross-product ratio. This ratio is used to estimate a rate ratio when the

relative sizes of the denominators in the compared rates are estimated (via a

‘control’ or ‘denominator’ series) rather than known. We illustrate and com-

pare the standard error formula obtained by multiple imputation with that

of Woolf. We do so using the exposure information in the ‘numerator series’

of 300 deaths collected by John Snow using data from the ‘grand experiment’

which exploited ‘the intermixing of the water supply of the Southwark and

Vauxhall Company with that of the Lambeth Company, over an extensive

part of London’. For his denominators, Snow used the already-established

numbers of customers served by these two companies. For the sake of this

exposition, we pretend that he had to estimate their relative sizes himself

from a sample survey - by the same combination of shoe-leather epidemiol-

ogy and technical sophistication he used to arrive at the numerators – and to

use multiple imputation to obtain the standard error for the log of the rate

ratio.
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1 INTRODUCTION

Multiple imputation techniques are increasingly used in epidemiology. They

require specialized software and thus are seldom illustrated in statistical texts

with hand-worked examples that would allow the end-user to appreciate the

concepts behind them and some of the subtleties in their correct use. This

note attempts to rectify this by using a simple and well known data example

that allows the basic concepts not just to be understood but also to be

tested against an already well-established – and epidemiologically-famous –

formula: ‘Woolf’s’ formula for the standard error of the log of a cross-product

ratio. This ratio is used to estimate a rate ratio when the relative sizes of

the denominators in the compared rates are estimated (via a ‘control’ or

‘denominator’ series) rather than known. We illustrate and compare the

standard error formula obtained by multiple imputation with that of Woolf.

We do so using the exposure information in the ‘numerator series’ of 300

deaths collected by John Snow using data from the ‘grand experiment’

1.1 John Snow’s data

Snow’s study exploited the mixing – “of the most intimate kind” – of the

water supply of the Southwark and Vauxhall Company with that of the

Lambeth Company, over several sub-districts, with a combined population

at least 300,000 people. The main features have been reproduced in many

epidemiology textbooks, and on the dedicated UCLA website, and so they

will not be repeated here. We focus on the data in Table VII of his report,
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entitled “The mortality from Cholera in the four weeks ending 5th August

[1854]” and on a lesser-known aspect of the data in this table – how Snow

obtained the key numerators and denominators that formed the basis for his

early results: “Consequently, as 286 fatal attacks of cholera took place, in the

first four weeks of the epidemic, in houses supplied by the former Company,

and only 14 in houses supplied by the latter, the proportion of fatal attacks

to each 10,000 houses was as follows. Southwark and Vauxhall xx Lambeth

x. The cholera was therefore fourteen times as fatal at this period, amongst

persons having the impure water of the Southwark and Vauxhall Company,

as amongst those having the purer water from Thames Ditton.”

“To turn this grand experiment to account,” Snow set out “to learn

the supply of water to each individual house where a fatal attack of cholera

might occur.” He obtained the addresses of persons dying of cholera in

these districts with an intermingled supply, but quickly discovered that “the

inquiry was necessarily attended with a good deal of trouble. There were

very few instances in which I could at once get the information I required. It

would, indeed, have been almost impossible for me to complete the inquiry,

if I had not found that I could distinguish the water of the two companies

with perfect certainty by ...”. 1

For his denominators, Snow used the already-established numbers of

customers served by these two companies the previous year. However, for the

sake of this exposition, we will pretend that he had to estimate their relative

sizes himself from a sample survey - by the same combination of shoe-leather

1The reader who is unaware of how he did so can consult [online] Snow’s description
of his “high-tech” method.
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epidemiology and technical sophistication he used to arrive at the numerators

– and to use multiple imputation to obtain the (large-sample) standard error

for the log of the rate ratio.

1.2 The sampling variability of the log of a rate ratio

To begin with, for simplicity, we will treat the “fourteen times as fatal” as an

empirical rate (or incidence density) ratio with numerators that were subject

to Poisson variability. We consider two possible denominator situations (i)

where they are – or at least their ratio is – known without error, and (ii)

when their ratio has to be estimated from a simple random sample of houses.

Snow’s shoe-leather and high-tech epidemiology allowed him to clas-

sify the 300 informative cases2 in the numerator series into c1 exposed and c0

unexposed cases. With the known person-time denominators PT1 and PT0,

as in Snow’s study, the rate ratio is estimated as

rate ratio =
c1/PT1

c0/PT0
=

286/PT1

14/PT0

and, as is derived in the Appendix, the variance of the log of the rate ratio

is estimated by

1

no. exposed cases
+

1

no. unexposed cases
=

1

c1
+

1

c0
=

1

286
+

1

14
= (0.274)2.

Thus, if a reviewer had requested it, Snow could have accompanied his

2There were 334 in all, but the other 34 received their water from pump-wells (4), the
river Thames, ditches etc.(26), or unascertained sources(4).
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rate ratio of fourteen by a 95% multiplicative margin of error of ⇥/ ÷

exp[±1.96[0.274)] = 1.71.

For the reminder of this note, we consider a scenario where John Snow

did not know the sizes of PT1 and PT0, and thus had to enlist a ‘denominator-

assistant’ to visit, and classify the water supply of, a simple random sample

– a denominator series – of d = 100 homes who received water from one of

the two companies. Suppose d1 = 63 of these were supplied with the impure

water of the Southwark and Vauxhall Company, and d0 = 37 with the purer

water from the Lambeth Company.

If we write PT = PT1 + PT0, then our estimates of PT1 and PT0

are dPT1 = (d1/d) ⇥ PT and dPT0 = (d0/d) ⇥ PT respectively, so that our

estimate of the rate ratio is now

rate ratio =
c1/dPT1

c0/dPT0

=
c1/{(d1/d)⇥ PT}
c0/{(d0/d)⇥ PT} =

c1/d1

c0/d0
=

c1/c0

d1/d0
.

and, as per Yule’s derivation, the (‘Woolf’) variance of the log of this rate

ratio estimate is

⇢
1

c1
+

1

c0

�
+

⇢
1

d1
+

1

d0

�
=

⇢
1

286
+

1

14

�
+

⇢
1

63
+

1

37

�
= (0.343)2.

Thus, if a reviewer had requested it, Snow could have accompanied his rate

ratio of twelve [(286/63)/(14/37)] by a 95% multiplicative margin of error of

⇥/÷ exp[±1.96[0.343)] = 1.96, rather than the previous 1.71. The increased

margin of error reflects the increased statistical uncertainly from having to

use estimated rather than known denominators for Poisson-distributed nu-
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merators.

For the reminder of this note, the standard error of 0.343 will serve

as the gold standard against which to judge the performance of multiple

imputation.

2 MI - in general

We first illustrate the general idea using a small dataset collected on 10 chil-

dren. A described in Weisberg (1980), a catheter is passed into a major

vein or artery at the femoral region and moved into the child’s heart. The

proper length of the introduced catheter has to be guessed by the physician.

The aim of the data collected on the 10 children is to describe the relation

between the catheter length and the patient’s height. Unfortunately, infor-

mation on height is missing in 3 subjects, but information on the child’s

weight is available on all 10.

[Figure 1 about here.]

Whereas the concern would be with a fitted prediction equation, say

dlength = b0 + b1 ⇥ height,

we will for the same of the exposition, limit ourselves to the point and interval

estimate of one of the 2 parameters, namely b1

We have a few choices: we can estimate it using just the 7 complete

observations, or we can ‘impute’ the 3 missing heights from a regression
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equation linking height and weight, and then regress the 10 catheter lengths

on the 10 heights (7 direct, 3 imputed). Or, we could ... (Juli)

To be filled in: the details as to how the values are imputed.

If we do so naively, the SE for the fitted b1 is artificially low, since it

does not reflect the fact that 3 of the heights are not exact, but inputed.

The way to reflect this uncertainty is to make several such datasets (C

’copies’, say) , each one with 3 slightly di↵erent estimates for the 3 missing

heights. See Figure 1. Each one yields a b1 and an associated SE(b1) or

SE2 = V ar(b1). Lets us call these variances v1, . . . , vC . These are derived

as part of the regression fitting, and are each shown as light blue squares at

the bottom of the Figure. The C estimates of b1 di↵er from one dataset to

another; they are shown as black dots at the bottom of Fig 1. we denote

their empirical variance by V, say, and show it as the red square.

The best estimate of b1 is the average, b1, of the C estimates, and its

associated SE(b1)2 = V ar(b1) is an amalgam of 2 variances,

V ar(b1) = v̄ + (1 + 1/C)⇥ V.

This is represented as the larger black square at the bottom right of

Figure 1.

3 MI - Snow example

This is somewhat non-standard because – unlike in most case-control studies

– we did not link the numerators and the denominators – di↵erent teams
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assembles each, they did not consult each other, and they did not keep the

addresses of the houses, just the numerator tallies of 286 and 14 and the

(partial) denominator tallies of 63 and 37.

In this case, the entire numbers of houses of the two types are imputed

from the 63 and 37. If it is known that there were a total of 66,153 homes,

the single-inputation estimate is (63/100) ⇥ 66, 153 and (37/100) ⇥ 66, 153

so that the rate di↵erence can be calculated as 286
(63/100)⇥66,153 �

14
(37/100)⇥66,153 ,

and the rate ratio can be calculated as

286

(63/100)⇥ 66, 153
÷ 14

(37/100)⇥ 66, 153
=

286

63
÷ 14

37
.

Note that this rate ratio estimate does not require that we know what the

total number of houses is, or what the sampling fraction was.

If we naively assume that the estimated denominators (63/100) ⇥

66, 153 = 41, 676 and (37/100)⇥ 66, 153 = 24, 477 were exactly correct, then

the SE2 for the log of the rate ratio is simply 1/286 + 1/14.

However, they are not exact, and so this SE2 is artificially low, since

it does not reflect the fact that the 41,676 and 24,477 were inputed. Again, as

in the catheter case, we form multiple versions of the denominators, reflecting

the additional statistical uncertainty. Ten such copies are shown in Fig 2,

along with 10 estimates of the log-rateRatio and 10 corresponding variances.

Fig 2 to come, but like Fig 1 –

key is that each v is 1/286+1/14, and that the point estimated of log

RateRatio di↵ere from copy to copy by a factor that depends only on the 63
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and 37, in fact the log-RateRatios have a variance of 1/63 + 1/37. (it wont

be exactly that in any 10 copies, but if no. of copies is large it will be close

to that, and on average it will be that.

V = Var of the C logRateRatios = 1/63 + 1/37.

This fact is because the proportions are drawn from a beta distribution with

parameters ↵ = 63, � = 37), and they produce this variance when they are

converted into logRateRatios (proof to be added, based on variance of beta

and log transformation.).

dlogRR = ave. of the C dlogRR 0s

v1 = v2 = · · · = vC = 1/286 + 1/14, so v̄ = 1/286 + 1/14

So, with a large C so that 1/C is negligible, the formula is

V ar( dlogRR) = v̄ + V = 1/286 + 1/14 + 1/63 + 1/37.

SO, WOOLF and RUBIN (MI) formulae coincide. The 1/63 + 1/37

is the price paid for estimating the denominators.

4 COMMENTS/DISCUSSION

Even though books say 5-10 copies, we suggest more. Otherwise, cannot V

is not stable. (e↵ort one should devote to getting a stable V depends on

10



relative sizes of v̄ and V.)

Guidance re proper MI model. Juli.

Enlightenment re the modern case-control study: numerator series

coupled with denominator series that served to estimate the relative sizes of

the 2 denominators. Nothing says that the two series need to be linked. On

team can work on the numerators, another independently on the denomina-

tors. Just as Woolf himself did in his study of blood types and ulcers. He

used an independent source for the denominators, and he had a series that

was much much larger than the numerator series (wasteful if denominators

have a big unit cost)
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5 APPENDICES

5.1 The variance of the log of a rate, and of a rate ratio

Most textbooks give, but do not derive, these large-sample variance formula.

The derivation relies on the ‘Delta method’ for a transformation (function)

of a random variable. When the transformation is merely linear, the formula

is exact, Thus, if the SD of a series of temperatures is 10C, then the SD of

this same series is 10⇥(9/5) = 18C. The variance of 100 ‘square degrees C’

is transformed to 100⇥(9/5)2 on the ‘square degrees F’ scale.3 We can think

of this the (9/5) as dF/dC, and so write the variance in the new scale as

V ar[TempF ] = V ar[TempC ]⇥ (dF/dC)2.

In our application, we convert from rate to log(rate), and so the scaling factor

is not constant over the range in question. In such non-linear transformations,

it is customary to approximate the new variance using the value of the scaling

factor (the derivative, hence the ‘Delta’) at the center of the distribution in

the original scale.

We assume that the possible values for the numerators of the two

compared rates – i.e. the numbers of cases, c1 and c0 – are governed by

independent Poisson-distributions with expectations µ1 and µ0. We assume

3In everyday life, the concept of variance is not easily communicated. For example,
if the average fertility is 1.6 children per woman, and the SD is say 1.2 1.6 children per
woman, then the variance is 1.44 square children per square woman. The main reason we
use the square of the SD, rather than the SD itself, is that variances add, whereas SDs do
not.
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that the absolute person-time denominators of the two compared rates are

either known (PT1 and PT0), or at a minimum, that their ratio (PTratio =

PT1/PT0) is known. Since PTratio is assumed to have no sampling variation

or uncertainty, the variance (Var) of the random variable

log(rate ratio) = log

✓
c1/PT1

c0/PT0

◆
= log(c1)� log(c0) + log(PTratio)

is merely Var[log(c1)] + Var[log(c0)]. Now,

Var[log(ci)] ⇡ V ar(ci)⇥
✓

d log(µi)

dµi

◆2

.

From the Poisson model, we know that Var(ci) = µi, while the square of

the derivative is (1/µi)2, so their product is 1/µi. Thus, the two large-

sample variance components of the log of the rate ratio add to 1/µ1 + 1/µ0.

In practice, since the values of µ1 and µ0 are unknown, we substitute the

observed values c1 and c0 for the corresponding expected values, and arrive

at the variance formula

dV ar[log(rate ratio)] =
1

no. exposed cases
+

1

no. unexposed cases
=

1

c1
+

1

c0
.
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5.2 ‘Woolf’s’ formula for the variance of the log of a

ratio of cross-products of observed frequencies

Woolf used, but did not derive, the variance formula. It has been known at

least since the 1900 paper by Yule, who derived a formula for the square root

of the sampling variance of the cross-product ratio itself, rather than of its

log. Ref. In the a, b, c, d notation for frequencies used by epidemiologists,4

his main target was the correlation-type statistic Q = (ad � bc)/(ad + bc),

rather than the cross-product ratio, ad/bc. His derivations relied on the same

‘Delta method’ mathematical statisticians use today, and began with the

large-sample sampling variance of the log of a single odds, derived from the

binomial-based variance of a single proportion p = a/(a + b) derived from a

sample of n (= a + b), about its expected value P :

Var


log

✓
p

1� p

◆�
⇡ V ar(p)⇥

✓
d log P

1�P

dP

◆2

From the binomial model, we know that Var(p) = P (1 � P )/n. Using two

applications of the chain rule – one for the odds and one for the log – the

scaling factor in the second term on the right is found to be {P (1 � P )}�1,

so that the large-sample variance of the log of the odds is

P (1� P )

n
⇥ {P (1� P )}�2 =

1

nP (1� P )
=

1

nP
+

1

n(1� P )
.

4Yule denoted the four frequencies by AB, A�, ↵B and ↵�.
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In practice, since the value of P is unknown, we substitute the observed

values np = a and n(1� p) = b for the corresponding expected values. The

variance of the log of the ratio of two independently estimated odds, a/b and

c/d, is the sum of the two separate variances, 1/a + 1/b and 1/c + 1/d.

In our application, the cross-product is

rate-ratio estimate =
c1/dPT1

c0/dPT0

=
c1/d1

c0/d0
=

c1/c0

d1/d0
,

where c1 and c0 are the frequencies of exposed and unexposed in the case (nu-

merator) series, and d1 and d0 are the frequencies of exposed and unexposed

in the completely independent denominator series used to estimate the rel-

ative sizes of the person-time denominators PT1 and PT0. In this notation,

the variance of the log of the rate ratio estimate is

Var[log(rate-ratio estimate)] = (1/c1 + 1/c0) + (1/d1 + 1/d0).

We have written it in this way to emphasize the separate variance components

arising from the Poisson variation of the numbers c1 and c0, in the case-series5

and the binomial-based variation of the d1 : d0 split in the denominator series.

5It turns out that if we condition on the sum c of two independent Poisson random
variables c1 and c0, then c1 | c ⇠ Binomial[c, µ1/(µ1 + µ0)].
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Figure 1: Original dataset (missing 3 heights) and 10 MI copies of the
catheter data (mputed values in bold). colums: 1 = catheter length in inches,
2= height in inches, 3= weight in lbs. At bottom of original and of each copy,
point est. of slope, and squared SE. At bottom right (red) black square =
SE2 = variance = sum of red square and ave. of blue squares.
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Outline

• Multiple Imputation Variance Formula – standard example

• Var[Rate Ratio] in (simulated) case control study

[ case control study – incomplete denominators ]

• Summary



standard example

(simplified for sake of exposition)



The Optimal Length of Insertion of Central Venous
Catheters for Pediatric Patients

8%–10% magnification of portable anteroposterior ra-
diographs (8). The length of catheter insertion at the
time of the radiograph was determined by subtracting
the length of catheter external to the point of insertion
from the known length of the catheter. The position of
the SVC/RA junction was determined by adding the
length of CVC insertion to the distance of the CVC tip
above the atrium, or subtracting the distance of the
CVC tip below the atrium. All data were collected
prospectively, and included patient height and
weight. Plots of distance from the CVC insertion site
to the SVC/RA junction versus patient height and
weight were made, and regression lines and equa-
tions, correlation coefficients, and exact confidence
intervals based on the binomial distribution for place-
ment above the RA were calculated by using Sigma
Stat 2.03, Sigma Plot 2000, and SPSS 10.0 (SPSS, Chi-
cago, IL).

Results
A total of 456 CVC were studied: 330 RIJ and 126 right
subclavian CVC. Four of 126 (3.2%) right subclavian
catheter tips were located across the midline in the left
brachiocephalic vein, and were not analyzed. All CVC

inserted via the RIJ vein were located in the SVC or
RA. Data from both RIJ and right subclavian sites were
combined for calculating regression equations and for-
mulae. The plot of the distance from insertion site to
SVC/RA junction patient height for RIJ and right sub-
clavian veins is presented in Figure 2. The regression
equation describing the distance from the insertion
site to the SVC/RA junction for patients !100 cm is:

Distance to SVC/RA junction (cm) "

1.75 # !0.09 $ height); r2 " 0.65

For patients taller than 100 cm:

Distance to SVC/RA junction (cm) "

% 1.3 # !0.11 $ height); r2 " 0.80

For all patients combined:

Distance to SVC/RA junction "

1.54 # !0.09 # height); r2 " 0.88

Simple formulae were developed to predict place-
ment of CVC in the SVC above the RA. These were
developed by plotting (with Sigma Plot 2000) a

Figure 1. Surface and deep landmarks for right internal jugular (RIJ)
and subclavian venipuncture. Puncture sites: 1 " high approach to
RIJ used in this study—midway between mastoid process and ster-
nal notch. 2,3 " middle approach using apex of muscular triangle
formed by the sternal and clavicular heads of the sternocleidomas-
toid muscle, or lateral to the cricoid cartilage. 4 " low approach
using the jugular notch as a landmark. 5 " subclavian vein puncture
site used in this study—1 cm lateral to midpoint of clavicle for
patient weighing #10 kg, 2 cm lateral if $10 kg. SVC/RA " supe-
rior vena cava/right atrium.

Figure 2. Plot of patient height versus distance from catheter inser-
tion site to junction of superior vena cava (SVC) and right atrium
(RA) for right internal jugular and right subclavian vein catheters.
Solid lines represent recommendations for initial length of catheter
insertion in centimeters: (patient height in cm/10) % 1 for patients
!100 cm, and (patient height in cm/10) % 2 for patients $100 cm.

884 PEDIATRIC ANESTHESIA ANDROPOULOS ET AL. ANESTH ANALG
POSITIONING PEDIATRIC CENTRAL VENOUS CATHETERS 2001;93:883–6

Use Patient Height as predictor of Optimal Length



Missing Information

Catheter

Length ('')
Height
('')

Weight
(lbs)

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7      17

16.8 43 38

15.5 37 33

13.6 24 10

17.3      21

21.4      79

Catheter Length = a + b . Height

SE's, and their squares (Variances) ...
Based on n = 7

Data from Weisberg text: n=7 ‘complete’ cases.



7 ‘complete’ + 3 inputed cases

Catheter

Length ('')
Height
('')

Weight
(lbs)

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 29 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 30 21

21.4 65 79

Catheter Length = a* + b* . Height

SE's, and their squares (Variances) ...
Based on n = 10



7 ‘complete’ + 3 inputed cases

Catheter

Length ('')
Height
('')

Weight
(lbs)

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 29 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 30 21

21.4 65 79

Catheter Length = a* + b* . Height

SE's, and their squares (Variances) ...
Based on n = 10



INSTEAD: Multiple Imputation

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7      17

16.8 43 38

15.5 37 33

13.6 24 10

17.3      21

21.4      79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 26 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 20 21

21.4 80 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 34 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 29 21

21.4 70 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 26 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 42 21

21.4 56 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 37 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 30 21

21.4 63 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 26 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 22 21

21.4 67 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 30 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 31 21

21.4 60 79

16.8 43 40

15.5 38 36

16.4 40 30

19.5 46 52

12.7 24 17

16.8 43 38

15.5 37 33

13.6 24 10

17.3 37 21

21.4 58 79

B

Variance

point.estimate

W

Variance
B

W

1

B

W

2

B

W

3

B

W

4

B

W

5

B

W

6

B

W

7version: original

Average
B=Between.version

W=Within.version



MI Estimate and its Variance, if k versions

Est. = Ave. of version-specific point-estimates

Var.⇤ = k+1
k ⇥ Var. of version-specific point-estimates (Between’)

+
Average of version-specific variances (Within)

Var.⇤ (usually) < Var. from ‘complete-case’ analysis

⇤ Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. Wiley.



MI Variance Formula: Reality Check

Consider a missing-data example where ...

• imputation provides no additional information.

• have an independently-arrived-at variance formula.



simulated case control study

(actual numerator data)



John Snow’s ‘Grand Experiment’

• Exploited mixing – “of most intimate kind” – of water supply
of Southwark and Vauxhall Company (“1”) with that of
Lambeth Company (“0”), over several sub-districts, with
combined population > 300,000 [> 66,000 homes].

• “c1 = 286 fatal attacks of cholera (‘cases’) took place, in
1st 4 weeks of 1854 epidemic, in houses supplied by
former Company, and only c0 =14 in houses supplied by
latter:

• XX times as fatal at this period, amongst persons having
the impure water (“1”) of the Southwark and Vauxhall
Company, as amongst those having the purer water(“0”).”



Denominators (D0, D1) from 1853 Report

With the known denominators D1 and D0

rate ratio =
c1/D1
c0/D0

=
286/D1
14/D0

Variance of the log of the rate ratio is estimated by⇤

1
c1

+
1
c0

=
1

286
+

1
14

= 0.075.

⇤ Extra-Poisson variation was minimal.



What if Snow had to estimate the Denominators? ...

• using a ‘denominator-assistant’ to visit, and classify the
water supply of, a simple random sample – a denominator
series – of d = 100 homes from the total of D homes.

• Suppose

d1 = 63 supplied with the impure water;
d0 = 37 supplied with the purer water.

and used ...



Single imputation?
Known total of D = 66, 153 homes:

cD1 = 63
100 ⇥ 66, 153 = 41, 676 cD0 = 37

100 ⇥ 66, 153 = 24, 477

\RateRatio =
286

41, 676
÷ 14

24, 477
=

286
63

÷ 14
37

= 12.0

[Note: estimate does not require that we know what the total
number of houses is, i.e., what the sampling fraction was.]

IF we (naïvely) assume that the 41, 676 and 24, 477 are
correct, then the SE2 for the log of the rate ratio is simply
1/286 + 1/14.

However, they are not correct, and so this SE2 is artificially low:
it does not reflect fact that the 41,676 and 24,477 were inputed.



Multiple imputation? ...

Denominator Estimates, and Associated Rate Ratios

Version:

# Cases, IMPURE:
NUMERATORS

# Cases,   PURE:

prop'n PURE:

IMPURE:

PURE:
DENOMINATORS

RateRatio:

W=Var[logRR]:

1

286

14

0.674

44570

21583

9.9

0.075

B

W

2

286

14

0.626

41412

24741

12.2

0.075

B

W

3

286

14

0.658

43499

22654

10.6

0.075

B

W

4

286

14

0.572

37852

28301

15.3

0.075

B

W

5

286

14

0.597

39465

26688

13.8

0.075

B

W

6

286

14

0.695

45968

20185

9

0.075

B

W

7

286

14

0.612

40454

25699

13

0.075

B

W

B

W

Average

W = Within-version Variance = 1/286 + 1/14 = 0.075

Average Between-version Variance = 1/63 + 1/37 = 0.043(large k)



MI: "Within" Component of Var[log RR]

The estimated denominators are treated as correct, and the
numerators 286 and 14 are same from version to version.

SO...

Each W = VarWithin.version = 1/c1 + 1/c0 = 1/286 + 1/14

SO...

Average[W ] = 1/c1 + 1/c0 = 1/286 + 1/14



MI:"Between" Component of Var[log RR]
cD1 and cD0 differ from version to version ...

B = Varbetween.version = Var


log
⇢ cD1

cD0

��
= Var


log

⇢ bp
1� bp

��

bp ⇠ Beta(63+↵, 37+�) ! Var [bp] =
63+↵

100+↵+�
37+�

100+↵+�

101 + ↵ + �
⇡ 63⇥ 37

1003

Var


log
⇢ bp

1� bp

��
⇡ 63⇥ 37

1003 ⇥
"

1
63

100 ⇥
37

100

#2

=
100

63⇥ 37
=

1
63

+
1

37
.

k+1
k negligible if k large enough. d .f .[t ] = (k � 1)

⇥
1 + k

k+1
W
B

⇤



What if Snow had access to “Woolf’s” 1955 Fomula?

• cD1 = (d1/d)⇥ D ; cD0 = (d0/d)⇥ D

dRR =
c1/cD1

c0/cD0
=

c1/{(d1/d)⇥ D}
c0/{(d0/d)⇥ D} =

c1/d1
c1/d0

=
286/63
14/37

= 12.0

• (‘Woolf’) variance of the log of this rate ratio estimate is
⇢

1
c1

+
1
c0

�
+

⇢
1
d1

+
1
d0

�
=

⇢
1

286
+

1
14

�
+

⇢
1

63
+

1
37

�
.

Woolf merely used the formula. I have traced the proof back to Yule, 1900.



Summary

• Simulated case-control study with no additional informative
data items: no # in variance by imputing missing values.

• As k+1
k ! 1, Rubin variance formula ! ‘Woolf’ formula.

• ‘Controls’ in ‘c-c’ study serve as ‘denominator’ series.

• Cohort studies and case-control studies are two versions
of the same ‘etiologic’ study:

• ’cohort’ study: denominators are known

• ‘case-control’ study: estimate (impute) denominators;
additional variance is the additional price.
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