
APPENDICES
to submitted manuscript

“Lionel Penrose’s statistical consultant: and lessons from the
statistical ‘sudoku’ they left us”
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A ‘Sudoku’ solutions using integer linear programming

In the following toy example, from the lp function in the lpSolve package in R, the task is to
maximize the objective function 1x1 + 9x2 + 1x3 with respect to the 3 unknowns, x1, x2, and x3,
subject to the 2 constraints

1 x1 + 2 x2 + 3 x3 ≤ 9,
3 x1 + 2 x2 + 2 x3 ≤ 15.

It can be accomplished by supplying the following 5 arguments to the lp function:

• A character string giving direction of optimization: ”min” (default) or ”max.”

• The numerical vector of coefficients, {1, 9, 1} that specify the objective function.

• The 2× 3 matrix of coefficients that specify the constraints.

• The vector of character strings giving the direction of each constraint, here {≤, ≤},

• The vector of numeric values for the right-hand sides of the constraints, here {9, 15}

The maximum of the objective function (40.5) achieved at {x1, x2, x3} = {0.0, 4.5, 0.0}.
In the Penrose data the reported 42 (rows, r ) × 31 (columns, c ) frequency table F is a sum of the
2 unreported sub-tables N and D :

Fr,c = Nr,c +Dr,c.

We wish to determine N and D subject to the constraints which are given in the reported
marginals of the table, namely (with dots denoting marginal totals)

OVERALL : N·· = 573, D.. = 154;

ROWS : N1· = 1, D1· = 0; . . . ; N42· = 1, D42· = 0;

COLS : N·1 = 1, D·1 = 0; . . . ; N·31 = 3, D·31 = 1.

Initial checks:

ROWS: these were consistent with OVERALL.
COLS: the {N·c} summed to 575 and the {D·c} to 152.
Initial efforts at balancing of the system

• Move 2 from N·MothersAge 34 to D·MothersAge 34
Rationale : this is the minimum possible deviation from original: the text reports 154 and 573, and the values given
for the row sums of 573 and 154 match the ROWS provided.
Note: not all columns will allow this (especially those at the beginning) and it is also possible to involve two
columns with transfer of 1 each to achieve the same consistency. These typically yield slightly different solutions,
but within generally about 10-15% difference between two distinct solutions.

Ultimate edit, which balanced the system:

• Change 4:5 split at maternal age 46 to a 3:6 split.

• Change 3:1 split at maternal age 47 to a 2:2 split.
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Now, we can solve the ‘Sudoku’ via LINEAR PROGRAMMING (using, e.g., the lpSolve package
in R)

To apply it to the Penrose table...

• Limit it to to the 325 distinct ‘FathersAge×MothersAge’ cells where Fr,c > 0.

• The row index ranges from 18 to 59 (42 rows); the column index from 17 to 47 (31 columns).

Variable set: 325 unknown d r c ’s ( # Down’s cases)

Constraints, 325 + 42 + 31 = 398 in all, 1 for each . . .
d r · = Dr· 42 r ’s

d · c = D·c 31 c ’s

d r c ≤ F r c 325 d r c ’s.

Objective function:
∑325

1 1× d r d, [ i.e., d · · ]

Since the sum constraints are effectively already fulfilled, both max and min procedures yield the
same solution.

The R implementation and the raw data in Penrose’s Table 1 can be accessed from the link found
at the bottom of the ‘Statistical Sudoku’ page on the section of JH’s website
https://jhanley.biostat.mcgill.ca/ devoted to Historical Material. [The link will be made ‘public’
when this article is published.]
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B What summary statistics are needed to fit a logistic
regression?

Take the Penrose example with a binary outcome (affected/not), two predictors, x (age of mother)
and z (age of father), two separate (parametric) functions, q1 and q2, of x and z, respectively, with
no product terms involving both.

P [affected] =
eq1(x)+q2(z)

1 + eq1(x)+q2(z)
,

P [not affected] =
1

1 + eq1(x)+q2(z)
.

Consider a cell (which we can refer by its two subscripts i and j), where the parents’ ages are xi
and zj respectively and in which there are a total of nij children. Suppose yij of these are, and the
remainder nij − yij are not, affected. The binomial-based log likelihood contribution from this cell
is therefore

lij = yij [q1(xi) + q2(zj)]− nij log(1 + eq1(x)+q2(z)).

Summed over all non-empty cells, the overall log-likelihood is∑
i

∑
j

lij =
∑
i

∑
j

yij [q1(xi) + q2(zj)]−∑
i

∑
j

nij log(1 + eq1(xi)+q2(zj))

=
∑
i

∑
j

yij q1(xi) +
∑

yij q2(zj)−∑
i

∑
j

nij log(1 + eq1(xi)+q2(zj))

=
∑
i

Yi· q1(xi) +
∑
j

Y·j q2(zj)−∑
i

∑
j

nij log(1 + eq1(xi)+q2(zj))

where Yi· is the marginal sum
∑

j yij and Y·j is the marginal sum
∑

i yij . Therefore the log
likelihood remains invariant over all possible within-cell distributions as long as the marginal sums
remain the same.

Thus, as long as we stay with a ‘no-interaction’ model, the maximum likelihood estimates for the
usual logistic regression or even spline logistic regression will be unique and independent of the
actual outcome distribution within each cell.

A solution eluded us and our students a decade ago. We now realize that the log likelihood as
written above suggests an easy way to fit a logistic regression model without having to generate a
full 3D solution: use a routine such as optim in R to directly maximize it.

Without generating a solution, we have not been able to fit a logistic regression within a GLM-type
framework, but wonder if some type of EM approach might work. We welcome all suggestions.

As we said in the text, in the special/simplest case where q1 and q2 are just linear, and simply
additive, the 3 sufficient statistics for the parameters {β0, βM , βF } consist of just 3 numbers: the
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number of cases of Down’s syndrome: 154; the sum of the ages of their 154 mothers: 5736 years;
and their 154 fathers: 6065 years. Equating the partial derivatives of the log-likelihood to zero
results in 3 balancing equations that equate these 3 sufficient statistics to their 3 expected/fitted
values. Finding this balance requires an iterative search (the same type of search that Penrose and
Fisher used in their subsequent study, [6]) but again, within any parental age “cell” one does not
need to specifically know how many of the children in the cell were affected or not.
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C ‘Model-free’ statistics from 1000 possible solution-sets

Our approach is adapted from the broad principles that Fisher and Penrose used, a year later, to
show that once one has accounted for the mother’s age, birth order does not matter. The
“convincing test for the theory [(hypothesis) that the once one has accounted for the mother’s age,
the father’s age does not matter], is a direct comparison between what has been observed, and
what must be expected on that theory. The appropriate theory [hypothesis] here is, that the
probability of a Down’s syndrome child depends on the mother’s age, in some manner unknown
prior to the data, but not, given the mother’s age, on the [father’s age].” We excluded children
whose mothers were ages 17, 18, 25 and 30 since these maternal age-bins contain “wholly Down’s
syndrome, or wholly normal [children] and [thus] give no information” and limited ourselves to the
27 informative maternal age bins.

However, unlike Fisher and Penrose’s 1934 paper on birth order, where they modeled the effect of
maternal age, we accounted for maternal age by matching on it: Thus, within each of the 27
informative maternal age-bins, we calculated a statistic that compares the paternal ages of D and
N children in that bin; we then aggregated the 27 maternal-age-specific statistics into one overall
statistic, using a weighted average. We used inverse-variance weights. On the principle that in a
specific maternal-age bin, a statistical comparison of nD Downs children with nN Normal children
should have a variance proportional to 1/nD + 1/nN , the weight for the sub-statistic calculated
from that bin had the form nD × nN/(nD + nN ). Thus, for example, the weights for maternal age
bins 19 and 20 were proportional to 2× 5/7 = 13

7 and 1× 8/9 = 8
9 respectively, whereas the most

heavily weighted age-bin was age 38, with a weight proportional to 11× 22/33 = 71
3 .

We computed three different summary statistics, along with their null expectations and variances.
The simplest and coarsest was a count: in how many of the 27 maternal-age bins did the mean age
of the fathers of D children exceed the mean age of the fathers of N children. It could be thought
of as a form of sign test that weighs each age-bin by the potential amount of information it
provides. The second, less coarse, summary was a weighted average of the sums of the ranks of the
fathers’ ages of the D children in each of the 27 bins. However, because the numbers of children in
the 27 bins varied considerably, this summary test statistic does not give an intuitive measure of
how far apart the D and N ages are. Thus, we also calculated the (weighted average of the 27)
‘placement values’ [4], each of which represents the placement of the nD fathers’ ages among the
nD fathers’ ages, as a way to measure how separate/overlapping the two sets of ages were. For
example, consider a bin/column where the father’s ages of the 2 D and 5 N children were (in
increasing order) NDNDNN. The rank sum statistic for the 2 D children is 2 + 4 = 6, whereas the
more helpful placement (concordance, c, average of 10 pairwise u’s) statistic is
3/(2× 5) = (1/5 + 2/5)/2 = 0.3 or 30%. For each bin, the permutation distribution was used to
compute the null expectation and variance of each statistic; where the number of possible
permutations was too large, a random sample of 10,000 of them was used.

The number of unique ways in which the 154 D cases could be distributed over the 325
parental-age cells, while respecting the known marginal totals shown in Figure 4, is very large:
indeed, we have not been able to determine that number. In order to assess how much the
summary statistics would vary over this very large number of solution sets, we generated 1000
unique sets by using 1000 random orderings of the 398 constraints in the constraints matrix.

The main part of Figure 4 shows some details of the 1000 sampled solution sets. For example, in
some 83 of the 325 parental-age cells, mostly the more sparse ones at the extreme ages, the number
of D cases did not vary from solution to solution. Naturally, the cells that allowed the greatest
variation were the less sparse and more central ones.

The ranges of the summary statistics are shown in the insert at the bottom left of Figure 4. In
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Mother's Age

Father's Age
18
20

30

40

50

59

17 20 25 30 35 40 45 47

0
0 0
00 1 10 1
0 0 0 0

00 1 00 2 00 2 00 1 10 1
10 2 00 1 00 1 00 2 00 2 00 1

10 2 00 2 00 2 00 1 0 00 1 00 1
00 1 10 2 00 3 00 1 0 00 3 00 3 00 1
00 1 00 1 0 0 0 0 00 1 00 1 10 1 00 1

00 1 10 3 00 1 0 00 3 00 3 10 1 00 1 0 00 2
00 1 00 3 00 1 00 3 30 4 00 2 00 1 0 20 2

0 00 2 0 0 0 0 00 1 0 0 00 1 0 10 1 10 1
0 00 1 0 00 1 00 1 00 1 0 0 0 0 00 1 00 2 10 1 10 1

00 1 00 1 00 1 0 00 3 00 3 00 2 0 0 00 1 0 10 4 10 1 20 2
00 1 00 1 00 1 00 1 00 2 0 0 0 0 00 2 00 2 00 1 10 1

00 1 00 1 00 1 00 2 00 1 0 0 0 0 00 3 00 1 00 1 20 2 10 1
00 1 00 1 0 00 1 00 2 00 2 00 2 00 1 00 1 00 2 10 1

00 1 00 1 0 00 2 00 2 00 4 00 5 00 6 00 4 30 3 10 3 10 1
0 0 0 0 0 0 00 1 00 1 00 2 00 1 00 2 20 2

00 1 00 1 00 1 00 2 00 6 00 2 00 5 00 2 30 8 00 2 20 2 10 1 10 1 10 1
0 00 1 00 1 00 1 00 2 00 2 00 2 00 4 00 5 00 4 00 1 20 2 20 2

00 1 00 2 00 1 00 1 00 2 00 4 00 6 00 2 00 2 00 2 00 6 10 1 10 1 10 1
00 1 00 1 00 1 00 1 0 0 0 0 20 4 30 3 20 2 10 1 10 1

00 1 00 1 00 1 00 2 00 3 30 4 40 4 10 1 10 1
00 1 0 20 2 20 2 50 6 00 2 00 3 30 3 20 2 10 1 10 1

00 1 00 1 00 1 00 3 00 1 00 3 00 3 40 4 31 3 20 2
00 1 10 1 10 1 10 2 00 3 00 5 00 1 30 3 10 1 20 2

0 00 2 00 1 00 1 0 00 2 0 00 1 00 1 20 3 11 3 2 11 2
10 1 10 1 10 1 00 1 0 0 10 1

20 2 20 2 10 1 00 5 0 10 1
00 1 10 1 10 1 20 2 00 1 00 1 00 1 0 20 2 1

0 0 0 1
0 0 0

10 1 10 1 00 1 00 1 0
21 2 0 00 1

10 1 1 00 1
10 1 00 1 0

1 0
1 0

0
2

0

1 2 5 8 13 11 22 31 25 31 31 22 30 36 32 32 35 27 35 21 21 22 21 16 10 9 6 5 8 3 2
0 0 2 1 3 2 3 1 0 3 4 2 1 0 2 2 6 7 9 5 9 11 10 13 15 16 8 7 4 6 2

1
2
2
6
8
8

16
27
24
23
28
25
31
39
26
28
30
33
32
27
21
25
17
10

9
11
11
15

4
7
6
4
4
3
2
1
3
1
1
1
0
1

0
0
1
0
2
2
2
3
1
3
6
2
2
4
2
3
2
7
2
9
8
8
7
8

15
11

9
7
4
6
6
1
0
2
2
2
1
1
1
0
2
0

1 250 500 Mean 750 1000

In how many [1]  8.1 11.4 12.4 12.2 13.0 15.8
Z −1.59 −0.50 −0.16 −0.23  0.04  0.94

Sum of Ranks [2] 102.7 108.7 110.4 110.5 112.2 120.5
Z −3.19 −2.01 −1.67 −1.64 −1.31  0.31

Percentile [3] 39 42 42 42 43 46
Z −3.69 −2.83 −2.62 −2.60 −2.39 −1.42

[1] Of 29 maternal−age bins was mean paternal age older for D than N children.
[2] Of paternal age(s) of D children.
[3] Where paternal ages of D children are located with respect to ages of N children.

Figure 1: Cell-specific variations [across 1000 solution sets] in the numbers of Downs syndrome cases.
In cells where the was no variation, only the number of cases is indicated; in cells where there was
variation, the smallest, median and largest of the 1000 frequencies are shown. The insert in grey
summarizes the distribution of the three summary statistics described in the text.

none of the 1000 solution sets did our variant of the ‘sign test’ show a remarkable difference from
the null expectation. Many of the solution sets indicated that the summary rank sum of the ages
of the fathers of the D children was lower than expected, whereas most of the summary statistics
based on the c statistic did.

In contrast, for any selected model-based approach, the 1000 solution sets all produced the same
value of the summary statistic. For example, in a form of weighted paired t-test, across the 27
informative bins, the mean ages of the fathers of the D children were 0.23 years younger than
those of the N children (the simulated standard error was 0.46 years). Likewise, using all 727
observations in in all 31 maternal age bins, with the indicator (0,1) variable D indicating a child
with Downs syndrome, and with Fathers’ and Mothers’ ages shortened to F and M , the 1000 calls
to the R linear regression procedure

lm(F ∼ − 1 + as.factor(M) +D)

all yielded a value of -0.23 years (SE 0.44) for the coefficient of D. (The point estimate remained
identical, but the SE was slightly larger if this model was fitted to just the 663 observations in the
27 bins.)
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These mostly negative form-free statistics bear out the Penrose statistics shown in Tables 1 and 2.
We leave it to readers to explore more sophisticated logistic regression forms than those in Figure
3. It must be understood however, that the outcome-based nature of the sample precludes fitting
absolute risk (probability) functions.
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D SR: ‘Model-based’ statistics from generated solution-sets

D.1 General remarks

• The solution set shows certain common features shared between the different vectors of
estimated Downs cases.

• The differences between feasible solutions are not negligible.

• Examples: pairwise L2 distances† between 11 solution vectors.

1 2 ... ... 11

1 14.8 21.5 16.1 19.5 17.2 20 17.2 20.4 15.1 20.2
2 14.8 25.5 14.1 23.6 14.1 23.4 16.4 22.6 14.9 21.9
3 21.5 25.5 24.9 12.0 23.5 13.3 22.4 14.7 22.0 14.7
4 16.1 14.1 24.9 24.0 12.6 22.3 15.4 21.0 14.8 21.5
5 19.5 23.6 12.0 24.0 24.2 12.4 22.4 14.5 21.4 13.8
6 17.2 14.1 23.5 12.6 24.2 24.3 11.7 23.2 12.9 22.3
7 20.0 23.4 13.3 22.3 12.4 24.3 23.9 11.9 22.3 14.6
8 17.2 16.4 22.4 15.4 22.4 11.7 23.9 23.9 12.9 22.6
9 20.4 22.6 14.7 21.0 14.5 23.2 11.9 23.9 23.6 11.6

10 15.1 14.9 22.0 14.8 21.4 12.9 22.3 12.9 23.6 23.2
11 20.2 21.9 14.7 21.5 13.8 22.3 14.6 22.6 11.6 23.2

† Distance between vectors d∗ and d∗∗ =

√∑325

i=1
(d∗

i
− d∗∗

i
)2

Remarkably, in [a sample of] 397 solutions, there were 40 locations in the solution vector of length
325 with standard deviation 0.

D.2 Standard deviation in solutions

sd # locations

0 40
< 1 282
= 1 1

< 1.3 296
< 2 320
= 2 0
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D.3 Standard deviation and average solution by age

D.4 Two distinct solutions

D.5 LEFT: ‘spline(age)’ and RIGHT: ‘linear(age)’ logistic calibration
for 1st solution

Here is a check with generalised additive model
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D.6 ‘spline(age)’ and ‘linear(age)’ logistic calibration for second
solution

D.7 spline fits for solutions by Mother’s age

D.8 spline fits for solutions by Fathers age and by levels

11



D.9 spline and logistic calibration for the ”best” or 24th solution

D.10 Comparison of errors for each solution

JH & SR 2025.03.31
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