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Introduction 

It is a pleasure to dedicate this article to my friend George Fraser.  I have a curious 

symmetrical relationship with George: neither of us knew the other until recently, but 

each of us knew the other's father.  I knew George's father through playing chess with 

him in various tournaments and club matches.  He was a strong player and won the 

British Chess Championship in 1957; the only way I ever found of beating him was to 

tempt him occasionally with an opportunity for an over-optimistic piece sacrifice.  

George and my own father, the human geneticist L S Penrose, knew each other very 

well, since my father was George's thesis supervisor (and, as a keen chess player 

himself, he also knew George's father).  Nevertheless it was only about five years ago 

that George Fraser and I first met, when he spoke at a conference held at University 

College London in 1998 to commemorate the 100th anniversary of my father's birth.  

My own introduction to human genetics came at a very early age.  When I was 

about four years old I would sometimes venture into my father's study, to find him 

doing what I described at the time as "red and blue busywork".  I like to think that the 

work he was doing with his red and blue pencils was connected with the data 

collection and analysis for his 1933 paper The relative effects of paternal and 

maternal age in mongolism (Penrose 1933) which he was working on around that 

time.  This paper was a milestone in the use of quantitative methods in human 

genetics.  Until that time, according to Harris (1973) nothing was understood about 

the causation of the condition now known as Down's syndrome.  It was known that 

the affected children were more often born to elderly parents and often came late in 
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the order of birth, but the relative importance of father's age, mother's age, and birth 

rank was a mystery.  (At that time the possibility that the explanation was a 

chromosomal abnormality, suggested in a remarkably prescient passage by 

Waardenburg (1932)1 was not taken seriously (Penrose 1966)).  My father set out to 

disentangle these effects, and the 1933 paper showed convincingly that the mother's 

age, but not the father's, was an important causative factor.  

When I got a little older, the object of greatest interest in my father's study was 

a handle-powered desk calculating machine called the Brunsviga.  This was the latest 

thing in computing technology at the time and it made a very satisfying crunching 

noise when you turned the handle to do a big multiplication or division sum.  A lot of 

the number crunching he did around that time must surely have been the analysis of 

the data for the 1933 paper.  The collection of these data was a tour de force of 

dedicated field work by my father and his assistants Miss M Newlyn and Dr M 

Gunther, working from the Royal Eastern Counties Institution in Colchester.  They 

took family histories of 150 families each of which included at least one child with 

Down's syndrome, a total of 727 children, recording, among other things, the age of 

each parent at the time of the child's birth.  But it was my father on his own who 

invented the method of analysis that induced this confusing jumble of data to give up 

                                                
1 On pages 47-8 of [3] Waardenburg says 'In view of the persistent uncertainty of its genetic 
basis, I may have given too much space to this anomaly.  On the other hand, the unfailing recurrence of 
a whole series of symptoms in mongoloid patients affords a fascinating problem.  I would like to 
persuade the cytologists to investigate the possibility that we may be dealing with a particular 
chromosome aberration in man.  If would surely not be surprising if such conditions could occasionally 
occur in man and that, if the effect is not lethal, they would be the cause of a far-reaching constitutional 
anomaly.  Investigations should be carried out to see whether mongolism is associated with 
"chromosomal deficiency" caused by "nondisjunction", or on the contrary, we might be dealing with 
"chromosomal duplication".  It is of course also possible that the cause could be due to an anomaly of 
only parts of chromosomes (chromomeres): a "sectional deficiency" caused by a "translocation", or a 
"sectional duplication": this would be more difficult demonstrate cytologically.  [These terms were 
introduced by Morgan, Bridges and Sturtevant, The Genetics of Drosophila, Bibliographia Genetica 
1925, II. 1-262].  My hypothesis has the advantage that it is testable, and it might also be able to 
explain the influence of maternal age, whereas in men, because of the very large number of meiotic 
divisions, the chance of chromosome aberrations would be expected to be increased even without any 
special influences due to age.  If my hypothesis were shown to be correct, it would result in an 
important insight into problems of human constitution and the manifestations of syndromes' [English 
translation by Ursula Mittwoch] 
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its secret. 

Despite the interest generated by these colourful early experiences, it was not 

until 65 years later that I took the trouble to find out exactly what my father's "red and 

blue busywork" might have consisted of, when I looked up the 1933 paper as part of 

my preparation for a lecture (Penrose 1998) about my father and his family, given at 

Wisbech in 1998.  What I found when I did look at the paper was a seemingly simple 

statistical argument, but the more I thought about it the more fascinated I became by 

the subtle understanding that underlay the apparent simplicity.  The object of this note 

is to reveal some of these subtleties.  I hope that the historical importance of that 

paper, and the interesting statistical method used in it, make it worth while to give it 

this reconsideration, even after a lapse of over 70 years. 

The 1933 paper begins with a preliminary investigation of the relative 

importance of the father's and the mother's ages, based on the method of partial 

correlations.  The partial correlation of the father's age with the occurrence of DS 

(Down's syndrome) in the child, after elimination of the effect of the mother's age, 

turned out to be very small, only -0.01, whereas the partial correlation of the mother's 

age with DS in the child, after elimination of the effect of father's age, was much 

larger, 0.22, with an estimated statistical error of order 0.04 in both numbers.  Thus 

the partial correlation method provided strong prima facie evidence that the mother's 

age was an important factor and that the father's age was not.  However there was a 

difficulty with this method, namely that the standard tests for deciding whether or not 

the observed correlation is statistically significant were not applicable.  These tests 

depend on the assumption that the random variables in the problem obey a 

multivariate Gaussian probability distribution.  But in the present case this assumption 

cannot be used.  Although the two age variables (father's age and mother's age) are 

capable of a continuous range of values and therefore might without too much 



 4
 

violence to the facts be assumed to obey a Gaussian distribution, the third variable is 

nothing like Gaussian because it can take only two values, depending on whether the 

child does or does not have Down's syndrome.  

My father came up with a beautiful method of analysis which enabled him to 

obtain reliable deductions from the data he and his assistants had collected.  The 

method avoided the manifestly false assumption that all the random variables were 

Gaussian, while at the same time making it unnecessary to work out ab initio the 

corresponding theory of statistical tests for partial correlations when one of the 

variables can take only two values.  Like all the best ideas, the method looks very 

simple --- once you have been shown how to do it.  

The idea is to test two competing hypotheses against the data.  One of them, 

which I shall call M, is the hypothesis that, of the ages of the two parents at the time 

of birth of the baby, only the mother's age is relevant to whether the baby will have 

Down's syndrome.  This hypothesis is compared with a "control", namely a 

hypothesis F that only the father's age is relevant.  Because of the symmetry between 

the two hypotheses, they are easily compared.  The test used is a prediction of the age 

of the parent whose age does not matter, based on the age of the parent whose age 

does matter and on whether or not the child has Down's syndrome.  The results of the 

test are shown in Table 1 (a simplified version of Table II of Penrose 1933).  The top 

half of the table summarizes the test of hypothesis M.  On average, the prediction of 

the age of the "irrelevant" parent (in this case the father) based on the age of the 

"relevant" parent is very good: although the prediction in any individual case would of 

course be very inaccurate, the average of the predicted ages of the "irrelevant" parents 

is in error by only a few weeks.  For the competing hypothesis F, on the other hand, 

the predictions are much worse, the error in the predicted average being more than ten 

times as large.  Thus the evidence strongly favours hypothesis M over hypothesis F, 
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and the conclusion drawn in the paper was that "paternal age is not a significant  

factor, while maternal age is to be regarded as very important." 

 Test of hypothesis M, that only the mother's age matters  

average age of fathers observed predicted error 

of affected babies 39.38 39.47 0.09 

of unaffected babies 33.83 33.8 -0.03 
 

 Test of hypothesis F, that only the father's age matters  

average age of mothers observed predicted error 

of affected babies 37.25 35.71 -1.54 

of  unaffected babies 31.25 31.68 0.43 
  

Table 1:  Summary of the method and the results. 

Two things about this analysis are particularly intriguing.  One is that it 

depends entirely on the one set of data.  There was no separate survey of the 

population as a whole. The necessary information about the general population was 

gleaned from the group of parents studied - even though that group is far from typical, 

consisting entirely of parents of Down's syndrome children.  The other intriguing 

aspect is the relation between the two hypotheses F and M. Most statistical tests use 

just one hypothesis, but this one uses two.  In the basic theory they are treated 

completely symmetrically.  However, the data reveal an asymmetry between them, 

and so in the end the same data serve two distinct purposes at the same time: analysed 

according to one hypothesis, they provide information in support of that hypothesis, 

analysed according to the other, they provide a foil against which the performance of 

the first hypothesis can be evaluated.  In the rest of this paper the method and the 

results will be examined more closely, to see better how it has all been achieved.  
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Readers who are allergic to mathematics may skip to the beginning of the section 

headed  “The sample”. 

The probability model and the two competing hypotheses 

The underlying probability model of the 1933 paper can be set out in the following 

way.  A child is described in the model by just three variables: the mother's age m 

(measured in years) at the time of birth, the father's age f at the time of birth, and a 

non-numerical variable c describing the clinical situation.  The variable c is capable of 

just two values: A if the baby is Affected with Down's syndrome and U if the baby is 

Unaffected. (Thus, c = U means 'the child is unaffected').  We can call the triple 

(f,m,c) the 'state' of the child.  Other characteristics of the child, such as its sex, its 

date of birth, and the number of brothers and sisters, are ignored.  

 We consider some relevant large population, which might be (but in fact is 

not) all the infants born in Great Britain during a particular year.  For each possible 

state (f,m,c) we denote the number of children in the chosen population having that 

state by N(f,m,c).  The probability w(f,m,c) that an infant randomly chosen from that 

population would have had the state (f,m,c) is then equal to N(f,m,c)/N, where N is the 

total number of children in the population. 

 A couple expecting a baby will naturally be interested in knowing whether 

their child is likely to be affected with DS.  The statistician cannot predict the future, 

but if he knows their ages f, m and the probability distribution function w he can tell 

them the fraction of couples of their age whose babies were affected with DS in the 

past.  This fraction, which I will denote p(A|fm), is the conditional probability of the 

child's being in the state A, given the ages f,m of the two parents at the time of its 

birth.  As a formula, it is given by setting c = A in the formula 

                   p(c|fm) = N(f,m,c)/N(f,m)               c = either A or U                (1) 

where   
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 N(f,m) = Σc'= A,U N(f,m,c')     (2) 

denotes the total number of children in the population whose fathers and mothers at 

the time of the child's birth were aged f,m. 

 The  analysis that follows  will use  other conditional  probabilities  besides   

p(c|fm); for example, the conditional probability that the child's state is c and that in 

addition the father's age (at the time of birth) is f, given that the mother's age at that 

time is m, is defined by 

 p(cf|m) = p(fc|m) = N(f,m,c)/N(m)     (3) 

where    

 N(m) = Σc'Σf'N(f ',m,c')      (4) 

 

is the total number of children in the population who were born to mothers aged  m ; 

and the conditional probability that the father’s age is f , given that the mother's age is 

m, and independent of the state of the child, is   

 p(f|m) = N(f,m)/N(m)      (5) 

The following identity is a direct consequence of the definitions (1), (3), (5):  

 p(cf|m) = p(c|fm)p(f|m)    for all     f,m,c    (6) 

In principle, the probability that the baby born to a particular couple with ages f,m will 

turn out to have DS can depend on both parents' ages, i.e. the conditional probability 

p(A|fm) as defined in (1) may depend on both the variables f,m.  However, each of the 

two hypotheses to be tested can be phrased as a statement that p(c|fm) depends on 

only one of these variables. 

Hypothesis M : only the mother's age affects the newborn baby's chance of 

having DS; the father's age is irrelevant (i.e.  p(c|fm)  is independent of  f ).  
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This statement of the hypothesis is equivalent2 to the formula  

 p(c|fm) = p(c|m)   for all      f,m,c      (7) 

Two alternative mathematical statements of this hypothesis are3 

 p(fc|m)= p(f|m)p(c|m)       (8) 

 p(f|cm)= p(f|m)   provided that  p(c|m)>0   (9) 

 Hypothesis F : only the father's age affects the newborn baby's chance of 

having DS; the mother's age is irrelevant.  As a formula, this is 

 p(c|fm)= p(c|f)     for  all     f,m,c     (10) 

Two alternative formulations of hypothesis F, analogous to (8) and (9), can be 

obtained by interchanging the symbols f and m in (8) and (9). 

A prediction 

The statistical test summarized in Table 1 is based on the idea of using the hypothesis 

M or F to predict the average ages of the "irrelevant" parents at the birth of affected 

children and also of unaffected children.  Thus, one of the two tests of hypothesis M 

is to use it to predict the average age of the fathers of affected children, given the ages 

of the mothers of those children.  This average age, corresponding to the first entry in 

Table 1, can be written in terms of conditional probabilities as E(f|A), where  

 E(f|c) =  Σf  f p(f|c)  c = A or U     (11) 

denotes the conditional expectation of f  in the sample, conditional on the given value 

of c.  To use hypothesis M we express the conditional probability in the above 

formula as a sum over maternal ages: 

p(f|c) =  Σm p(fm|c)  by equations analogous to (5) and (3)  

                                                
2 To prove (7), sum the identity (6) over f and use M which says that p(c|fm) has a common 
value independent of f ; then use the sum rules Σf

 
p(cf|m) = p(c|m) and Σf

 
p(f|m) = 1 to obtain p(c|m) = 

( common value of p(c|fm) ).  
3 To prove (8), put (7) into the identity (6) and use the symmetry exhibited on the left side of 
(3). To prove (9), interchange f and c in (6) to get p(f|cm)= p(fc|m)/p(c|m); then use (8)in the right side 
of this last formula. 
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 = Σm p(f|mc)p(m|c)  by an analogue  of (6)  

= Σm p(f|m)p(m|c)  by hypothesis M (equation (9)  (12) 

so that equation (11) becomes (after interchanging the two summations) 

 E(f|c) = Σm E(f|m)p(m|c)  under hypothesis M  (13) 

where we have defined E(f|m) := Σf  f p(f|m), which is the expectation (average) of the 

father's age, given the age of the mother. 

 To evaluate the right side of (13) we make a standard simplifying assumption 

used in statistics, the assumption of linear regression. This assumption is that E(f|m) 

depends linearly on m, i.e. that a relation of the form  

 E(f|m) =  Jm + K        for  all     m             (14) 

holds, where J, K  are constants which can be estimated by the least-squares method. 

Putting (14) into (13), we obtain a formula for the predicted value of E(f|c) under 

hypothesis  M, in terms of Σm mp(m|c) which is the same as E(m|c), the expectation  

of the mother's age conditional upon the state c of the baby. Since the baby may be 

either affected or unaffected, there are in fact two predictions, one for each of the two 

possible values of c, which can be tested against the actual data. Written out explicitly 

these predictions are  

E(f|A) =  J E(m|A )+ K 

E(f|U) =  J E(m|U )+ K      both under  hypothesis M   (15) 

where  E(m|c) means  Σm mp(m|c),  the conditional expectation of the mother's age for 

given condition of the child, in analogy with equation (11). 

The sample 

The question that now arises is how to estimate the numbers on the left and right sides 

of equations such as (15).  The 1933 paper treated this as a perfectly straightforward 

matter.  The regression coefficients J, K were estimated by the least squares method 

from the data from the 150 families, and the expectations E(f|A), etc. were estimated 
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by taking appropriate averages of these data.  But is it really quite so straightforward?  

 A standard method of estimating such expectations would be to take a random 

sample of children from the general population, and to treat the sample as being 

typical of the general population.  In the 1933 paper, however, the sample was not 

taken at random from the general population, but consisted of a very particular class 

of children, namely those families of children with Down's syndrome to whom the 

researchers had access.  Because of this method of selection, the sample is far from 

being typical of the general population; for example, since the parents of children with 

DS tend to be older than parents in the general population, we might expect the 

parents of the children in the sample to be older, on average, than parents in the 

general population. Even worse, the families in the sample all contain at least one 

child affected with DS, so one would expect the frequency of DS in the sample to be 

much higher than in the general population - and indeed, the sample contained 153 

cases of DS among 727 children, a frequency of about 1 in 5, whereas the frequency 

of DS in the general population is about 1 in 600).  

 Because of this bias, we cannot be sure of getting reliable results from the 

usual assumption of sampling theory that the members of the sample were drawn at 

random from the general population. For example, we have no reason to believe that 

the average age of the fathers of the unaffected children in the sample is even 

approximately the same as E(f|U), the average age of the fathers of such children in 

the general population.  A more reliable assumption would be that the sample was 

drawn at random from what might be called the special population, consisting of those 

families in the general population containing at least one child with DS.  But 

analysing this assumption properly would be a complicated task, and moreover it 

would require statistical information not supplied in the 1933 paper, about things like 

the sizes and age structures of families.  The following analysis is instead based on a 
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plausible simplifying assumption which eliminates any need for additional 

information of this kind. 

 To formulate this simplifying assumption, let us extend the model described in 

section 2 by including one further variable into the description of the "state" of a 

child.  In addition to the mother's age, the father's age and the clinical state of the 

child, we include a fourth variable s capable of two non-numerical values which will 

be represented by symbols as follows: s = * if the child is included in the sample and 

s = ^  if it is not4. In the standard random sampling procedure each child has the same 

probability of being included in the sample, regardless of its clinical state and the ages 

of its parents; that is to say, the conditional probability p(*|fmc) is independent of f,m 

and c.  By a mathematical argument very similar to the one leading from (5) to (7), 

this statement about independence implies   

 p(fmc|*) = p(fmc)   for standard random sampling   (16) 

if we exclude the possibility that p(*|fmc), the probability of going into the sample, is 

zero.  Equation (16) says that the expected relative frequency of state (f,m,c) in the 

sample is the same as in the general population.  

 For the special sampling method used in (Penrose 1933), however, not all 

children in the general population have the same probability of going into the sample; 

that is to say, p(*|fmc) depends on the values of some  or all of  f, m and c.  For 

example p(*|fmc) will be larger for c  = A than for  c = U since the intention of the 

researchers was to include as many affected children into their sample as possible.  In 

general it will depend on both f and m as well; for it is quite likely that the other 

children in the family are born within a few years before or after the child being 

                                                
4 A curious feature of the variable s is that its value may not be known at the time of birth: 
unless the infant already has an affected older brother or sister the value of s is not known until either 
an affected sibling is born or it becomes clear that no more children from that family will be included 
in the sample.  Moreover, its definition depends on when the sample is chosen: an unaffected first child 
born in 1932 with an affected sister born in 1934 would have s=*  for a survey done in 1933, but s=^ 
for one done in 1935. 
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considered, and so one would expect that an unaffected child of older parents is more 

likely to have a sibling with DS, and therefore more likely to be in the sample, than a 

child of younger parents.  Working out the actual dependence would require some 

fairly complicated theory and would also require additional factual information about 

things like the distribution of children's ages in families with more than one child. 

However there is a simple way of evading all this, if one of the following plausible 

extensions of the hypotheses M and F is accepted: 

Hypothesis M' (to be used with hypothesis M): only the mother's age affects 

whether or not the baby has (or will have) a sibling with DS, so that p(*|cmf)  depends 

only on c and m, but not on f.   

Hypothesis F' (to be used with hypothesis F): only the father's age affects 

whether or not the baby has (or will have) a sibling with DS, so that p(*|cmf)  depends 

only on c and f, but not on m.   

By manipulations analogous to those used in deriving (7), (9) we can state the 

new hypothesis M' in either of the following ways: 

 p(*|cmf) = p(*|cm)  for all  c,m,f     (17) 

 p(f|cm*) = p(f|cm) for all  c,m,f        (18) 

provided, in equation (18), that p(*|cm)>0  Equation (18) tells us that, under this new 

hypothesis M', the conditional probability distribution of f at given c,m is the same in 

the sample as it is in the general population.  

 Hypothesis M' is certainly not a truism, nor is it a logical consequence of its 

close relative M.  Moreover, it is not strictly biological, but contains a sociological 

component as well.  If it were the case, for example, that old fathers in our society 

tended to have smaller families, then an unaffected child born to an old father would 

be less likely than one with a young father to enter the sample later on as a result of 

the subsequent birth of an affected child (the mother's age being the same in both 
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cases).  In that case, unaffected children with old fathers would be under-represented 

in the sample.  Nevertheless M' is a useful working hypothesis.  It can be combined 

with M to give the following composite hypothesis: 

 Hypothesis M*: both M and M' are true; i.e. only the mother's age matters, 

both as to whether the child will be affected and as to whether any of its siblings are, 

or will be, affected. 

 For a mathematical statement of hypothesis M*, we combine M in the form 

(9) with M' in the form (18), to obtain 

  p(f|cm*) = p(f|m)   under  hypothesis M*   (19) 

Hypothesis M* also implies 

   p(f|m*) = Σc p(fc|m*)    by analogues of (5) and (3)  

= Σc p(f|cm*) p(c|m*)   by an analogue of (6)   

= Σc p(f|m) p(c|m*)   by (19)  

= p(f|m)    since  Σc p(c|m*)  = 1.  (20) 

Equations (19) and (20) can be combined to show that hypothesis M* implies the 

following analogue of (9): 

 p(f|cm*) = p(f|m*)      (21) 

This is just like (9), but the asterisks show that it is a statement about the probabilities 

in the special rather than the general population.  

 By a calculation just like the one that led to (15), but with stars inserted 

everywhere to make all the probabilities refer to the special population, we can now 

derive the following prediction, which, unlike its analogue (15), involves only things 

that can be estimated from the sample:  

E(f|A*) =  J* E(m|A*) + K*  

 E(f|U*) =  J* E(m|U*) + K*      both under  hypothesis M* (22) 

where J*,K* are the coefficients in the linear regression formula 
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 E(f|m*) =  J*m + K*        for  all     m    (23) 

The quantities in (22) are the ones that were estimated from the data in (Penrose 

1933): the regression coefficients were estimated by the least squares method to be J* 

= 0.944, K* = 4.304, the conditional expectations were estimated to be the observed 

conditional averages given in column 2 of Table I, and column 3 shows the right side 

of (22).  As noted already, the agreement was good: the data are consistent with 

hypothesis M*.  

 The hypothesis to be compared with M* is obtained by combining F and F': 

Hypothesis F*: only the father's age matters, both as to whether the child will be 

affected and as to whether any of its siblings are, or will be, affected. 

 For this hypothesis a calculation just like the one that gave (22), but with m 

and f interchanged throughout, leads to the following predictions: 

E(m|A*) =  J*' E(f|A*) + K*'  

E(m|U*) =  J*' E(f|U*) + K*'      both under  hypothesis F* (24)  

where  J*',K*' are the coefficients in the linear regression formula 

 E(m|f*) =   J*' f + K*'         for  all     m    (25) 

The least-squares estimates of the coefficients J*', K*' given in (Penrose 1933) are J*' 

= 0.726, K*' = 7.120.  The results in Table II show that (24) does not agree with the 

data, so that at either the biological component F or the sociological component F' of 

the composite hypothesis F* (or both) should be rejected. 

Conclusion 

In Penrose 1933 it was concluded from the data that paternal age is not a significant 

factor in determining whether the child would have DS, and that maternal age is very 

important.  The statistical argument used was highly ingenious and original, but could 

be criticized on the grounds that it does not make any explicit allowance for the bias 

in the sample of children studied.  The present paper suggests a way of allowing for 
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that bias, and the conclusion about the biological importance of maternal age is the 

same as before, although the strength of the conclusion in respect of paternal age is 

weaker because it may only be the sociological hypothesis F' that has been falsified 

by the data rather than the biological hypothesis F.  

Moral: Originality, ingenuity, and tireless observation are more important than 

flawless statistics when it comes to doing good science. 
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