
May 30, 2025

Below you will find

• an article from 1985, written by a psychology researcher, entitled “Vari-

ance Explanation Paradox: When a Little is a Lot”

• a 1986 draft of my response “At Variance: With Oneself and With

Others”, which I wrote while on sabbatic leave, but never submitted

anywhere

• ‘slides ’ (such as were possible with 1980s’ technology) from a seminar,

entitled “Discussion”, I gave on it it in my department.

I don’t have the readable-today source files, so I am unable to fix the way

some of the Greek symbols are displayed, but you will still see what I was

doing. And you will be able, from the Figure legends, to imagine what the

(no longer readable) figures showed.

I often used the baseball (and cancer) examples in my subsequent teaching

to emphasize the fundamental di↵erence between random variables that take

on just two possible values, and those on a full interval scale – and how the

idea of variance explanation does not transfer well from what we teach in

first courses on regression to subsequent ones involving binary regression.

Readers might wish to follow up on this, or repeat the survey in class to see if

today’s psychology and statistics students – and researchers – have a better

understanding of ‘variance explanation’ !

Sincerely...

James Hanley

webpage: https://jhanley.biostat.mcgill.ca

email: james.hanley@mcgill.ca
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A Variance Explanation Paradox:
When a Little is a Lot

Robert P. Abelson
Yale University

Concerning a single major league at bat, the percentage of variance in batting
performance attributable to skill differentials among major league baseball players
can be calculated statistically. The statistically appropriate calculation is seriously
discrepant with intuitions about the influence of skill in batting performance.
This paradoxical discrepancy is discussed in terms of habits of thought about the
concept of variance explanation. It is argued that percent variance explanation is
a misleading index of the influence of systematic factors in cases where there are
processes by which individually tiny influences cumulate to produce meaningful
outcomes.

It is generally accepted that percentage of
variance explained is a good measure of the
importance of potential explanatory factors.
Correlation coefficients of .30 or less are
often poor-mouthed as accounting for less
than 10% of the variance, a rather feeble
performance for the influence of a putatively
systematic factor. In analysis of variance con-
texts, the percentage of variance explanation
is embodied in the omega-squared ratio of
the systematic variance component to the
total of the systematic and chance variance
components. It, too, is often small; when it
is, this is a source of discouragement for the
thoughtful investigator.

Psychologists sometimes tend to rely too
much on statistical significance tests as the
basis for making substantive claims, thereby
often disguising low levels of variance expla-
nation. It is usually an effective criticism
when one can highlight the explanatory
weakness of an investigator's pet variables in
percentage terms.

Having been trained, like all of us, in the
idiom of variance explanation, I have always

Willa Dinwoodie Abelson, Fred Sheffield, Allan Wagner,
and Rick Wagner provided helpful comments on an
earlier draft of this article. I wish also to thank the
faculty and graduate students of the Yale University
Psychology Department for exposing themselves to po-
tential collective embarrassment by filling out the ques-
tionnaire.

Requests for reprints should be sent to Robert P.
Abelson, Box 11A Yale Station, New Haven, Connecticut
06520.

believed that when levels of variance expla-
nation are extremely small, then the variables
involved are really quite unimportant (how-
ever much one may lament the fact in a given
case). However, I have been led to reexamine
this notion.

A colleague and I recently had an argument
in which we took opposing views of the role
of chance in sports events. I claimed that
many games of baseball and football are
decided by freaky and unpredictable events
such as windblown fly balls, runners slipping
in patches of mud, baseballs bouncing oddly
off outfield walls, field goal attempts hitting
the goalpost, and so on. Even without obvious
freakiness, I claimed, the ordinary mechanics
of skilled actions such as hitting a baseball
are so sensitive that the difference between a
home-run swing and a swing producing a
pop-up is so tiny as to be unpredictable, thus
requiring it to be considered in largely chance
terms.

My colleague argued that chance charac-
terizations of sports events ignore the obvious
fact that good teams usually win, that even
under freaky circumstances (wind, mud, and
so on) skilled players will better overcome
difficulties than mediocre players, and fur-
thermore that the visual-motor coordination
of skilled athletes is subject to causal analysis.

Without trying to resolve in any serious
way the deeper issues involved in the mean-
ings of causation and chance in sports events,
a straightforward statistical question can be
raised: What percentage of the variance in
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athletic outcomes can be attributed to the
skill of the players, as indexed by past perfor-
mance records? This variance explanation
question is analogous to those that character-
ize psychological investigations, but arises in
a context where there exist strong intuitions
(among sports fans, at least). A comparison
of intuition with fact might therefore prove
interesting.

To elicit intuitions, the athletic performance
in question must be concretized. A simple
performance with which most Americans are
familiar, and for which copious records exist,
is batting in baseball. The simplest event to
consider is whether or not the batter gets a
hit in a given official time at bat. It is possible
to calculate statistically the proportion of the
variance of this event (getting or not getting
a hit) explained by skill differentials between
batters.

Calculation of Variance Explanation

Let the dependent variable be X = 1 for a
hit and X = 0 for no hit, and conceptualize
the data matrix as in Table 1. Columns
represent different batters. Rows represent
different times at bat in, say, 5 years of at
bats for each batter, a period long enough to
give a reliable indication of the batters' true
averages. The number of at bats might as
well be taken as equal for all batters: The
subsequent calculation is not affected by this
factor.

Much as in the usual analysis of variance
fashion, Equation 1 decomposes the entire
set of Xji in Table 1 into a true mean B, for
the rth batter and an error component e,i for
the yth occasion for the rth batter:

Xit = B, + (1)

The variance components a\ and a\ at-
taching to the two terms give the ingredients
necessary to answer our variance explanation
question. The former represents the variability
of true batting averages, the latter the vari-
ability of performance given the batting av-
erage.

Both components depend on the distribu-
tion of true batting averages. Let the mean
of the distribution of S, be pB and the standard
deviation aB. To compute the within-batter
variance, al, consider a batter with true

Table 1
Hypothetical Data Matrix for Batting Outcomes

Batters

A t bats 1 2 3 . . / . . .

1 0 0 ! _ _ _ _ _ _
2 1 0 0 — — — — — —
3 0 0 0 — — — — — —

Batting .282 .301
average .214

Note: 0 = no hit; 1 = hit.

average, Bt. On occasions when this batter
gets a hit, Xti = \, and from Equation 1, ejt =
1 - B,. When the batter fails, Xjt = 0, and
eti = — BI. The first type of event happens on
the proportion B, of all occasions, the second
type of event on the proportion (1 - B,).
Weighting the squares of the e,, by these
proportions, the result is

= £,( !-£,). (2)

(This is simply the formula for the variance
associated with a binomial event around a
true proportion B,; I have rederived it in
order to be explicit.)

Now consider the fact that because batting
averages differ, the error variance is not the
same for all batters. To obtain a summary
value for a2,, Equation 2 must be averaged
over all values of Bj, weighted by the proba-
bility p(B,) of their occurrence.

= 2 B,p(BD - I Bjp(B,). (3)
: t

The respective terms on the right are by
definition the raw first and second moments
of the distribution of B,. That is,

(4)
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Hence, the omega-squared ratio for pro-
portion of variance attributable to skill is:

2 "i ""I

<TB + cr2 aj, +

(5)

Finally, realistic values are needed for aB

and JJB to substitute in Equation 5. These
parameters of the distribution of true batting
averages of course differ somewhat from year
to year and league to league. However, the
bulk of the distribution of observed batting
averages of major league regulars in a given
year typically lies between the low .200s and
the low .300s. This suggests parameters such
as HB = .270 and aK = .025. These values
yield

In other words, the percentage of variance
in any single batting performance explained
by batting skill is about one third of 1%.

What's Going on Here?

One's first reaction to this result is incre-
dulity. My personal intuition was jarred by
this result, which seems much too small. To
check my own intuition against those of
others, I circulated a one-item questionnaire
to all graduate students and faculty in the
Department of Psychology at Yale University.
This group was chosen not simply for con-
venience, but because they would be familiar
with the concept of variance explanation.
Respondents were asked to refrain from an-
swering if they knew nothing about baseball
or the concept of variance explanation. Par-
ticipants were asked to imagine a time at bat
by an arbitrarily chosen major league baseball
player, and to estimate what percentage of
the variance in whether or not the batter gets
a hit is attributable to skill differentials be-
tween batters.

The median of the 61 estimates of the
variance attributable to skill was 25%, an.
overestimate of the calculated estimate by a
factor of 75. The estimates of over 90% of
the sample were too high by a factor of at
least 15. Only 1 person gave an underestimate.

I also posed the skill variance question to
colleagues outside of Yale (some of whom
are well known for their statistical acumen)
and commonly received answers around 20%
or 30%. The outcome of the statistical cal-
culation, .3%, is indeed surprising.

Another attack on the paradox is to look
for flaws in the statistical calculation. One
thing to consider is the sensitivity of Equation
5 to variations in the parameters aB and j»fl-
The term HB(\ — HB) does not change appre-
ciably with small variations in JIB; the value
for <a2, in other words, would be nearly the
same if I took HB = -265 or .260 or .275
rather than .270. The ratio is more sensitive,
though, to variations in aB. If OB were more
than .025, then w2 would of course be bigger.
However, .025 is, if anything, a generous
estimate. If lifetime batting averages are taken
as more indicative of true ability than season-
by-season averages their standard deviation
would be used for aB. Calculated from data
in James's (1983) baseball abstract, the mean
lifetime average was .268 and the standard
deviation of lifetime averages for all major
league regulars active in 1983 was .021. Even
if I generously inflated this estimate to include
nonregular players—even if I, say, doubled it
to .042—the omega-square for skill variance
would still be below 1%.

Could Equation 5 ever give a large value
for to2? Yes, if every batter batted either 1.000
or .000 (i.e., either perfect or perfectly awful),
then a^ = HB(I — HB), and a2 = 1, as one
would expect. This extreme situation contrasts
sharply with reality. (Indeed, a way to under-
stand the paradox is to realize that in the
major leagues, skills are much greater than
in the general population. However, even the
best batters make outs most of the time.)

So the paradox remains. When I told my
colleague the result of the calculation, he
said, "You mean to tell me that the difference
between George Brett and Len Sakata doesn't
amount to anything?" This comment places
the burden of the skill variance on extreme
exemplars. The statistical calculation, of
course, includes players of all levels of ability,
most of them nearly average. Also, the com-
ment appeals to the long-run differences in
ability, whereas the calculation refers to the
single at bat, a much chancier proposition.
Thus, the paradox may arise in part because
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the intuitive way of conceptualizing the ques-
tion is intrinsically different from the appro-
priate statistical formulation, as in the phe-
nomena discussed by Kahneman and Tversky
(1982) and by Nisbett, Krantz, Jepson, and
Fong (1982).

Is the statistical formulation therefore
somehow unfair or irrelevant (Cohen, 1981)?
Hardly. The single at bat is a perfectly mean-
ingful context. I might have put the question
this way: As the team's manager, needing a
hit in a crucial situation, scans his bench for
a pinch hitter, how much of the outcome
variance is under his control? Answer: one
third of 1%. Qualification: This assumes that
the standard deviation of batting averages
against a given pitcher is the same as the
standard deviation of batting averages in gen-
eral.

One might also argue that, in this frame-
work, the manager may be able to choose
someone two standard deviations above av-
erage and definitely avoid someone two stan-
dard deviations below average. By so doing,
he would effectively double the standard de-
viation, and thus quadruple the skill com-
ponent of variance. Even at that, the per-
centage of variance explanation would be
only about 1.3%. In variance explanation
terms, the difference between, say, George
Brett and Len Sakata really is of small con-
sequence. To appreciate why this is so and
perhaps alleviate one's sense of paradox, it
may be helpful to picture this comparison as
in Table 2.

In Table 2 the rows represent batters with
widely different skill levels, and the columns
represent the outcome variable of getting a
hit or not. The entries represent projected
frequency of each outcome per 1,000 at bats.
Even though hits are almost 50% more fre-
quent for the .320 than for the .220 batter,
the correlation between skill and outcome is
not very sizable. The phi coefficient calculated
from Table 2, for example, is .113. Taking
the square of this as an estimate of variance
explanation yields 1.3%.

Larger Implications

I have given an example from a nonpsy-
chological context in which the percentage of
variance actually explained by an independent

Table 2
Correlation Between Skill and Outcome

Outcome

Skill of batter Hit No hit

Well above average
Well below average

320
220

680
780

Note. 1,000 at bats per batter.

variable (skill) is pitifully small, whereas "ev-
eryone knows" that the variable in question
has substantial explanatory power. The par-
adox probably does not depend on some
peculiarity of the intuitions of psychologists.
The public cannot reasonably be asked the
exact question about variance explanation,
but it is a safe guess that skill is considered
relatively important by the typical base-
ball fan.

What does the baseball paradox suggest
for the usual standards for conceptualizing
variance explanation? If one-third percent
indicates such a trivial degree of explanation
as to be virtually meaningless, should differ-
ential batting skill then be dismissed as an
explanatory variable in baseball? Or should
one instead be more suspicious of variance
explanation as an index of systematic influ-
ence, and revise the notions surrounding less
than 1% of variance explanation?

The answer lies in the type of example
under consideration. The baseball example,
as it turns out, exaggerates the paradox. The
baseball case may take advantage of the "il-
lusion of control" (Langer, 1975), by which
skill influences are exaggerated at the expense
of chance influences. Beyond that, however,
there is a sound basis for the belief that
systematic differences in batting averages are
nontrivially predictive of success in baseball,
in ways not captured by the statistical calcu-
lation. First, the individual batter's success is
appropriately measured over a long season,
not by the individual at bat. Second, a team
scores runs by conjunctions of hits, so a team
with many high-average batters is more likely
to stage rallies than a team with many low-
average batters. Thus, team success over a
long season is influenced by average batting
skill far more than is individual success in
the single at bat because the effects of skill
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cumulate, both within individuals and for the
team as a whole.

The statistical effects of cumulation are
well known, although they are usually dis-
cussed in methodological contexts, such as
the psychometrics of reliability of measure-
ment or the prediction of behavior from
attitude measures (Epstein, 1979). The mes-
sage here is that it is the process through
which variables operate in the real world that
is important. In the present context, the
attitude toward explained variance ought to
be conditional on the degree to which the
effects of the explanatory factor cumulate in
practice. Some examples of potentially cu-
mulative processes are educational interven-
tions, the persuasive effects of advertising,
and repeated decisions by ideologically similar
policy makers. In such cases, it is quite
possible that small variance contributions of
independent variables in single-shot studies
grossly understate the variance contribution
in the long run.

Thus, one should not necessarily be scorn-
ful of miniscule values for percentage variance
explanation, provided there is statistical as-
surance that these values are significantly
above zero, and that the degree of potential
cumulation is substantial. On the other hand,
in cases where the variables are by nature
nonepisodic and therefore noncumulative
(e.g., summary measures of personality traits),

no improvement in variance explanation can
be expected.

In sum, the large intuitive overestimation
of the variance in batting outcome explained
by skill is not simply an error in the appre-
ciation of statistics. It reflects an intuition
that skill does matter. Indeed it does, in the
long run, albeit not very consequentially in
the single episode. The baseball paradox is
thus a model for similar paradoxes that may
arise in psychological contexts.
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Abstract

Abelson's paper "A variance expanation paradox: when a little is a lot"
uses analysis of variance to calculate the percentage of variance in
outcome of a single at bat in baseball that can be attributable to skill.
He finds that the small percentage so explained is "seriously
discrepant with intuitions about the influence of skill in batting
performance" (he and his colleagues greatly overestimated this
percentage).

The way in which he elicited these percentages from his colleagues
makes it difficult to interpret their overestimates; I argue that the
inherent unpredictability of binary outcomes could have been elicited
by using more neutral and less distracting settings or by casting the
question in other forms. However, the author's own reactions to the
results of the formal analysis of variance are more disturbing: he
looks for flaws in the calculation; performs a sensitivity analysis;
considers only the best and the worst batters; tries to explain the
resulting answer by appealing to another equivalent index of
correlation; and only mentions statistical cumulation at the very end.
These reactions suggest that the full statistical implications of
working with binary variables and with intra-individual variation are



not fully understood or appreciated. I discuss some of these
implications and outline some measurement principles to be followed
if the real task in variance explanation is to be given a serious chance
of succeeding.



INTRODUCTION

A recent paper "A variance expanation paradox: when a little is a lot"
by Abelson examines the concept of variance explanation. He
calculates the extent to which differentials in skill (as measured by
players' longterm batting averages) explain variance in the possible
outcomes (hit, no hit) when each baseball batter has one time at bat.
He shows that if batters were chosen at random from the 220 to 320
range, the percentage variance in the outcomes attributable to skill is
a mere one third of 1%, much less than he or his colleagues had
thought. If players were deliberately chosen from the two extremes,
the variance explained would still only amount to 1.3%.

One suspects that his survey results might be sensitive to the way in
which he posed the question to his colleagues. Had he used "batting
averages" instead of "skill differentials between players", or had he
spoken of "the variance in whether or not different randomly selected
players get hits", or had he asked them to estimate how much of the
variance is unexplained, he might have received quite different
estimates. However, my main concern is not with his colleagues'
estimates, which could have many interpretations, but with his own
reactions to his findings from a formal analysis of variance that
players' batting averages are poor predictors of the outcomes of
individual at bats. His first reaction was to look  for flaws in the
calculation: he performed a sensitivity analysis, then restricted
attention to the best and the worst batters. The result in the latter
scenario was still paradoxical and so "perhaps to alleviate one's sense
of paradox", he calculates another index of correlation, the phi
coefficient; unfortunately, all this does is confirm the "paradox" with
the same low estimate of variance explanation.  The clues to the
paradox, the fact that the outcomes were binary (rather than
binomial) and the absence of statistical cumulation, were only
mentioned at the end.

If his reactions are typical, they suggest that the full statistical
implications of working with binary variables and with intra-
individual variation are not fully understood or appreciated. In this
paper, I will discuss some of these implications and outline some
measurement principles to be followed if the real task in variance
explanation is to be given a serious chance of succeeding. The paper
is divided into three parts I: Alternative ways of showing the large role



of chance (defined as lack of predictability) in Abelson's example II a
discussion of the special nature of binary variables and III
consideration of interindividual variation in general, and binary
variation in particular, and what they mean for research design.  At
the end, I will briefly discuss how luck and probabilities dominate
these same issues, at a more macroscopic (population) level, and how
they pose difficult challenges in epidemiology and in interventions to
prevent disease.

I: ASSESSING PREDICTABILITY IN MORE NEUTRAL SETTINGS

AND/OR WITH ALTERNATIVE FORMULATIONS

The same question in other similar situations

Consider three analogous examples: (1) suppose a student's academic
grade is simply the percentage of correct answers to 2000 multiple
choice questions in 4 years of examinations; randomly select one of
the 2000 and record whether the answer was correct. (2) choose a
random 1 minute 'window' in each basketball player's playing career
and record whether the player scored in this interval. (3) choose one
spin of the roulette wheel in a casino and record whether the players
(collectively) or the house win.

Randomly sampling a tiny portion of each academic or scoring record
points up the overwhelming role of sampling variablity or "chance"
and the little room for real individuality or systematic variation. The
individual occasions examined are microscopic and the one outcome
per individual cannot possibly be regarded as typical of the
individual's full record; thus, one should not expect to be able to
explain them. Even sports commentators, who like to dissect
outcomes, and who are sometimes at a loss for something to say
between at bats, would not attempt to analyse this variance.

Why then did Abelson, in spite of his contention that such variations
must be "considered in largely chance terms", still overestimate the
explained variance? Because, I believe, neither he nor his colleagues
in their research investigations would ever attempt to study
interpersonal variation in some behaviour using such a small portion
of each person's behaviour. (It is also possible that his colleagues
took skill to mean something different from what he did)

The same issue, but posed differently



Consider two players; one has a longrun batting average of 0.320 and
the other 0.220. We wish to know who had which average and can use
the raw data from the two series of at bats (see Table 1). How many
at bats (randomly sampled) from each series should we analyse
before safely deciding which series belongs to whom? If we choose
m=1 at bat from each player, we stand a 60% chance of getting
concordant answers and of not being able to make any decision
(other than by tossing a coin); if we are lucky enough to actually
obtain some variance, i.e. discordant answers, the probability is
approximately 40% that it is the poorer batter who had the hit and
that we will be incorrect* . With samples of m=5, 10, 25 and 100 at
bats we decrease the probability of an incorrect decision decreases to
approximately 35, 30, 20 and 5% respectively.

This simple example shows that in order to measure the relationship
between player characteristics (height, handedness, ...) and their
batting performances, one must measure each person's batting
performance with sufficient precision that different players are (at
least) correctly ranked (ideally, correctly spaced) along the "batting
average" scale. Otherwise, inadequate measurements jumble their
correct order and attenuate, or make it difficult to see, any real
relationships.

(II) BINARY VARIABLES

They are inherently unpredictable; low indices of determination or
correlation do not lie

Compared to the more commonly used interval or ordinal measures,
binary outcomes are inherently much less predictable (one need only
contrast how much more wrong one can be in predicting whether the
next day will rain than in predicting the maximum temperature). The
low summary measures, borrowed from analysis of variance, of the
strength of relationship reflect this unpredictability. However, one
should expect this to happen. The reason stems from the fact that
whereas most measured data tend to pile up towards or close to their
mean and so are reasonably well predicted by it, binary, or "0/1"
data, by definition, pile up away from the mean. Thus, whereas the
coefficient of variation for measured data is often a good deal less
than 20-50%, that of binary data is much higher, e.g. 300% if the
average is .100, 150% if it is near the the typical .270 batting average
and 100% when the average is .500#. A further contrast is that in



measured data, the standard deviation and the mean are two distinct
quantities, while in binary data the mean determines the variance
and vice versa. [Incidently, it is strange that researchers who are quite
wary of analysing bimodal or highly skewed data by anova methods,
would use such techniques with binary data, the ultimate in
overdispersion].

If one uses, or is forced to use, a binary variable to characterise the
outcome in each individual, discrimination or full separability, of
individuals is limited. The implications of this limited variability often
surprise researchers who analyse binary outcomes for  the first time,
particularly if only a small minority of the outcomes are positive (or
negative). Moreover, one's concept of degrees of freedom must be
revised when dealing with binary outcomes: the real degrees of
freedom are not the numbers of individuals studied but the number
of minority outcomes.

The inherent unpredictability of individual binary outcomes, such as
the results of single at bats, can be illustrated using the rationale
underlying another  index, . This coefficient, varying between 0 and 1,
and having the same formulation as the ∑2 statistic, was developed
for genetics studies to measure how much 'closer' related individuals
were to each other than to other unrelated individuals in respect to
height, weight, blood pressure etc. Values close to 1 indicate that
related individuals are quite clustered with respect to a characteristic
and values near zero mean that within intra-family or "intra-class"
variation is almost as wide as it is in the population at large. In the
batting context, the interclass correlation answers the question:
knowing the outcome of an at bat, will the outcome of a second
randomly chosen at bat of this same  batter be more like the first
than a randomly selected at bat of another batter? One can see, by
sampling from Table 2, that it will not.

The reason why the "percentage variance explained" is so low in
Abelson's example is readily, and even more strikingly, seen if, as one
should, one "plots his data". In the top left panel of Figure 1, the
batting averages (Abelson's proxy for their skills) of 21 players are
plotted on the x axis against the binary outcome (1=hit, 0=did not
hit), of a single randomly chosen at bat per player, (y-axis). The
batting averages (the Bi in Abelson's notation) were chosen uniformly
from the .220 to .320 range (this way, the regression coefficient and
correlation are stronger and are more precisely estimated than if one
choses the Bi in relation to their natural (centrally tending)



distribution); each binary outcome was given a value of 1 or 0
depending on whether a corresponding computer generated random
number was below or above Bi. As the graph shows, knowledge of
each player's batting average is of little discriminatory value in a
single instance. For those who still need to calculate the  r2 before
conceding, the percentage explained was indeed small, 0.05. This
disappointing finding is not based on a freak data pattern, but as one
can empirically verify, is possibly better than average. Of the 10 such
plots I produced, 4 of them produced negative slopes; the pattern
shown is the second best positive one. The figure also explains, more
forcefully than does Abelson's Table 2, why correlation coefficients
calculated from two binary variables, or even a binary and a
measured one, are low even if there is a strong relationship between
their averages: it is imposible for a straight line to be near to the four
corners of the data!

III INTRA-INDIVIDUAL OR INTER-INDIVIDUAL?

(What variance does one seek to explain anyway?)

Although Abelson dealt with the single at bat, he likened his question
to those commonly asked in psychological investigations, i.e. whether
interpersonal variation in some personal characteristic or "outcome"
is related to interpersonal variations in other, "explanatory", factors.
By definition, then, one's interest is in explaining typical
(characteristic/general/average) behaviour rather than that in any
one specific randomly chosen instance. Given that this is a common
research task, how does one characterise each individual?

When one can, repeat assessments. A proportion is an average too!

 Some characteristics are strictly binary, and any number of repeated
assessments in the same individual should give the same unchanging
answer; examples include whether one was born in June and  whether
delivered by caesarian section. Judgements about other
characteristics, characteristics which we think of as binary, such as
whether one is blue eyed, or male, or born before term, or weighing
less than 2,500 g at birth, or a "Type A" personality, are subject to
some variance, depending on how or when assessments are made, and
who makes them. Still others, such as batting performance,
intelligence, academic performance, one's placement on a



psychological scale or ranking in interviews, are more quantitative;
nevertheless, they rely on an "averaging" or other "summarization" of
a series of items or components (at bats, examination questions,
questionnaire items, votes of interviewers). In practice, such
quantitative measures are derived after examining/consulting a
limited, but presumably an adequate and representative, portion of
the domain of "components".

How many? Signal vs Noise

How many (m) intra-individual components one should sample
depends on the ratio of the intra-individual to inter-individual
variation. In this "signal-to-noise" ratio, the true variation between
individuals constitutes the signals or the target of the study; the
necessity to characterise an individual on the basis of a sample
constitutes the noise. Both the ∑2 statistic and the intraclass
correlation comprise these components, with signal = ßB and noise =
ße , except that they combine them in the form

∑2 = signal2/(signal2 + noise2)

in order to produce a coefficient bounded between 0 and 1.

Assessing m, rather than just one, intra-individual components
reduces the noise variance by a factor of m so that the associated ∑2
statistic, which we can denote by  ∑m2   becomes

∑m2 = ßB2 / (ßB2  +  ße2 / m)

To appreciate the need for repeated measurements, consider the
effect of intra-individual variability in two different abilities,
respiratory function as measured by the Forced Expiratory Volume in
one second (FEV1), and batting performance in baseball. In the
former, inter- and intra-individual variation are of the order of
ßB = 0.5l and ße = 0.2l, a signal to noise ratio of 2.5; in the latter,
one can use Abelson's values of ßB = 0.025 and ße = 0.443, a
signal-to-noise ratio fifty times weaker. Figure 2 contrasts these two
situations: if, as with with FEV1, the signal to noise ratio is
appreciable, assessing an individual a small number of times (3-5) is
more than sufficient to characterise that individual; if repeated
assessments produce highly variable answers (relative to small
signals), a large number of assessments of each individual are needed.
For instance, the proportion of hits in 400 randomly selected at bats



is still only fair as a proxy for a player's overall average (∑4002 =
55%, r=0.74). For those who prefer to see than to believe formulae,
this same message was evident in Figure 1, where even with a sample
of m=100 at bats, the performance in this sample is only correlated
r2=0.33 (r=0.57) with the true averages. The r2's in Figure 1 are
somewhat higher those in Figure 2 because the individuals were
deliberately chosen to be more spread out on the x axis i.e.
ßB ≈ 0.030.

One way to understand what ∑m2 means is to examine its
consequences for designing  studies which compare performance of
two groups of individuals, e.g. left- and right-handed players. If one
uses their full batting records, the sensitivity (power) of such a study
depends inversely on the quantity ßB2 / n, where n is the number of
players studied from each group and the numerator ßB2 represents
the variation in true batting averages between different players of the
same handedness. If, instead of using each player's true average, one
only used a sample of m of each player's at bats, the numerator is
increased to ßB2 + ße2 / m. Thus, if for example ∑m2 =0.25, it can be
interpreted as follows: a study of n=100 players/group, and using m
at bats/player, has the same statistical power as a study of n=25
players/group which uses the entire batting record of each player. Put
another way: the inverse of ∑m2 is the factor by which sample size n
must be increased to account for the imperfect measurement of each
player's overall performance. Calculating ∑m2 for different m's allows
one to compare heir relative efficiency.

One can decrease ( ßB2 + ße2 / m ) / n by increasing n and m. In
practice, cost and other constraints limit both n and m or force one
to strike a balance between the two. Textbooks on sampling give
methods for making the most efficient choice.

The need for multiple assessments of an individual is not confined to
variables that are binary, but applies also to any variables which show
a sizeable component of intra-individual variation. One author has
recently arguedPete: do you remember what it was? that a test-retest
correlation of r=0.6 in measuring physiologic hyperreactivity
compromises a study that uses only one assessment/individual. One
must either seek to increase the reliability of this single measure, or if
one cannot find and control the sources of the variation, assess it
more than once.

Comparing larger units: intra- and inter-population variation



The paradox discussed by Abelson has an important parallel in
epidemiology, which studies the etiology of disease in populations (a
population is analogous to a baseball player and the individuals in it
analogous to his different at bats). Doll and Peto put it very clearly:

"the determinants of who will and who will not get cancer can be
divided into three categories, not only the usual "nature" (genetic
makeup) and "nurture" (what people do or have done to them) but
also "luck" (the play of chance) ... Nature and nurture affect the
probability that each individual will develop cancer and luck then
determines which individuals will actually do so.&  However, although
for each single individual the role of luck is enormous, in a
population of a hundred thousand or more, the role of luck is smaller
and consequently in the comparison of national cancer rates, only
nature and nurture are important".

Likewise, Rose explains: "I find it increasingly helpful to distinguish
two kinds of etiological question. The first seeks the causes of cases,
and the second seeks the causes of incidence. 'Why do some
individuals have hypertension?' is quite a different question from
'Why do some populations have much hypertension, whilst in others
it is rare?' The questions require different kinds of study and they
have different answers".

Because individual probabilities of developing a particular form of
cancer are relatively low, even in those considered to be at higher
risk, prevention methods aimed at individuals have some serious
drawbacks; preventive actions offer only a small benefit to each
individual, since, as Rose says, "most of them were going to be all
right anyway, at least for many years". He calls this the Prevention
Paradox: a preventive measure which brings much benefit to a
population offers little to each participating individual.  An analysis,
such as in Abelson's Table 2, of who does and does not develop lung
cancer would find that whereas it is many times more likely in the
smoker than in the non-smoker, the proportion of individual
variation in outcomes explainable by their smoking habits is only a
few percent@. For rarer cancers, or lower relative risks, the
proportion of variance explained is even smaller, and the task of
convincing the individual to lower the risk all the greater.

DISCUSSION



Abelson admits that the results of his survey may have been strongly
influenced by the way he framed his question and even by the very
choice of subject matter. However, his main point is not so much that
we may be poor judges of r2, but that "one should not be scornful of
miniscule values for percentage variance explanation, provided there
is statistical assurance that these values are statistically above zero
and that the degree of potential cumulation is substantial".

I have argued that when we have the choice, we should not try to
measure explained variance using a microscope, and then hope (if we
are lucky enough to find it) that the effect will cumulate. Rather we
should cumulate first, making it unnecessary to use a microscope,
and then try to explain what we can see. Abelson was probably well
aware of the analogies with the need for repeated assessment to
produce a stable and characteristic measure; however, his emphasis
on the power of cumulation (as practised in advertising, education,..)
rather than on averaging (as practised to measure a characteristic
more precisely). However, his remarks might lead others to others to
think that there was less need to make repeat assessments of intra-
individual behaviour. As I hope this paper has shown, intra-indivual
variation is a powerful "leveler" and dilutor of real inter-individual
variation, all the more so when the within-individual elements are
binary. I urge researchers to first try very hard todetermine where
each study individual really stands relative to others, and only then to
ask why? In some instances, intra-individual variation can be
controlled for by assessing individuals at the same time, or with the
same observers, etc; in order to avoid its insidious effects, repeated
assessment of the remaining uncontrollable or unexplainable
interindividual variation offers the only alternative.



Table 1



Figure Legends

Figure 1: Each player's average in m randomly selected at bats (y axis)
plotted against the player's longrun average (x axis). The four panels
correspond to  m=1,5,25 and 100. Each panel represents a 'median'
data pattern from among 10 panels generated. Even with large m, the
correlations are weak, and many players would be misranked.

Figure 2: Average percentage of variance explained when individuals'
longrun performances are used to predict the average of m
assessments of batting success and Forced Expiratory Volume (FEV1).
Because of the much smaller signal-to-noise ratio, the average of 5
repeated  FEV1's has an r > 0.95 correlation with the true average; in
contrast, more than m=1000 at bats per person are needed to achieve
the same r. In both examples, the r or r2 depends not just on the
intra-individual variability but also on the range of inter-individual
variation being studied. There is also the implicit  assumption that the
true batting average is made up of a very large number of at bats
(relative to m) so that the finite sampling correction is not needed.



* Prob(A,B both hit)=0.32 x 0.22 = 0.0704; Prob(both miss)=0.68 x
0.78 = 0.5304; Prob(A hits, B does not)=0.32 x 0.78 = 0.2496; Prob(A
does not, B does)=0.68 x 0.22 = 0.1496;

Incidentally, if one thinks about it, this accords with experience. More
often than not, in a critical at bat, even a highly esteemed pinch hitter
fails to hit; sometimes, a lesser player shows him up by producing the
important hit. If, as will commonly happen, both fail to hit or both
hit, the contrast is not made; but if one hits and the other does not,
there is quite a good chance (as high as 20-40% as mentioned above)
that it is the lesser player who hit. With this common reversal, it is no
surprize that so little of this variance is predictable.

# Indeed one could question the very use of variances and standard
deviations to describe binary data. with measured data, the majority
of the values commonly lie less than 1 SD from the mean. In contrast,
when the average binary value is 0.5, all of the data lie exactly one SD
away;

 Snedecor and Cochran

 Doll R & Peto R. The causes of cancer: quantifiable estimates of the
proportion of avoidable cancers in the US today.

& One could say about baseball players that each one is born with a
certain batting average, but they each does after all have to produce
the right number of hits and misses in order to realise it. It would be
very boring baseball if it became any more predictable than that.

 Rose G. Sick individuals and sick populations. International Journal
of Epidemiology, 14: 32-38, 1985.



@ for example, assuming that non-smokers (half the population) have
a 1% probability of developing lung cancer and that smokers have a
9% probability, the ƒ2 coefficient is 3.4%.



A T  V A R I A N C E :
W I T H  ON E S E L F  A N D  W I T H  OT H E R S

DI S C U S S I O N  O F

"A  V A R I A N C E  E X P L A N A T I O N  P A R A DO X :

W H E N  A  L I T T L E  I S  A  L O T "



Question on variance explanation in baseball

You are ineligible if you

(a) know nothing about baseball or
(b) know nothing about the concept of variance explanation or
(c) have read Abelson's paper

Imagine a time at bat of an arbitrarily chosen major league baseball player.

Estimate what percentage of the variance in whether or not the batter gets
a hit is attributable to skill differentials between players:

______ %



The concept of variance explanation (Abelson)

- good measure of importance of potential explanatory factors

r ≤ 0.30 often "poor-mouthed" ( ≤ 10% of the variance")

- in anova contexts, % variance explained ( ω2 ) is a central concept

 ω2 =  σ2
systematic / ( σ2

systematic + σ2
chance )

often small and discouraging

- trained that small % variance explained ==> variables quite unimportant

-recently led to consider this concept



Argument: the role of chance in sports events

Abelson:

• many football & baseball games decided by freaky & unpredictable events

- windblown fly balls

- runners slipping in patches of mud

- baseball bouncing oddly off outfield wall

- field goal attempts hitting goalpost

• even without obvious freakiness,

mechanisms of skilled actions (eg hitting baseball) so sensitive that

∆ between home-run and pop-up swing so tiny as to be unpredictable



Argument: the role of chance in sports events

Colleague:

• cannot be chance

- good teams usually win

- more skilled players overcome freaky conditions better

- visual-motor coordination subject to causal analysis



straightforward statistical question

how much do differentials in skill*  explain variance in the possible 

outcomes (hit, no hit) when each baseball batter has one time at bat?

 *as measured by players' longterm batting averages

• Can compare intuition with mathematical calculation

• Copious data



Results of Survey

( n= 61 graduate students & faculty, Department of Psychology, Yale)

Median estimate: 25% ( high by 75 x)

90% of estimates above:   5% ( high by 15 x )

only 1/61 underestimated

Answer:



Calculation

Yi  : outcome of a random at bat of batter i

µ i  : true mean (nbatting average) for batter i e.g. µi  = 0.289

ei  :  random binary outcome with mean µi  i.e. ei = 0(no hit) or 1(hit)

So

Yi  = µi  + ei

 ω2 =  σ2
systematic / ( σ2

systematic + σ2
chance )

σ2
chance = µ i (1-µi  ) i.e. binary variance "averaged" over

batters

σ2
systematic = variance of µ i  's over batters



σ2
systematic = variance of µ i  's over batters = ???

"The bulk of the distribution of µi  's of major league regulars in a given year

typically lies between the low .200s and the low .300s"

so, range of µi  's: .220 to .320

average µi  : .270

σ2
systematic: : .0252   = .000625

i.e. .100 = 4 x σ

σ2
chance = µ i (1-µi  ) i.e. binary variance "averaged" over batters = ???

µ i (1-µi  ) ranges from

.220 x .780 = .171600 = .412

to

.320 x .680 = .217600 = .462

average is approximately .196475

So

ω2 =  σ2
systematic / ( σ2

systematic + σ2
chance )

= .000625 / ( .000625 + .196475 )

= .003

ω2 = 1/3 of 1%



Sensitivity analysis

% outcome variance
batters chosen attributable to skill

at random from 220-320 range 0.3%

from two extremes i.e. 220 and 320 1.3%

uniformly from 000-320 range 6.3%

uniformly from 000-1000 range 33.3%



Implications... à la Abelson

• baseball e.g. exaggerates paradox
illusion of control
(ie skill influences are exaggerated at expense of chance infleuence)

• systematic ∆s in µ i  's are non-trivially predictive of success in baseball

batter judged over entire season
team scores by conjunction of runs

• statistical effects of cumulation well known
psychometrics... reliability of measurement
prediction of behaviour from attitude measures
must consider if effects of factor cumulate

- educational interventions
- advertising

• OK to have small r's if
ρ >> 0

potential for substantial cumulation
(not useful if X is summary measure)



- difficult to interpret their overestimates

- elicit inherent unpredictability by other means.

looks for flaws in the calculation
performs a sensitivity analysis
considers only the best and the worst batters
tries to appeal to another equivalent index of correlation
only mentions statistical cumulation at the very end

• discuss some of these implications

• outline some measurement principles needed

to give variance explanation a chance of succeeding.



I other ways to show large role of chance in Abelson's example

[ chance = lack of predictability ]

I I special nature of binary variables

I I I interindividual variation in general and binary variation in particular

what they mean for research design

how luck and probabilities dominate these same issues

challenges in epidemiology & 1º prevention (at population level)



The same Question  in other similar situations: 3 analogous examples

• GPA = %  correct answers to 2000 multiple choice questions

==> randomly select 1 of the 2000 and see if answer was correct

• basketball player's playing career

==> does player score in  randomly choosen 1 minute 'window'

• gambling casino

does the house win in one randomly chosen spin of the roulette wheel

tiny portion of each academic/scoring record
overwhelming role of sampling variablity or "chance"
little room for real individuality or systematic variation



survey results might be sensitive to the way he posed question

"batting averages" vs "skill differentials between players"

"variance in whether/not different randomly chosen players get hits"

"estimate how much of the variance is unexplained"



The same issue, but posed differently

Consider 2 players A and B

one player has a longrun average of µ1 = 0.320

the other has a longrun average of µ2 = 0.220

who had which average ???

can use the raw data from the two series of at bats

How many at bats (randomly sampled) from each series should we analyse

before safely deciding which series belongs to whom? i.e. m=???

If we choose m=1 at bat/player

60% chance of getting concordant answers

i f  lucky enough to obtain some variance

≈ 37% chance that it is the poorer batter who had the hit

at bats (sample size ) m = 5 10 25 100

prob. of incorrect decision 35% 30% 20% 5%



to assess relationship b/w player characteristics and batting performances

• must measure performance with sufficient precision that

different players are (at least) correctly ranked ( spaced)

 along the "batting average" scale.

• Inadequate measurements jumble correct order

attenuate any real relationships.



inherently unpredictable: low r's and ω2 's do not lie

- much less predictable than  interval or ordinal measures

predicting rain tomorrow
vs

predicting the maximum temperature

- Low r2 borrowed (from anova) reflect this

- One should expect this to happen

most measured data pile up towards or close to mean

binary ("0/1") data, by definition, pile up away from the mean

coefficient of variation
for measured data... often a good deal less than 20-50%

for binary data... much higher
e.g. 300% if µ = .100

150% if µ is  .270

100% if µ =  .500



l imited r2  with 0/1 variable

surprises those analysing binary outcomes for  1st time

dramatic if only a small minority of outcomes are +ve (-ve)

concept of degrees of freedom must be revised

(real degrees of freedom are the number of minority outcomes)

intra-class correlation:

ranges from 0 to 1, developed for genetics studies

how much 'closer' related individuals are than unrelated individuals

In the batting context  interclass correlation answers question:

knowing outcome of an at bat, will outcome of a 2nd randomly chosen at bat

of same  batter be more like 1st than a random at bat of another batter?



Another clue: plot the data

This disappointing finding is not based on a freak data pattern, but as

one can empirically verify, is possibly better than average. Of the 10 such

plots I produced, 4 of them produced negative slopes; the pattern shown is

the second best positive one. The figure also explains, more forcefully than

does Abelson's Table 2,  correlation coefficients calculated from two

binary variables, or even a binary and a  measured one, are low even if there

is a strong relationship between their averages: it is imposible for a

straight line to be near to the four corners of the data!



commonly asked research question

is interpersonal variation in personal characteristic/"outcome"
related to interpersonal variations in other, "explanatory", factors ?

-interest is in explaining typical behaviour
(characteristic /general/ average)

rather than that in any one specific randomly chosen instance.

Q: how does one characterise each individual?

A: When one can, repeat assessments (A proportion is an average too!)



characteristics

strictly binary: repeat assessments should give the same answer

e.g. ? born in June ? delivered by caesarian section.

should be but... :  depends on how, when, who, ..

e.g. blue eyed;   male;   born before term;

birthweight < 2500g;   "Type A" personality;

quantitative : rely on "averaging" or "summarizing" series of items

(at bats, exam questions, questionnaire items, votes of interviewers)

e.g. batting performance;   intelligence;   academic performance

location on psychological scale;   ranking in interviews

.... derived after examining/consulting a sample of item domain



How many (m) intra-individual components to sample? Signal vs Noise

depends on ratio of intra-individual to inter-individual variation

true variation between individuals ==> signal/target of study

noise <== must characterise individual using sample of components

ω2 = signal2/(signal2 + noise2)

 Assessing m > 1 components reduces noise variance by a factor of m

ωm2 = signal2 / (signal2  +  noise2 / m)

Effect of intra-individual variability in two different abilities

respiratory function batting performance

( FEV1 )

inter-individual variation σb  =  0.5  0.025

intra-individual variation σe  =  0.2 0.443

ratio signal:nois 2.5 18



Figure 2 contrasts these two situations:

FEV1: a small m (3-5) is sufficient to characterise  individual

batting: a large m needed

average/400 only fair  guide to player's overall average

ω4002 = 55%



another look at what ωm2 means

designing  studies to compare performance of two groups of individuals

e.g. left- and right-handed players.

• using full batting records (m=∞) from n players per group

power depends inversely on the quantity σb2 / n

σb2 : variation in batting averages among Rh (or Lh) players

• using 1at bat/player increases the "noise" to σb2 + σe2 / m

• using m at bats reduces noise to σb2 + σe2 / m

e.g., if ωm2 =0.25

a study of n=100 players/group, and using m at bats/player

has the same statistical power as

a study of n=25 players/group which uses entire record of each player

• One can decrease ( σb2 + σe2 / m ) / n by increasing n and m

In practice, cost and other constraints limit both n and m

• need for m>1 applies to any variable with  sizeable σe2



Comparing larger units: intra- and inter-population variation

parallel in epi:   population = player;    individuals = different at bats

Doll and Peto (Causes of Cancer)

"the determinants of who will and who will not get cancer can

be divided into three categories, not only the usual "nature"

(genetic makeup) and "nurture" (what people do or have done to

them) but also "luck" (the play of chance)

Nature and nurture affect the probability that each individual

will develop cancer

 luck then determines which individuals will actually do so

However, although for each single individual the role of luck is

enormous, in a population of a hundred thousand or more, the

role of luck is smaller and consequently in the comparison of

national cancer rates, only nature and nurture are important".



Rose (Sick individuals and sick populations. Int J Epi, : 32-38, 1985)

"I find it increasingly helpful to distinguish two kinds of

etiological question. The first seeks the causes of cases, and

the second seeks the causes of incidence. 'Why do some

individuals have hypertension?' is quite a different question

from 'Why do some populations have much hypertension, whilst

in others it is rare?' The questions require different kinds of

study and they have different answers".



:

- individual probabilities of a particular type of cancer relatively low

- prevention methods aimed at individuals have serious drawbacks

  (preventive actions offer only small benefit to each individual)

"most were going to be all right anyway, at least for many years".

preventive measure which brings much benefit to a

population offers little to each participating individual

An analysis of variance of who does and does not develop lung cancer

 many times more likely in the smoker than in the non-smoker

but the proportion of individual variation in outcomes explainable

by their smoking habits is only a few percent

e.g. assuming

half the population smokes

non-smokershave a 1% probability of developing lung cancer

smokers have a 9% probability

the ω2 coefficient is still only  3.4%



Abelson

results of his survey may have been strongly influenced by framing

and by the very choice of subject matter

However, his main point

not so much that we may be poor judges of r2

but that "one should not be scornful of miniscule values for

percentage variance explanation, provided there is statistical

assurance that these values are statistically above zero and that the

degree of potential cumulation is substantial".



Hanley
• when we have the choice

should not try to measure explained variance using a microscope
should , making it unnecessary to use a microscope,

 try to explain what we can see

Abelson emphasized power of cumulation rather than on averaging

but, ... lest his remarks be misinterpreted, I would re-emphasize:
intra-indivual varn. is powerful "leveler" of real inter-individual varn.
(all the more so when the within-individual elements are binary)

so, we should urge researchers to
first try very hard to determine  each study individual 
stands relative to others
and only then to ask  ?

In some instances intra-individual variation can be controlled for
by assessing individuals at the same time
with the same observers

in order to avoid its insidious effects, repeated assessment of the
remaining uncontrollable or unexplainable interindividual variation offers
the only alternative.



Table 1



Figure 1: Each player's average in m randomly selected at bats (y axis)
plotted against the player's longrun average (x axis). The four panels
correspond to  m=1,5,25 and 100. Each panel represents a 'median' data
pattern from among 10 panels generated. Even with large m, the correlations
are weak, and many players would be misranked.

Figure 2: Average percentage of variance explained when individuals' longrun
performances are used to predict the average of m assessments of batting
success and Forced Expiratory Volume (FEV1). Because of the much smaller
signal-to-noise ratio, the average of 5 repeated  FEV1's has an r > 0.95
correlation with the true average; in contrast, more than m=1000 at bats
per person are needed to achieve the same r. In both examples, the r or r2
depends not just on the intra-individual variability but also on the range of
inter-individual variation being studied. There is also the implicit
assumption that the true batting average is made up of a very large number
of at bats (relative to m) so that the finite sampling correction is not
needed.


