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ToxicoLogICAL studies upon a large variety of organisms by many
biologists have established the sigmoid character of the typical dosage-
mortality curve, especially in the case of multicellular forms. Recently
it has been shown in two different fields that such curves can easily be
plotted as straight lines and their later analysis thereby facilitated , 5, 6).
These methods, which are substantially the same, are developed more
fully in the present paper. While the procedures have been selected on the
basis of their statistical accuracy and efficiency, and accordingly follow
the recent trends which are so closely associated with the name of R. A.
Fisher, an attempt has been made to present them in sufficient detail
‘to permit their use by biologists with a limited knowledge of statistics.
The present paper is concerned with the calculation of the transformed
dosage-mortality curve and its accuracy. Later papers in this series will
deal with statistical methods for comparing dosage-mortality data, and
with time-survival curves.
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I. THE INTERPRETATION OF THE DOSAGE-MORTALITY CURVE AND
ITS TRANSFORMATION TQO A STRAIGHT LINE.

Action curves in pharmacology are those in which the amount of the
response to any given degree of chemical or physical stimulation is ex-
pressed as a percentage of the maximum obtainable in that particular
biological system. The action curve is frequently sigmoid, especially when
1t expresses the relationship of mortality to dosage, so that a graphic
plot of the percentage of dead organisms on the ordinate against some
function of dosage along the abscissa resembles the letter S, the change
in percentage kill per unit of the abscissa being smallest near mortalities
of 0 and 100 per cent., and largest near 50 per cent. Among multicellular
organisms, it is practically universal for a diagram with these co-ordinates
to show this characteristic shape, but the interpretation of such curves
has varied widely. Since this controversy has been reviewed so fully by
Clark 2), the ground need not be gone over again, and we may proceed at
once to describe the viewpoint adopted here.

On this theory, the dosage-mortality curve is primarily descriptive of
the variation in susceptibility between the individuals of a population.
Let us suppose that, under uniform conditions, the susceptibility of each
individual may be represented by the smallest dose which is just sufficient
to kill it, the individual lethal dose. Asin the case of any other biological
characteristic, this susceptibility will vary from one individual to another
in the population, and a priori we might expect the distribution curve of
the number of individuals having each particular susceptibility to show
the shape characteristic of the normal curve of error. If Fig. 1, which
is the normal curve of error in its most usual form, is assumed, for the
moment, to be an ideal representation of the variation in susceptibility,
the ordinates will give the number of individual organisms correspond-
ing to each particular individual lethal dose shown along the base in a
graded series (assuming that the numbers along the base of the figure
are equivalent to actual dosages in one form or another).

With intact animals, however, the experimental technique is usually
not suitable for determining the exact minimum lethal dose for each in-
dividual, as would be required to secure the data for plotting this form
of the normal frequency curve of error. As the experiment is actually
conducted, the dosage applied to each separate lot of crganisms kills not
only those requiring at least this quantity of poison, but also all more
susceptible individuals, 7.e. those which could be killed with a smaller
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dosage. Consequently, if Fig. 1 represents the hypothetical frequency
distribution of susceptibility, as measured by the individual lethal dose,
any given dose will split the sample of organisms into two categories of
dead and alive, whose relative proportion will depend upon the relation
of the dosage to the distribution of susceptibilities. If our dose had
happened to come at the point marked z in Fig. 1, the ratio of the dead or
more susceptible individuals to the total number in the sample treated—
in other words, the percentage killed—would have been the ratio of the
unshaded area to the total area under the curve. By varying our dosage
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Fig. 1. The theoretical normal curve of error, in which p (0-95) and ¢ (0-05) indicate areas
under the curve to the left and right respectively of the ordinate z erected at the point
on the abscissa indicated by z (1-645 ¢). The position of the median (and also of the
mean and the mode) is given by M which divides the area under the curve into halves.

along the base and using a succession of equivalent samples of organisms,
it would be possible to determine a series of percentage kills (or pro-

portionate areas, —p_*_—q of the normal frequency curve) corresponding to

the dosages applied experimentally. If these percentage kills were then
plotted on the ordinate of another graph against the dosage on the
abscissa as before, the result would be a cumulative normal frequency
distribution such as Fig. 2. This type of curve, therefore, can be and
frequently is obtained experimentally in the laboratory.
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The assumption that the individual susceptibility to a poison is dis-
tributed normally may be tested by reversing our argument. From a
given sample of 40 beetles, let us say, exposed to a known concentration
of fumigant, 38, or 95 per cent., were killed. Temporarily neglecting the
observed dosage, this percentage kill may be equated to a fraction of the

total area under the theoretical normal curve of error, 27{-9’ and the

“expected ” dosage, z, to which this mortality corresponds, read from the
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Fig. 2. The proportionate areas, IT%;’ of Fig. 1 plotted on the same abscissa as before

(probit units). The “ broken lines are drawn at the same positions as the two ordinates,
M and zz, of Fig. 1, while the solid parallel lines bounding the broken lines mark the
corresponding limits of the standard error for a sample of 100 individuals.

base (Fig. 1). Because of the availability of statistical tables, this ex-
pected dosage is given most conveniently in units of standard deviations.
The standard deviation, o, corresponding to any observed mortality may
be read directly from sources such as the Kelley-Wood Table(7) or the
Shepard-Galton Table ), and in this case would be 1-645 standard devia-
tions. Similarly, another sample of 40 beetles at a lower dosage, may
have shown a mortality of only 20 individuals or 50 per cent., and
the expected dosage inferred from this mortality would be 0 standard
deviations, since the standard deviation in the normal curve is measured
from the median or mean as the origin.
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In this fashion an expected dosage corresponding to every observed
dosage measured experimentally may be determined from the observed
mortality, and the inferred dosages, so derived, are called ‘‘normal
equivalent deviations” or “N.E.D.” by Gaddum () and by Hemmingsen (6).
Many observations, however, will fall below 50 per cent. kill and by
Gaddum’s system would require negative expected dosages, which are
inconvenient. In order to avoid this difficulty, a new table of statistical
units called “probits™ has been devised (1) in which the O of the usual
statistical table of deviates has been equated to the digit 5, and the
deviate of the normal curve, in terms of o, added algebraically to secure
the probit corresponding to each percentage kill (Table I). Because of
their greater convenience, the expected dosages may be expressed in
terms of probits and will not modify the proof or disproof of our basic

assumption.

Table 1.

Probits or probability unils for transforming the sigmoid dosage-mortality
curve to a straight line. In the body of the table is given the probit

corresponding to each percentage mortality listed along the left edge
and top.
0-6 0-1 0-2 0-3 04 0-5 0-6 0-7 0-8
— 19008 21218 2:2522 2:3479 24242 24879 25427  2:501%
2-6737 27096 27429 2.7738  2-8027 2-8299 2-8556 28799  2-96031
2-9463  2-9665 29859 3-0046 3-0226  3-0400 3-0569 3-0732  3-0890
31192 31337 31478 31616 31750 3-1881 32009 32134  3.2256
3-2403  3-2608 3-2721  3-2831  3-2940 3-3046  3-3151 3-3253  3-3354

3-3551 3-3648 3-3742 3-3836 3-3928  3-4018 3-4107 34195  3-4282
34452 34536  3-4618  3-4699 34780 3-4859 3-4937 3-5015  3-5091
3-5242  3-3316  3-5389  3-5462 35534 356056 3-5675 3-5745  3-5813
35949 36016  3-6083 3-6148 3-6213  3-6278 3-6342 3-6405  3-6468

6592 3-tbdbd  3-6715 6775  3-6835  3-6894 6953 37012 3-7070

3 3 3
3-7184 37241  3-7298  3-7354 37409 3-7464 3-7519 37574  3-7628
37735 37788  3-7840 37893 37945 3-7996 3-8048 3-8099  3-8150
3-8250 38300 3-8350 3-8399 3-8448 3-8497 3-8545 3-8503 3-8641
3-8736 38783  3-8830 3-8877 38923 3-8969 3-9015 3-9061  3-9107
39197 39242 39286  3-9331  3-9375 3-9419  3-9463 3-9506  3-9550
3
4

39636 39678 39721 -9763 39806  3-9848  3-9800  3-9931  3-9973
40035 40096 40137 0178 4-0218  4-0259 4-0299 4-0339 4-0379
4-0458 40498  4-0537 4-0576 4-0615 40654 4-0693 4-0731 4-0770
4-0846 40884  4-0922 4-0960 4-0998 41035 4-1073 4-1110  4-1147
4-1221  4-1258  4-1295 4:1331 4-1367 4-1404 41440 4-1476 4-1512

41584  4-1619  4-1655  4-1690 41726  4-1761 41796 4-1831  4-1866
4-1936  4-1970  4-2005 42039 42074 4-2108 4-2142 42176 4-2210
42278  4-2312  4-2345  4-2379 42412  4-2446  4-2479 4-2512  4-2546
42612 4-2644 42677 42710 4-2743 42775 4-2808 4-2840 4-2872
42937 4-2969 4-3001 4-3033 4-3065 4-3097 4-3129 4-3160 4-3192

09
2-6344
2-9251
3-1043
3-2376
3:3454

3-4368
3-5167
3-5882
3-6531
3-7127

3-7681
3-8200
3-8689
3-9152
3-9593

4-0014
4-0419
4-0808
4-1184
4-1548

4-1901
4-2244
4-2579
4-2905
4-3224



0-0
4-3255
4-3567
4-3872
4-4172
4-4466

4-4756
4-5041
4-5323
4-5601
4-5875

4-6147
4-6415
4-6681
4-6945
4-7207

4-7467
4-7725
4-7981
4-8236
4-8490

4-8743
4-8996
4-9247
4-9498
4-9749

5-0000
50251
5-0502
50753
51004

5-1257
5-1510
5-1764
5-2019
5-2275

5-2533
5-2793
5-3055
5-3319
53585

5-3853
54125
5-4399
5-4677
5-4959

5-5244
5:5534
5-5828
56128
5-6433

01
4-3287
4-3597
4-3902
4-4201
4-4495

4-4785
4-5070
4-5351
4-5628
4-5903

4-6174
4-6442
4-6708
4-6971
4-7233

4-7492
4-7750
4-8007
4-8262
4-8516

4-8769
4-9021
4-9272
4-9524
4-9774

5-0025
5-0276
5-0527
50778
5-1030

5-1282
5-1635
5-1789
52045
5-2301

52559
5-2819
5-3081
5-3345
5-3611

5-3880
5-4152
5-4427
5-4705
5-4987

5-5273
5-5563
5-5858
5-6158
5-6464

0-2
4-3318
4-3628
4-3932
4-4231
4-4524

4-4813
4-5098
4-5379
4-5656
4-5930

4-6201
4-6469
4-6734
4-6998
4-7259

4-7518
4-7776
4-8032
4-8287
4-8541

4-8794
4-9046
4-9298
4-9549
4-9799

5-0050
5-0301
5-0552
5-0803
5-1055

5-1307
5-1560
5-1815
5-2070
5-2327

5-2585
5-2845
5-3107
5-3372
5-3638

5-3907
5-4179
5-4454
5-4733
5-5015

5-5302
55592
5-5888
5-6189
5-6495
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Table I (cont.).

0-3
4-3349
4-3659
4-3962
4-4260
4-4554

4-4842
4-5126
4-5407
4-5684
4-5957

4-6228
4-6495
4-6761
4-7024
4-7285

4-7544
4-7802
4-8058
4-8313
4-8566

4-8819
4-9071
4-9323
4-9574
4-9825

50075
5-0326
5-0577
5-0828
5-1080

5-1332

51586

5-1840
5-2096
52353

52611
5:2871
5-3134
5-3398
5-3665

5-3934
5-4207
5-4482
5-4761
5-5044

5-5330
5-5622
5-5918
5-6219
5-6526

0-4
4-3380
4-3689
4-3992
4-4290
4-4583

4-4871
4-5155
4-5435
4-5711
4-5984

4-6255
4-6522
4-6787
4-7050
4-7311

47570
4-7827
4-8083
4-8338
4-8592

4-8844
4-9096
4-9348
4-9599
4-9850

5:0100
50351
5-0602
5-0853
51105

51358
5-1611
51866
5-2121
5-2378

5-2637
5-2898
5-3160
5-3425
5:3692

5-3961
54234
5-4510
5-4789
55072

5-5359
5-5651
5-5948
5-6250
5-6557

0-5
4-3412
4-3720
4-4022
4-4319
4-4612

4-4899
4-5183
4-5462
4-5739
4-6011

4-6281
4-6549
4-6814
4-7076
4-7337

4-7596
4-7853
4-8109
4-8363
4-8617

4-8870
4-9122
4-9373
4-9624
4-9875

50125
5-0376
5-0627
5-0878
51130

5-1383
5-1637
5-1891
5-2147
5-2404

5-2663
5-2924
5-3186
5-3451
5-3719

5-3989
5-4261
54538
54817
5-5101

5-5388
5-5681
5-5978
5-6280
5-6588

0-6
4-3443
4-3750
4-4052
4-4349
4-4641

4-4928
4-5211
4-5490
4-5766
4-6039

4-6308
4-6575

46840

4-7102
4-7363

4-7622
47879
4-8134
4-8389
4-8642

4-8895
4-9147
4-9398
4-9649
4-9900

5-0150
5-0401
5-0652
5-0904
51156

5-1408
5-1662
5-1917
5-2173
5-2430

5-2689
52950
5-3213
53478
5-3745

5-4016
5-4289
5-4565
5-4845
5-5129

55417
5-5710
5-6008
5-6311
5-8620

0-7
4-3474
4-3781
4-4082
4-4378
4-4670

4-4956
4-5239
4-5618
4-5793
4-6066

4-6335
4-6602
4-6866
4-7129
4-7389

4-7647
4-7904
4-8160
4-8414
4-8668

4-8920
4-9172
4-9423
4-9674
4-9925

50176
5-0426
5-0677
5-0029
5-1181

5-1434
5-1687
5-1942
5-2198
5-2456

5-2715
5-2976
5-3239
5-3505
53772

54043
54316
5-4593
5-4874
5-5158

5-5446
5-5740
5-6038
5-6341
5-6651

139

0-8
43505
4-3811
4-4112
4-4408
4-4698

4-4985
4-5267
4-5646
4-5821
4-6093

4-6362
4-6628
4-6893
4-7155
4-7415

4-7673
4-7930
4-8185
4-8440
4-8693

4-8945
4-9197
4-9448
4-9699
4-9950

5-0201
5-0451
5-0702
5-0954
5-1206

5-1459
51713
5-1968
5-2224
5-2482

52741
5-3002
5-3266
5-3531
53799

5-4070
54344
5-4621
5-4902
5-5187

5-5476
5-5769
5-6068
5-6372
5-6682

0-9
4-3536
4-3842
4-4142
4-4437
44727

4-5013
4-5295
4-5673
4-5848
4-6120

4-6389
4-6655
46919
4-7181
4-7441

4-7699
4-7955
4-8211
4-8465
4-8718

4-8970
4-9222
4-9473
4-9724
4-9975

5-0226
5-0476
50728
5-0979
5-1231

5-1484
5-1738
5-1993
5-2250
5-2508

5-2767
5-3029
5-3292
5-3558
5-3826

5-4097
54372
5-4649
5-4930
5-5216

5-5505
5-5799
5-6008
5-6403
56713
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Table I (cont.).

5-8416 5-8452 58488 5-8524 5-8560 5-8596 5-8633 5-8669 58705 5-8742
5-8779 58816 5-8853 5-8890 5-8927 5-8965 5-9002 59040 5-9078  5-9116
591534 59192 59230 59269 59307 59346 59385 59424 59463  5-9502
59542 5-0581 59621 5-9661 5-9701 59741 59782 59822 5-9863  5-99(4
59945 59986 6-0027 6-0069 6-0110 6-0152 6-0194 6-0237 6-0279  6-0322

0-0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 09
56745 5-6776 56808 56840 56871 56903 5-6935 5-6967 5-6999  5-7031
57063 57095 57128 5-7160 57192 5-7225 57257 57290 57323  5-7356
57388 57421 57454 57488 5-7521 57534 57588 37621 57655 57688
57722 57756 57790 57824 5-7858 57892 57926 57961 5-7995  5-8030
58064 5-8099 58134 5-8169 5-8204 5-8239 5-8274 5-8310 5-8345  5-8381

8
8

6-0364 6-0407 60450 6-0494 6-0337 6-0381 6-0625 60669 6-0714  6-0758
6-0803 6-0848 6-0893 6-0939 6-0985 6-1031 61077 6-1123 6-1170  6-1217
6-1264 6-1311 6-1359 6-1407 6-1455 6-1503 61552 6-1601 6-1650 6-1700
6-1750 6-1800 6-1850 6-1901 6-1952 6-2004 6-2055 6-2107 6-2160 6-2212
6-2265 6-2319 6-2372 6:2426 6-2481 62536 6-2591 6-2646 6-2702  6-2759

6-2816  6-2873 6-2930 6-2988 6-3047 6-3106 6-3165 6-3225 6-3285 6:3346
6-3408 6-3469 6-3532 6-3595 6-3658 6-3722 6-3787 6-3852 6-3917  6-3984
6-4051  6-4118 6-4187 6-4255 6-4325 6-4395 6-4466 6-4538 6-4611 6-4684
6-4758 6-4833 6-4909 64985 6-5063 6-5141 6-5220 6-5301  6-5382  6-5464
6-5548 6-5632 65718 6-5803 6-5893 6-5982 6-6072 6-6164 6-6258  6-6352

66449 6-6346 6-6646 66747 6-6849 6-6954 6-7060 67169 6-7279 6-7392
6-7507 67624 6-7744 67866 6-7991 6-8119 6:8250 6-8384 6-85°2  6-8663
6-8808 6-8957 6-9110 6-9268 6-9431 6-9600 69774 69954 7-0141 7-0335

0-00 0-01 0-02 0-03 0-04 0-05 0-06 0-07 0-08 009
7:0537 7-0558 7-0579 7-0600 7-0621 7-0642 7-0663 7-0684 7-0706  7-0727
7-0749 70770 7-0792 7-0814 7-0836 7-0858 7-0880 7-0902 7-0924  7-0947
7-0969  7-0992 7-1015 7-1038 7-1060 7-1084 7-1107 71130 7-1154 7-1177
7-1201  7-1224  7-1248 7-1272 7-1297 7-1321 7-1345 7-1370 7-1394 7-1419
71444 7-1469  7-1494 7-1520 7-1545 7-1571. 7-1596 - 7-1622 7-1648 7-1675

701 7-1727 7-1754 7-1781 7-1808 7-1835 71862 7-1890 7-1917 7-1945
973 7-2001 72029 7-2058 7-2086 7-2115 72144 72173 7-2203 7-2232
262 7-2202  7-2322 7-2353 7-2383 7-2414 7-2445 72476 7-2508 7-2539
2571 7-2603  7-2636  7-2668 7-2701 7-2734 7-2768 72801 7-2835 7-2869
72904 7-2938 7-2973 7-3009 7-3044 7-3080 7-3116 73152 7-3189  7-3226

-
7
7
-
4
-
[

1 N b i

7-3263  7-3301 7-3339 7-3378 7-3416 7-3455 7-3495 7-3535 7-3575 7-3615
7-3656  7-3698 7-3739 7-3781 7-8824 7-3867 7-3011 7-3954 7-3999 7-4044
74080 7-4135 7-4181 7-4228 7-4276 74324 74372 7-4422 74471 74522
7-4573  7-4624 7-4677 74730 74783 7-4838 7-4803 7-4049 7-5005 7-5063
7-5121 7-5181 7-5241 7-5302 75364 7-5427 7-5491 7-5556 17-5622  7-5690

-5828  7-5899  7-53972 76045 7-6121 76197 7-6276 7-6356 7-6437

05758 75

7-6521 7-6606 7-6693 7-6783 7-6874 7-6968 77065 7-7164 7-7265 7-7370
77478 77589  7-7703 77821 7-7944 7-8070 7-8202 7-8338  7-8480 7-8627
7-8782  7-8943  7-0112 79201 79478 79677 89889 70114 81357 80618

80902 81214 81559 81947 8-2389 82005 83528 84316 85401 87190

The next step is to plot on the ordinate the probit of the expected
dosage, inferred from the observed mortality. and on the abscissa some
function of the amounts which were administered experimentally.
These latter may be originally in terms of the concentrations of a toxic
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substance in which the successive lots of organisms were immersed for a
given time, a graded series of times of exposure to a fixed concentration
of poison, doses administered individually at different units per gram of
body weight, different concentrations of contact poison applied uniformly
over the surface of the body, or in some other terms. When these units of
measurement are plotted directly, the resulting curve is very seldom a
straight line but is nearly always convex upwards, an effect which might
have been anticipated from the markedly asymmetrical character of most
sigmoid dosage-mortality curves.

Before discarding the normal curve as an adequate description of the
variation between individuals in their susceptibility to a poison, let us
question the assumption that the individual lethal dose is a satisfactory
direct measure of susceptibility. The dosage units described above form
an arithmetical scale of equal increments, and would not be a satisfactory
index to the susceptibility if the structural or chemical constituents which
determine the level of susceptibility of the individual in respect to a given
drug were not to increase or decrease by equal additive increments. It
was pointed out as long ago as 1879 by Galton that in biological material
the variation often shows a geometrical rather than an arithmetical
distribution, an observation which has been confirmed by several in-
vestigators in respect to toxicological characteristics. If, therefore, the
changes in the substances or structures which determine susceptibility,
whatever may be their nature, were ordinarily proportional in type, then
they would be symmetrically distributed not on an arithmetical scale of
individual lethal doses but only on a logarithmic scale. This possibility
may be tested by converting the observed dosages to logarithms and
again plotting the dosages inferred from mortality or probits against
those secured experimentally. With this transformation, a straight line
does result in a great majority of the cases which have been tested. Before
the method of inferring ‘‘expected” doses from the percentage kills had
been devised, Trevan (13) and others had shown that per cent. mortality
plotted against the logarithm of the dose frequently results in symmetrical
sigmoid curves, while in the descriptions, 5, 6) of the double transforma-
tion, many more cases were cited in which the logarithm of the individual
dose was an adequate measure of susceptibility.

If the transformation of dosages to logarithms completes the trans-
formation of the dosage-mortality curve to a straight line because it is
an index to the inherent susceptibility of the individual animal to the
poison, the poisoning process could be considered as an example of the
Weber-Fechner law. This implies, however, a direct proportionality



142  The Calculation of the Dosage- Mortality Curve

between the concentration of the poison in the dose administered and the
amount of poison fixed by the essential tissues of the animal, and there is
no evidence in support of such a direct relationship. Moreover, if the
poiscning of the individual multicellular animal can be attributed to the
death of a certain proportion of its cells, then the susceptibility of the
animal as a whole will be determined by the average susceptibility of its
essential cells. Even though the susceptibility of these ultimate units, the
cells, may vary geometrically rather than arithmetically, so that their
distribution is highly asymmetrical. it is probable that the average sus-
ceptibilities of populations of these unit cells, the individual animals, are
symmetrically and normally distributed. if we may judge from general
statistical experience. A4 priori, therefore, the individual animals in a
stock may be expected to vary normally in their susceptibility to a
specific poison, since each animal is an “average” of its component cells.
The justification of the logarithmic transformation may be sought in the
relaticn between the dosage administered and the amount of poison fixed
by the essential cells or tissues, rather than in the Weber-Fechner law.
The fixation of a drug or poison seems to be primarily a phenomenon
of adsorption 2), and one of the two principal formulae for describing this
process is that proposed by Freundlich. Freundlich’s empirical formula is

1
KCi=2,

m

where, for our purposes, C may be equated to the concentration of the
drug (or dosage), x=the amount fixed in the organism, m =the mass of
adsorbing constituents within the organism, and X and » are constants.
If the variation in susceptibility is attributed primarily to the reactions
which follow the fixation of the poison, m will be constant from one
individual test animal to the next. By combining constants, the Freund-
lich formula may be reduced to
logC=nlogz+K',

from which it is apparent that there is a linear relation between the
logarithm of the concentration (or dosage) and the logarithm of the
amount fixed by the cells of the animal. The observed logarithmic con-
version of the dosage-mortality curve is not due, therefore, to our using
as the true individual lethal dose the amount fixed in the tissue, if this is
related to the concentration by the Freundlich formula.

In many instances another adsorption equation, that proposed by
Langmuir, has fitted the biological data on the fixation of drugs more
satisfactorily than the Freundlich formula. Moreover, it is better
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grounded theoretically. Langmuir’s adsorption equation is given by
Clark as y
k=100 =y’

where x=concentration of the drug, y=percentage of the maximum
amount of drug which can be fixed by the cell, n is determined by the
molecular state of the fixed drug as compared with its state before ad-
sorption and is usually 1 or 2, and % is a constant. In order to compare
the amount (percentage) fixed with the logarithm of dosage (y with log z),
y was calculated for each of a series of hypothetical values of # when
k=0-0625 and n=1. A diagram of y against log = gave a sigmoid curve,
symmetrical about 50 per cent. fixation, and very nearly a straight line
between 20 and 80 per cent. fixation. If 100 per cent. kill on the dosage-
mortality curve were to correspond to 100 per cent. fixation of the poison
by the tissues of the experimental animals, all cases in which the
logarithm-probit plot showed a straight line over a range of dosages that
included kills of 90 per cent. and better—as very many of them do—would
definitely rule out the Langmuir adsorption equation as an explanation.
However, investigations have shown that live tissue is capable of ad-
sorbing much more of the chemical than the amount which produces the
maximum effect, in this case, the subsequent death of all individuals.
If all experimental animals were to die before a dosage is reached which
produces 80 per cent. or more adsorption, the logarithm-probit trans-
formation would still be consistent with an interpretation based on the
Langmuir adsorption equation, so far as the middle and higher kills—
and dosages—are concerned.

The application of the Langmuir equation to the lower dosages pre-
sents a more involved problem. Usually the logarithm-probit plot of the
dosage-mortality curve can be fitted by a single straight line over the
entire range of mortalities, and it may then be reasonable to assume that
the amount of poison fixed must exceed a threshold value of 20 per cent.
of the maximum before even the most susceptible individuals will be
killed. However, in many cases the transformed dosage-mortality line
agrees with the higher kills very satisfactorily but indicates too small a
mortality below 20 to 35 per cent. kill. At its lower end the otherwise
straight line would need to bend up if it is to fit the entire range of ob-
servations. The similarity of this change in slope to the lower end of the
theoretical curve secured by plotting the percentage of drug fixed against
the logarithm of dosage suggests that in these cases the adsorption is less
than 20 per cent. of the maximum at the threshold concentration of the
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poison, and that if the observed dosage could be converted to the amount
fixed by means of the Langmuir equation, a single straight line would be
obtained by the use of probits.

Without measurements of the amount of poison adsorbed, the Lang-
muir equation cannot be tested critically, but an approximate graphic
analysis has been applied successfully to several series of fumigation tests
in which at the lower dosages there was a change of slope upon the
logarithm-probit co-ordinates. For each series of points, the mortality in
probits could be fitted satisfactorily (as in Fig. 3) with two intersecting
straight lines when plotted against the logarithm of the concentration of
the fumigant, the bend between the two lines being acute enough for there
to be no hesitation in deciding which observations should be grouped.
From a graphic comparison with the theoretical curve mentioned above
(percentage fixed v. log. dosage) of the angle at which these two lines
intersected, the observed concentrations were converted to terms of the
percentages of maximum adsorption, and when the observed mortalities
in probits were replotted against these theoretical dosage units, the data
for each poison could be fitted adequately by a single straight line. This
transformation of dosage to per cent. adsorbed introduces two additional
constants, one attributable to the maximum adsorption which produces
no lethal effect and the other to the minimum adsorption which is in-
variably fatal. On mathematical grounds alone, therefore, the agreement
between observations and fitted curve should be as good as when two
intersecting straight lines, also involving four constants, are fitted to the
same data.

The use of the Langmuir equation need not necessarily eliminate the
change in slope that is observed on occasion at the lower dosages upon the
logarithm-probit plot. If a minimum of 15 to 20 per cent. adsorption
were required to effect a kill, for example, the rectilinearity in the main
portion of the curve and the change in slope at its lower end would be the
same whether log. dosage or per cent. of maximum adsorption were
plotted along the base. Since there is good experimental evidence, as in
the case of protective stupefaction with hydrocyanic acid(10), that low
concentrations frequently have an action qualitatively different from that
of the higher dosages, the change in slope may very well have a biological
reality and not be merely a mathematical artifact. Clark? thinks that
“‘this break is a fairly common phenomenon. It suggests to me that
the characteristic curve besides measuring individual variation also is
affected by some relationship between concentration and amount of

1 Personal communication.
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action.” Since without another kind of experimental data even an ap-
proximate conversion of dosage into percentage adsorption is possible
only when there is a change in slope on the logarithm-probit co-ordinates,
and may then be of doubtful theoretical significance, it is preferable at
present to use the logarithm of the individual lethal dose as a measure of
susceptibility with the understanding that its use can be interpreted in
terms other than those of the Weber-Fechner law.

The above procedure should not be confused with another fundament-
ally different application of the Langmuir adsorption equation, which is
hyperbolic, to similar data. If dosage is converted to logarithms, the per-
centage adsorption plotted against it is a sigmoid curve symmetrical
about the 50 per cent. point, as has been described, and the percentage
mortality plotted against it is a very similar sigmoid curve. In one case,
Clark (p. 157) has considered these two measures as if they were identical,
or the percentage mortality a direct measure of percentage adsorption.
Yet elsewhere he has described experiments which show that adsorption
frequently continues after the point is reached which produces maximum
effect, and this possibility alone demonstrates that they are distinct.
Even if certain dosage-mortality data were fitted adequately by this use
of the hyperbolic equation, they could still be considered from the
“statistical ” viewpoint adopted here. The abscissa, the logarithm of the
dose, is the same in both methods of transformation, while the ordinate
in both may be assumed to represent sigmoid frequency distributions
which are experimentally inseparable between kills of 15 and 85 per cent.

1 In a recent letter to Nature (cxxiv, 323), H. H. Shepard applies an equivalent method
to original data that are similar to those quoted here in Table IV, except that he uses the
dosage directly instead of the logarithm of the dose. When his data and fitted curve are
_per cent. killed
per cent, surviving
apparent that the observed values are still distributed in a sigmoid manner about the
straight line, despite his use of the hyperbola. However, when the probit values for per-
centage mortality are plotted against dosages which have been converted to hypothetical

plotted in a rectilinear form-(logarithm of against concentration) ,itis

“percentages of poison adsorbed” <by means of the equation kz" = i 0(;/ - y)’ a very satis-

factory fit can be obtained with log k= — 18-2 and n=10-2. It should be noted that while
Shepard used the same species of insect, the same poison, and apparently the same laboratory
technique as in the data quoted here from Strand, his results agree in average susceptibility
(the median lethal dose), but show a significantly larger range of variability within the
population. Shepard apparently has totalled many individual experiments for each dosage,
and if, over the period which this required, the average susceptibility in his stock of beetles
had fluctuated as much as 10 to 15 per cent., the variability within his population at sny
one time might well have been consistent with Strand’s earlier results which are quoted
here.

Ann. Biol. xxm 10
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They differ in mathematical treatment only in that the frequency distri-
bution of susceptibilities in the interpretation followed here is assumed
to be normal, while in the hyperbolic interpretation it is that of the 2
distribution 3).

On the basis of the above assumptions, we may proceed at once to a
consideration of how to calculate the best-fitting dosage-mortality curve.
The first step is to transform each percentage kill to its probit (Table I)
and convert each dosage to its logarithm. The percentage kill will not,
however, be the same as the percentage dead if there is an appreciable
mortality among the untreated controls or checks. A convenient way of
computing the percentage kill in such a case is to multiply the number of
individuals used in a particular test by the proportion alive in the un-
treated controls, which gives the net total of organisms actually exposed
to the action of the poison. When the number surviving the treatment is
subtracted from this net total, the difference is the number killed, and the
number killed (multiplied by 100), divided by the net number exposed
is, of course, the percentage killed. The probit, or dosage inferred from
mortality, is then plotted on co-ordinate paper against the logarithm of
the dosage that was administered experimentally. Inspection of these
points with the aid of a straight edge, such as the side of a celluloid
triangle, will show very quickly whether they define a straight line over
most or the whole of the range of dosages. In cases where the data for
the lower dosages seems to be discordant with the straight line that is
consistent with the rest of the observations, the straight line is fitted only
to the higher dosages. A few cases may occur in which the points seem
to be smoothly curvilinear throughout, and in such instances some other
function of dosage should be tried which seems to have a toxicological
significance. Having determined the range of dosage over which a
rectilinear relation seems to hold good, a straight line is drawn through

the points.

I1. THE PROVISIONAL REGRESSION LINE.

The first estimate of the transformed dosage-mortality curve, which
we will call the provisional regression line, is ordinarily not calculated,
but represents the best judgment of the experimenter. When the data are
consistent, the graphic provisional curve will often come surprisingly close
to the corrected curve obtained after computation. Occasionally, how-
ever, the observations may be so scattered that the experimenter will
prefer to calculate even the provisional regression line. The simplest pro-
cedure in this case is to give each experiment a weight of 1 and use
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equations (3)—(6) of the next section. In other cases the data may be so
uniform that the initial line will serve the needs of the experimenter.
Usually, however, the graphic approximation will want correction, and
to obtain this corrected curve we compute what is known in statistics as
the regression line. The regression line in our case will show the probit
which corresponds to any given logarithm of dosage as accurately as
this relation can be determined from the experimental data used in its
computation.

The provisional regression line serves two essential purposes: it de-
termines what probit values are to be assigned to observed mortalities of
0 and 100 per cent., and it specifies what relative weights are to be given
to the separate observations in a series.

(1) Probit values for 0 and 100 percentage kills. Although toxicological
tests frequently include at one limit small dosages which kill no indi-
viduals or at the other limit large dosages which kill all individuals, these
values cannot be listed in the standard table of probits (Table I). By
means of the provisional regression line, the information in such observa-
tions may still be used in determining the corrected regression line. This
possibility follows from our basic assumption that the distribution of
susceptibility is normal and the fact that while the curve of the normal
distribution (Fig. 2) approaches infinitely close to 100 per cent. kill—
considering for convenience only the upper limit—it never quite reaches
it mathematically at any finite dosage. Within the range of dosages and
numbers of organisms ordinarily used in a laboratory test, this mathe-
matical postulate agrees satisfactorily with the biological reality. Thus
the smallest dosage giving 100 per cent. kill will be smaller in an experi-
mental series with 30 organisms per dose than in a repetition of the same
series using 300 specimens per dose, since in the larger numbers of the
second case there is a greater chance of including the less susceptible
individuals in each treatment. The mortality in probits that would be
expected if we were dealing with very large numbers of organisms is
given approximately by an extension of the provisional regression line
over the range of these higher dosages. In a note on “The case of zero
survivors,” appended to the present paper, R. A. Fisher points out that
when the number in the class of survivors is small, the theory of large
samples breaks down if applied to the restricted numbers used in toxi-
cological tests. He shows, however, that when zero survivors are observed
the probit term for 100 per cent. kill may be derived by the method of
maximum likelihood as a difference, which is added to the expected value
In probits given by the provisional regression line.

10-2
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An alternative method for plotting 100 per cent. kills in terms of
probits or their equivalents has been proposed by Gaddum ). His value
is based upon the number of animals exposed to the treatment, but is not
used whenever it indicates a smaller mortality than would be expected
from the approximate regression line at this dosage. The method pro-
posed here avoids this limitation and is mathematically the more exact.

The procedure to be followed in securing the probit value for 100 per
cent. kills may be outlined briefly. The probit given by the extended
provisional regression line is read from the graph at the logarithm for the
dosage from which none survived. This probit is then entered in column 1
of Table II and the required probit for the observed kill is found in
column 3. First differences are given in column 4 for convenience in
interpolation if the provisional regression line has been read to 0-01
probit. These values will always fall above the provisional line as would
be expected since no survivors were observed, and should be included in
computing the corrected curve with a weight determined as described in
the next section. The omission of such terms tends to bias the final re-
gression line by exaggerating the number of survivors to be expected.

The same method is available, of course, at the opposite end of the
curve, at dosages which fail to kill any individuals, except that the cor-
rection in column 2 of Table II is then subtracted from the probit value
given by the provisional line. The correction to use in such a case will be
that for the probit in column 1 which is as much greater than 5 as the
one read from the provisional line is less than 5. These smaller dosages,
however, are usually of little interest, and it frequently happens that,
below 25 per cent. kill, the regression line which forms an adequate fit
above that point is no longer applicable.

(2) Weights for fitting the regression line. The reliability of the probit for
an observed percentage kill depends not only on how many individuals
were counted to determine this percentage but also upon the corre-
sponding probit value of the regression line, or, in actual practice, upon
that of the provisional regression line. It is customary to consider the
reliability of a percentage as proportional to the number of individuals
tested, and the justification for thus weighting by the number of indi-
viduals rather than by the squ..re root of the number of individuals is
that the reliability of a measure is inversely proportional to the square
of its standard error—the variance——and not to the standard error itself.
The variance, in turn, is a function not only of the number of cases but
also of several other factors, and it is these other factors which it is
necessary to take into account. The principle of giving to individual
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Probit values when 100 per cent. mortality is observed experimentally. The
provisional (graphic) dosage-mortality line, based on probits for dosages
which were survived by one or more individuals, 1s extended to cover
dosages from which no survivors were observed. The expected probit
value indicated by the provisional line ot each such dosage is then
entered in column 1 and the correction in column 2 1s added to it to give
the value tn probits for 0 survivors (column 3). When the provistonal
line has been read to 0-01 probats, the first differences in the last column

are convement for interpolation.

Curve value or

probit for Correction

expected kill q/z

0-8764
0-8230
0-7749
0-7313
0-6917
06557
0-6227
0-5926
0-5649
0-53%4
0-5158
0-4940
0-4739
0-4551
0-4376
0-4214
0-4062
0-3919
0-3786
0-3660
0-3543
0-3432
0-3327
0-3228
0-3134
0-3046
0-2062
0-2882
0-2806
0-2734
0-2665
0-2600
0-2538
0-2478
0-2421
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Probit for
observed kill

6:3764
6-4230
6-4749
6-5313
6-5017
6-6557
67227

6-8649

8-3046
8-3962
8-4882
8-5806
8-6734
8:7665
8-8600
8-9538
9-0478
9-1421

First
differences

4606
bR
564
604
640
6870
609

a0
723

T4
764
782
799
812
825
838
848
857
867
874
883
889
895
901
906
912
916
920
924
928
931
935
933
940
943

observations weights that are proportional to their statistical reliability
follows that described by Thompson (12) in his analysis of an experiment

in sensory discrimination.

The required standard error is shown graphically on the cumulative
form of the normal frequency distribution of Fig. 2, in which p, the pro-
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portion killed, is plotted on the ordinate against z, the inferred dosage in
probits, on the abscissa. The position of the paired horizontal lines cutting
the ordinate on either side of 50 and 95 per cent. kill was calculated from

the usual formula for the standard error of a proportion, o= %q , where

p is the proportion killed, g=1—p, and N =100 individuals exposed to
treatment. However, in our transformed dosage-mortality curve, these
percentages have been transformed to probits, which are given along the
base of the figure, so that the standard error (and variance) which we
need is not that for a proportion, p, but that for the corresponding in-
ferred dosage or probit, z, a quantity equivalent to what statisticians call
the percentile. From the points of intersection with the curve in Fig. 2
of the standard errors of the proportions (shown by the paired horizontal
lines), we will draw paired vertical lines to cut the base at the standard
errors of the probits (or percentiles) corresponding to these two propor-
tions of 0-50 and 0-95. While the standard error of p is a maximum at
50 per cent. kill and diminishes toward either 0 or 100 per cent., that of
the probit is smallest at 50 per cent. and increases toward either limit.
Hence the accuracy of a given probit will increase as it approaches
50 per cent. kill.
The formula for the variance of a percentile is given by Kelley (7) as

o*pg

22N’
where o is the standard deviation, z is the ordinate of the normal curve
(see Fig. 1) and is given in tables of the probability integral, and the other
terms have their previous significance. This will also be the variance for
the probit of a single observed percentage mortality, but since the probit
is already in terms of the standard deviation, o? is always equal to 1 and
the variance of a probit may be simplified to the form

rq

Nz#*
In order, therefore, to give each observation a weight proportional to its
true reliability, instead of multiplying it by &, we will multiply by the
reciprocal of the variance as our weight, w. Hence

22
w N(pq), ...... (1)

where N is the number of organisms exposed to a given dosage of poison
and z, p, and ¢ have their previous significance as functions of the normal
curve, which, in this case, are fixed by the probit value of the provisional
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2
regression line at the same dosage. The term ’%é we will call the weighting

coefficient. It has been computed for each 0-1 probit within the useful
range of probit values and is given in Table III (colurn 6). The procedure
for determining the correct weights to be used in calculating the corrected
regression line is thus made quite easy. After the provisional regression
line has been drawn through the plotted points of the experimental series
as described, the probit given by this line for the log. dosage used in each
determination is read from the graph to the nearest 0-1 (or 0-01) probit
and by reference to Table III is transformed directly to the weighting

Table III.

Wetighting coefficients used in computing the dosage-mortality curve in terms
of probits. The probit for the expected kill is read to the nearest 0-1 or
0-01 from the provisional, graphic dosage-mortality line at the dosage
used in a given test. Entering this in column 1 below, the weighting
coefficient ts read from colummn 3 (interpolating from the first differences
wn column 4 if the line has been read to 0-01 probit) and multiplied by
the total number of organisms to secure the weight (w) of the test for use
in computing the final curve. The weighting coeffictents in column 3
have been abbreviated for ease of calculation from the five-place values
of 2%/pq in column 6. Column 5. shows the relative number of indi-
viduals which must be used at different expected mortalities if all
observations are to be weighted equally ; while column 2 gives the per-
centage mortalities corresponding to the probits in column 1.

Relative no.

Curve value or Expected of individuals R
probit for percentage Weighting First for equal =
expected kill kill coefficient  differences weights Py
1-5 0-023 0-0033 12 1947 0-00327
1-6 0-031 0-0045 16 1412 0-00451
1-7 0-048 0-0061 29 1037 000614
1-8 0-069 0-0083 o 769 0-00828
1-9 0-097 0-0110 36 577 001104
20 0-135 0-0146 44 437 0-01457
2-1 0-187 0-0190 36 334 0-01903
2.2 0-256 0-0246 68 259 0-02459
2-3 0-347 0-0314 84 202 0-03143
24 0-466 0-0398 102 160 0-03977
2.5 0-621 0-050 i2 128 0-04979
2:6 0-820 0-062 1; 103 0-06169
2-7 1-072 0-076 16 84 0-07563
2-8 1-390 0-092 18 69 0-09179
2:9 1-786 0-110 21 58 0-11026
30 2275 0-131 23 49 0-13112
31 2:872 0-154 26 41 0-15436
3-2 3-593 0-180 58 35 0-17994
33 4:457 0-208 30 31 0-20773
34 5480 0-238 31 27 0-23753
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Table III (cont.).

Relative
no. of
Curve value or  Expected individuals
probit for percentage Weighting First for equal 2
expected kill kill coeflicient differences weights Pq

35 6-681 0-269 3 24 0-26907
36 g-ggg 0-302 o 21 0-30199
3 . 0-336 19 0-33589
38 11-507 0-370 e 17 0-37031
39 13-567 0-405 3 16 0-40474
40 15-866 0-439 3 15 0-43863
41 18-406 0-471 a2 14 0-47144
42 21-186 0-503 13 0-50260
43 24-196 0-532 29 12 0-53159
44 27-425 0-558 o 11 055788
P Sds 0.601 20 h 06002
47 38-209 0-616 1 10 0-61609
48 12074 0-627 ! 10 0-62742
49 46017 0-634 10 0-63431
50 50-000 0-637 3 10 0-63662
51 53-083 0634 3 10 0-63431
52 57-926 0-627 u 10 0-62741
53 61791 0-616 10 0-61609
54 65542 0-601 b 11 0-60052
55 69-146 0-581 i 1 0-58099
56 72.575 0-558 > 11 0-55788
57 75-804 0-532 - 12 0-53159
58 78-814 0-503 13 0-50260
59 81-594 0-471 32 14 0-47144
60 84134 0-439 3 15 0-43863
61 86-433 0-405 34 16 0-40474"
6-2 88-493 0-370 35 17 0-37031
63 90-320 0-336 34 19 0-33589
64 91-924 0-302 34 21 0-30199
65 93-319 0-260 33 24 0-26907
65 94-520 0-238 3 27 0-23753

. 95-543 0-208 31 0-20773
68 96-407 0-180 28 35 0179904
69 97-128 0-154 gﬁ 4 0-15436
7-0 97-725 0131 23 49 013112
71 98-214 0110 21 58 0-11026
72 98-610 0-092 12 69 0-09179
73 98-928 0-076 18 84 0-07563
74 99-180 0-062 u 103 0-06169
75 99-379 0030 1o 128 0-04979
76 99-534 0-0398 160 0-03977
77 99-653 0-0314 84 202 0-03143
78 99-744 0-0246 68 259 0-02459
79 99-813 0-0190 56 334 0-01903
80 99-865 0-0146 4 437 0-01457
81 99-903 0-0110 36 577 0-01104
82 99-031 0-0083 2 769 0-00825
83 99-952 0-0061 22 1037 0-00614
8-4 99966 0-0045 1o 1412 600431
85 99-977 0-00327 123 1047 0-00327
86 09984 0-00235 s 2709 0-00235
87 99-089 0-00167 o 3812 0-00167
88 99-993 0-00118 i 5395 0-00118
89 99-995 0-00082 7764 0-00082
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coefficient. The weighting coefficient will be sufficiently accurate if read
only to the first two or three significant figures as given in column 3 of
Table ITI, interpolating from first differences (column 4) if the provisional
curve justifies an estimate to the nearest 0-01 probit. Each weighting
coefficient then is multiplied (most conveniently on the slide rule) by the
number, N ,1n the test to secure its correct weight, w, for calculating the
dosage-mortality curve.

It has been specified, without further explanation, that the weighting
coefficient is determined from the provisional regression line rather than
directly from each separate observation. With this important exception,
the weighting coefficient described above is equivalent to that proposed
by Gaddum ¢) and by Hemmingsen (6) for the same purpose. Gaddum has
based his coefficients directly upon the separate p’s observed experi-
mentally, so that above 50 per cent. kill the tests in which the mortality
fell short of that expected would be weighted more heavily than those in
which the mortality exceeded expectation. Conversely, below 50 per
cent. kill. the excessive mortalities would carry greater weight than the
deficient mortalities. Together these errors would bias the fitted regres-
sion line toward the horizontal. By using as a standard the probit (or
mortality) determined from the experiment as a whole, instead of that
shown by a single sample, the present weighting coefficients not only avoid
this biasing error but give a suitable basis for comparing different dosage-
mortality curves and for measuring their accuracy. Still another, though
similar, weighting method has been used by McCallan and Wilcoxon (8)
in the reciprocal of their “error in concentration.”

In planning an experiment so as to secure equally reliable results at
all dosages and thereby avoid the necessity of weighting—with a corre-
sponding simplification in the computations—more individuals should
be used at high and low dosages than at intermediate ones. Equalisation
will result if the experimenter treats with the dosage at each expected kill
some multiple of the number of individuals listed in the fifth column of
Table I11. This shows that it takes three times as many animals to get the
same accuracy at 95 per cent. kill as at 50 per cent. kill and nearly ten
times as many at 99 per cent. as at 50 per cent. It would not justify the
procedure followed in the experiments reported by Hemmingsen ((6), p. 40),
in which nearly twice as many mice were used for the two middle of four
concentrations of insulin as for the largest and smallest.

In order that each step may be clearly understood, a numerical example has been

selected from Strand’sau experiments with Tribolium confusum. Two of his series,
designated as I and II, give the mortality of the adult flour beetle after five hours’
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exposure to gaseous carbon disulphide, and these will serve to illustrate the various
procedures of the present paper. There was no appreciable mortality in the controls,
so that this factor did not need correction. The original data are given in the first four
columns of Table IV. The next column, z, is secured from column 3 by reference to a
table of common logarithms. With the exception of the probit values corresponding
to 100 per cent. kill, the sixth column, y, gives the percentages in terms of the probits
of Table 1. The observed values for z and y were then plotted on cross-section paper
(Fig. 3). and it is apparent from inspection that the two series, I and II, did not differ

Table IV.

Proceduic for filting the transformed dosage-mortality curve to kills of
Tribolium confusum following 5-hour exposures to known concentra-
tions of carbon disulphide. The computations tn columns 7 to 10 and at
the end of the table show the steps for fitting the regression line to the
upper range of dosages from the data of both series (Fig. 3). Data from
Strand (1),

Origival data
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5449889

= 416-237456
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S(wzy) ~ £5(wy)
b

1

_ S{wry) - F8( wy)

A

0-1499627

265-962620
3-825756
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z Y
log. of  Probit Weighting w
dosage kill coefficient Weight
1-6907 3517 —_ —
1-7242 4-271 — —

1-7552 4-557 0-555 155
1-7842 5-048 0-633 17-1
1-8113 5729 0-500 15-0
1-8369 6-522 0-292 9-1
1-8610 6-838 0-125 3-8
1-8839 7-952 0-0398 1-2
1-6007 3-888 — —

1-7242 4-158 — —

1-7552 4-372 0-555 18-9
1-7842 4-957 0-633 18-4
1-8113 6-170 0-500 16:5
1-8369 6-067 0-292 8-2
1-8610 7-447 0-125 4-0
1-8839 7-952 0-0398 12
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Suwy?) - §S(wy)
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{n’ (see text)
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9
7
0-007738
6-668327

2-365
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consistently. In comparison with the remaining observations, the two lowest con-
centrations gave an exceptionally high kill. Over the remaining concentrations, the
plotted values seemed to form a moderately straight line, so that the data were
handled as two separate sets, only the results at 56-91 mg. of CS, per litre being
included in both sets. The provisional regression lines were drawn in with the aid of a
straight edge, but these provisional curves, indicated by the broken lines, agreed quite
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Fig. 3. A transformed dosage-mortality curve, showing the effect upon adult flour beetles
of 5-hour exposures to different concentrations of gaseous carbon disulphide. The
broken straight regression lines were placed graphically by inspection, the solid ones
by computation, while the dotted curved lines show the limits within which the solid
lines have been determined by the data. The shaded triangles represent treatments
from which no beetles survived. Data from Strand(11),

closely with those arrived at by computation, the solid lines, in both the upper and the
lower range of dosages.

Restricting our attention for the moment to the more important, upper range of
dosages, the approximate curve was used first to secure probit values for 100 per cent.
kills. We find that at a concentration of 72-61 mg. of CS, per litre, there was 1 survivor
in Series I but 0 survivors in Series II, while no survivors were found in either series
at 76:54 mg. per litre. The provisional curve showed that at a log. concentration of
1-8610 (72-61 mg.), 7-03 probits was expected and at a 1-8839 log. concentration
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(76-54 mg.), 7-61 probits. Entering these values in column 1 of Table II, the two re-
quired probit values of 7-447 and 7-952 were obtained from column 3, using the first
differences of column 4 for interpolation.

From the original plot of the provisional curve (on millimetre cross-section paper),
the probit for each observed dosage could be read without difficulty to the nearest
0-01 probit. These were then entered directly in column 1 of Table III to secure the
weighting coefficients from column 3 of the same table, interpolating with the aid of
the adjoining column of first differences. The weighting coefficients so obtained were
written down in column 7 of Table IV and multiplied on the slide rule by the corre-
sponding number of insects (column 2) to determine the true weights in column 8.
The last two columns of Table IV contain the products z multiplied by w, and y

multiplied by w.
III. THE COMPUTATION OF THE REGRESSION LINE.

In toxicological experiments of the type which we have been con-
sidering, the mortality among a limited number of organisms is measured
after treatment with known amounts of a toxic agent. These results have
significance primarily because they form a sample from an infinitely
larger group of organisms for which we are interested in determining the
toxicological relationships. The fitting of a dosage-mortality curve is an
attempt to infer from a given experiment the conditions obtaining in a
class or species of organisms, and the calculated regression line of the
dosage-probit diagram is the most accurate estimate which can be drawn
from the data, granted that our basic assumptions are correct. In some
cases it will be very near the first graphic approximation which has
already been described, but oftentimes it will represent a rather im-
portant correction to this initial estimate, especially when the material is
variable and fitting by eye less reliable. Moreover, in a calculated re-
gression line, each separate observation can be weighted accurately, as
has been shown, and the limits determined within which will lie the true
curve for an infinitely larger population.

In describing the arithmetical procedure of fitting, the methods and
symbols employed by Fisher(4) have been adapted to the present pur-
poses. Short-cut methods, suitable for use with a calculating machine,
aredescribed. With a machine, these should enable one to fit the regression
line without previous experience.

The formula for the regression line may be expressed as

Y=a+6(X-2), .. 2
where, in this case, Y is the mortality in probits on the regression line (or
transformed dosage-mortality curve) which corresponds to any given
dosage X, usually expressed in logarithms; a = § =numerically the average
probit for all determinations in that part of the experiment which is being
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fitted by a straight line; Z is the average of the dosages administered (in
logarithms) for the same section of data; and b is the regression coefficient
or the slope of the line, the amount by which the probit of mortality is
increased for every unit increase in log.-dosage. It is necessary, therefore,
to calculate from the experimental data the quantities Z, §, and b. The
formulae are as follows:

_ S(wz)
xr= —:S_(_’l—l; s e (3)
__ S(wy)
e (4)
b= M@zj_f&_wg)’ ...... (5)
A=8(wz?)—-zS(wz), ... (6)

where the symbols are defined as:

S="‘the sum of” and indicates that all quantities of the type in the
brackets after the S are to be added,

w=weight of a given observation, the product of the weighting coefficient
multiplied by the number of killed plus survived,

x =a function of the dosage administered experimentally, usually its
logarithm, and

y =the probit corresponding to the observed percentage mortality.

The position of the regression line, in the sense in which we will use
the term, is determined by Z and #, since it must pass through the point
on the diagram given by these two means. They fix the degree of
susceptibility to a toxic agent shown by the population as a whole. From
a statistical viewpoint, b is the slope or the tangent of the angle with
which the regression line will pass through the point established by Z and #;
from a biological viewpoint, & measures how closely the individual
organisms in the experiment agree with one another in their sensitivity
to the toxic agent. It is convenient to express this toxicological charac-

teristic as the percentage increase in dosage that is required to increase

240
kill by one probit. This is the ratio of 100log, 10 to &, ig%gg .

Returning to our numerical example, the solution of equations (3)~(6) has been
given at the bottom of Table IV in the order which has been found the most con-
venient. The first, second, and fourth quantities are the totals of the last three columns
of the table, while the two means were determined in order, without clearing the lower
dials of the calculator, when the totals first appeared (in machines such as the Monroe
and the Marchant). S(wz®)was obtained by placing wx on the keyboard of the calculator
and multiplying by the corresponding «, then clearing the keyboard and upper dials
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and repeating the process with the next pair of values until the total of the products,
S(wz?), had been accumulated in the lower dials. Leaving this sum in the lower dials,
S(wx) was placed on the keyboard and subtracted Z times to secure 4. Repeating the
process with wz on the keyboard and multiplying this time by y, the sum, S(wzy), was
obtained directly. From S(wxy) in the lower dials, S{(wy) on the keyboard was sub-
tracted Z times to secure the next term, which, in turn, was divided by 4 to obtain the
regression coefficient, b. In checking the arithmetic of these various operations, other
short-cuts will soon suggest themselves for facilitating the work and reducing the
possibility of error. It is important in this method that computations be carried out to
six or more significant figures in the means and regression coefficient in order to insure
sufficient accuracy throughout. From %, 7, and b the equation of the corrected
regression line was solved as ¥ = 5-450 4 25-51 (X — 1-7967), holding for concentrations
of carbon disulphide above approximately 57-8 mg. per litre of ajr. In this range, an
increase in dosage of 9-03 per cent. (230-26/25-5114) increased kill by 1 probit.

The change in slope at a kill of about 33 per cent. (Fig. 3) is a frequent phenomenon
for which no explanation will be attempted here. A separate curve has been calculated
for the lower concentrations, including the smallest dosage of the main curve. The
regression coefficient, b, was less than one-half that for the higher dosages. Usually
this lower section of the toxicity curve will be of too little practical or theoretical
importance to warrant calculating its equation, and it may be questioned whether a
straight line is the correct relationship when the mortality below 25 to 35 per cent.
kill differs from the rectilinearity of the higher dosages. Assuming a straight line in
the present case, the regression equation was ¥ =4-186+11-35 (X —1-7286).

The two experimental series have been listed separately, although the same dosages
were used in Series I and in Series II. If the number of living and dead for each dosage
had been combined before calculating the percentage kill and transforming to probits,
the regression equation would have been determined from half as many separaté ob-
servations. The result should be practically the same. Tested arithmetically, the new
equation, ¥ =5-436+ 25-33 (X — 1-7967), differed so slightly that both regression lines
could not be shown in Fig. 3. When it is evident from the similarity of different ex-
perimental series that the stocks of test animals are the same, the results at each
separate dosage may be combined into a single percentage and probit for placing the
first regression line by eye and for reducing the labour of computing the curve,
although for estimating the errors of this curve the longer form is preferred.

IV. ACCURACY OF THE REGRESSION LINE.

The fitting of a dosage-mortality curve to a series of experimental
observations, however crude or refined the technique, is an attempt to
infer, from a limited number of individuals, the ‘ true” empirical relation-
ship of dosage and mortality for a given toxic agent in an infinitely larger
population from which they represent only a sample. The regression
equation and line is the closest we can approximate this *“true” relation-
ship, but all determinations of this type are not equally reliable. If
the experimental points are quite close to the line and the number of
individuals is large, we have greater confidence that a second or third
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determination will agree with our first estimate than if the points are
scattered and based on fewer animals. We will want to compute from our
experimental data not only the most likely position (the regression line)
of the “true” dosage-mortality curve, but also how accurately this most
likely position has been determined.

(1) The x? test for comparing observations with the computed curve. The
first step is to determine whether the observed mortalities agree with our
original assumption of a rectilinear relationship on the logarithmic-
probability scale within the limits of sampling error; in other words, do
the experimental observations vary significantly from our fitted straight
line? Since each observation has been weighted by the reciprocal of
its variance (Nz?/pq), which, in turn, is based upon a regression
line at the observed dosage, the most satisfactory criterion is the
chi-square (x?) test. At each dosage the observed mortality is compared
with that expected from the regression equation, but instead of cal-
culating separately each expected probit (mortality) from equation (2),
and then subtracting it from the observed probit (mortality), a short-cut
method for securing the sum of the squares of these differences may be
adapted from the one given by Fisher4). When this is combined with the
weighting procedure above, which gives the part of the equation corre-
sponding to the ‘“expectation,” x® may be calculated quite easily as

follows: x?=[S(wy?) — §S(wy)] - b [S(wzy) —ZS(wy)].  ...... (7)

Nearly all of the components of equation (7) have already been computed
in determining the regression equation. The first parenthesis contains
S{wy?), which is the sum of the products of columns 6 and 10 in our
example of Table IV. The second part is the numerator of the equation
for the regression coefficient (equation (5)) multiplied by the regression
coefficient, b. Although in this equation for x® the weights, and therefore
the expected probit values, are based upon the initial, graphic regression
line, while the differences between expectation and observation depend
upon the later, calculated regression line, the discrepancy thus introduced
is not a serious one.

The computation of x? is a relatively straightforward operation with-
out statistical complications, but its significance depends upon a term
known as the number of “degrees of freedom,” n, which may be more
difficult to evaluate. If the regression line were calculated from one set
of data and then drawn on the same graph with the individually plotted
points of a second, entirely independent series of determinations of
toxicity, the second series could differ from the line in as many ways—
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or in as many degrees of freedom (n)—as there are plotted points or
observations (n’). Under these circumstances n would equal n’. If, how-
ever, the average log. dose and the average probit were calculated from
the second series, and the regression line drawn through the point
established by these two averages with a slope which had previously been
computed from other data, the separate tests in the second series could
not differ as freely from the line as before, because the position of the line
has been determined from the observations with which it is being com-
pared. The number of degrees of freedom would then be one less than the
rumber of tests in the second series or n =n’—1, for one degree of freedom
has been used up in locating the position of the line. Finally, when not
only the position of the regression line but also its slope have been com-
puted from a given series of observations, the extent to which these latter
may differ from the transformed dosage-mortality line is still more re-
stricted. In this case, the one with which we have been dealing, the
number of degrees of freedom would be equal to the number of separate
tests less one which was sacrificed in using these same observations to
determine the position of the regression line and less a second degree of
freedom lost in establishing the slope of the line. The number of degrees
of freedom in the regression line of our computations will be equal, there-
fore, to the number of separate tests in the series establishing the curve
less 2, or n=n"—2.

This rule is simple and easy to apply, but is complicated by another
requirement, 1.e. that the calculated distributions of x2, upon which the
tests of significance depend, are not very closely realised when very small
numbers are expected. In fact, such tests are not rigidly exact when the
number expected is less than 5. In toxicological experiments, the ex-
pected number of survivors at the higher dosages will regularly fall below
this ideal limit, especially when zero survivors are obtained. If each of
these particular tests is assigned a value of 1 in determining the number
of degrees of freedom, the apparent goodness of fit will be exaggerated by
the inclusion of observations which, because of their small weight, con-
tribute little to the observed x* The exact procedure is to exclude from
the computation both of 2 and of n the results of those dosages at which
the number of expected survivors, based on the number of organisms
counted and the regression line, is less than 3 to 5 individuals. An
alternative, which is more convenient though possibly less precise, is to
include these small contributions to x® with their standard weights as
before, but for the purpose of determining #’ and » to group those in
which the survival expectancy is small, so that there will be no contribu-
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tions to n’ or n which are based upon a survival expectancy of less than
one individual. The limit of expectancy is lowered here because the
separate observations will contribute somewhat more to x2, despite their
small weights, than they would if the variation between them could be
smoothed out by combining them into as few terms as their contributions
to n’. The same considerations would hold at the opposite end of the curve
when the expectancy of death is very small.

Having secured x2 and #, it is a simple matter by reference to a table
of y2, such as Table III in Fisher’s text, to determine if the observations
depart more widely from our calculated dosage-mortality curve than
could be expected by chance. If y?issmaller than the value in the column
for P equal to 0-05, the data may be considered consistent with the
straight line that has been fitted. If the x® is greater than the value
corresponding to this probability (P), either the observations depart
significantly from a straight-line relationship, or some uncontrolled con-
dition in the experiment is causing a greater variation about the line than
could be expected from simple fluctuations in sampling. Since systematic
departures from rectilinearity were eliminated at the start, the second of
these causes is more likely to be involved. Heterogeneity of this type does
not necessarily invalidate the procedures described in the present paper.

(2) The variances of position and slope. The two parameters determined
from an experimental series in calculating the regression line are those
giving its position, @ (or 7), and slope, b; from the variance of @ and of b we
may determine how accurately they have been estimated. The square root
of the variance of any statistical constantisitsstandard error, but since the
variance must be computed in orderto determine the standard error and is
here much the more useful, we will deal with the variances directly rather
than with their square roots, the standard errors. Since Z in the regression
equation (2) is theindependent variable, the average of the dosagesselected
by the experimenter for testing, it is not a “sample” from a “popula-
tion” of dosages and is not subject to sampling error in the ordinary sense.

The regression line is calculated so as to intersect the point fixed by
the average dosage and the average probit, so that the term a is numeric-
ally equal to §, but since @ is defined as a value on the regression line,
its variance, V(a), will be that about the regression line at a single dosage
at or near the mean dosage, and hence considerably smaller than the
variance of the observed probits for all dosages. The equation for the
variance of a Is V() x*

— 2

=8"= @ (8)
where the symbols have the same significance as before.
Ann, Biol. xx11 11
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The variance of the regression coefficient, b, is given by the equation

V(b)=s,2= X (9)
=st= g e

The formulae for the variance of @ and of b given in equations (8) and
(9) represent the errors involved in the particular series of records from
which they were calculated and are valid however great x* may be. This
comparison of y? with its mean value » is a comparison of actual devia-
tions with those theoretically to be expected from the numbers of units
observed. If observation and computed curve agree satisfactorily within
the limits of sampling error as tested by x2 (P greater than 0-1), the errors
observed in such a specific experimental series may be replaced by a
simpler form which will give the expected error for all similar tests in-
volving the same dosages and numbers of organisms. The theoretical form
for the sampling errors in ¢ and b may be obtained from the fact that the
mean value of x*n is equal to }. When the errors in ¢ and b arise solely
from the chance distribution of susceptibilities from one test to another,
the calculation of their variances may be simplified to

V(a)=s2= STI?E’ ...... (10)
and V(b):sb?-:é. ...... (11)

(3) The zone ¢f error of the regression line. The best available estimate of
the true dosage-mortality curve is the calculated regression line. The
experience of statisticians indicates that if we can determine limits on
either side of the regression line, such that there are 19 chances in 20 of
their enclosing the true dosage-mortality curve, we will have a reasonable
standard for prediction. Our next problem, therefore, is to determine the
accuracy or ‘‘sensitivity” of the dosage-mortality curve which we have
computed, using the margin of safety represented by 19 chances in 20
or P=0-05.

From the variance, V(a), we can determine by how much the true
regression line may lie above or below the most likely position as fixed
by a, and from the variance, V(b), we can find how much more or less it
may be tilted. At the average dosage, Z, an error in & could have no
influence upon the sensitivity with which a is an index to the true
regression line, but as the dosage differs more or less widely from the
average, both errors are of importance and will modify the accuracy of
estimate of the true mortality corresponding t¢ any given dosage. As
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shown by Working and Hotelling(14), the formula for the regression
equation and its error may be written as
Y=a+b(X-Z)+tVV(@)+(X-22V({®). ... (12)

The value of ¢ is not calculated but is taken from a table of “Student’s”
integral, such as Table IV of Fisher’s text, from the column for P=0-05
at the value of » equal to the number of degrees of freedom for the curve.
From equation (12) we may calculate the probit of kill and its error of
estimate for a series of dosages covering the same range as our original
experimental observations; from the plus errors draw a line above, and
from the minus errors a line below the dosage-mortality curve such that
there are 19 chances in 20 of these two boundaries, the branches of a
hyperbola, enclosing the true dosage-mortality curve when transformed
to the logarithmic-probit diagram. If it is preferred that the boundaries
represent odds of 1 in 2, as in the familiar probable error, ¢ is read from
the column for P=0-5.

These different operations may now be illustrated from our example in Table IV,
the computations for the main curve being summarised at the end of the table. For
this range of higher dosages, x2=5-556. Although the curve is based upon 12 separate
determinations of mortality, the total number of survivors expected from the four
tests at the two highest concentrations of carbon disulphide was only 1-36 beetles
{1 survivor observed). Therefore these will count as 1 instead of as 4 in determining »’,
and since n=n"—2, the number of degrees of freedom will be 9—2=7. From a table
of x% such as Table III in Fisher’s text, the corresponding value of P lies between 0-5
and 0-7, so that the data may be considered consistent with the regression line which
has been fitted to them. When the same test is applied to the line fitted to the range of
smaller dosages, the x* test again indicates satisfactory agreement

(x*=1-404, n=4, P=0-84).

Since x? indicates a satisfactory agreement between observation and fitted curve
the generalised form of the variances in the position and slope of the regression line
may be used (equations (10) and (11)), when V(a)=0-007758 and V(b)=6-6683.
We now have all the terms for computing the regression line and its errors (equation
(12)) with the exception of &. ¥or n=1, at odds represented by P=0-05, the value of
t is given by Table IV in Fisher’s text as 2-365. The equation for estimating the
mortality in probits, ¥, and its error within odds of 19 to 1, at any desired log. dosage,
X, above a concentration of 57-8 mg. per litre, is

Y = 5450+ 25-51 (X —1-7967) + 2-365v/0-007758 + (X — 1-7967)% 6-6683.
The limits shown as curved dotted lines in Fig. 3 have been computed from this
equation for the range of higher dosages and from a similar equation for the lower
dosages. These boundaries define the accuracy with which the two solid regression
lines have been determined by the experiment.

If the two series of tests had been combined, either when the experiments were
made originally or in computing the percentages, that part of the error under the

11-2
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square root would remain as it is in the longer form, since the generalised errors in
position and slope depend only upon the sum of the weights and the variance of the
log. dosage. The number of degrees of freedom would have dropped, however, from
7 to 3, so that ¢ would have been increased from 2:365 to 3:182, and the limits of the
estimated error increased proportionately.

V. AprPENDIX. THE CASE OF ZERO SURVIVORS, BY R. A. FISHER.

The equations derived from the theory of large samples appropriate
for plotting the points on the probit diagram, namely
]
=
1 @
d —= | e"#'dt=q,
an mL ‘ 7
give, for experiments with no survivors, z=co, with weight
2
Z 23>0

It is evident that such values cannot, in this form, be used in fitting
the regression line, and that the theory of large samples has broken down,
as was to be expected, when the number in the class of survivors is small.
A more exact treatment is necessary for such cases, and this is supplied
by the Method of Maximum Likelihood.

If p is the probability of death, and ¢ of survival, in any experiment,
the probability that s survive out of n tested is

!
S!(—:—_m prrg @

In the method of maximum likelihood, we take the logarithm of the
aggregate probability of all the experimental data, for any assigned series
of probabilities of survival represented by the regression line, and esti-
mate the position of the regression line by making this logarithm a
maximum. This ame ints to equating to zero the sum for the different
experiments of the differential coefficients with respect to the value of z
assigned. The exact form of the differential coefficient of (I) with respect

to p1s n—s §_qn—s

P 9 M
With respect to the probit value z, the differential coefficient involves

also the factor dp/dz, and becomes
2
n—s)—. ... II
(qn—s) 79 (1I)

Now when both s and n—s are so large that the distribution of s may
be treated as normal, the factor (gn —s), which is »n times the difference
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between the proportion of survivors expected and observed, is taken to
be proportional to the difference between the probit values expected and
observed, according to the formula

(qn——s):n(:v—X)%}a—z=n(x—X) Z, eeeeen (I11)
where X is the probit value expected, and = that observed. In such cases

the equation for maximum likelihood is made up of such terms as
-0,
P

and its solution consists merely in fitting the expected values, X, by least
squares to observed values, z, obtained from each experiment, giving
each observational point a weight n2?/pq.

When, however, ¢ is so small that s can frequently take values such as
0, 1, or 2, the equation (III) is not a satisfactory approximation, as is
evident when s=0, for then z is infinite, while a finite value will be ob-
tained from equation (III). If we write

n(@ —-X)z=qn—-s, ... (Iv)

then 2’ is a fictitious deviate, which, if assigned to any experiment with
no survivors, will allow that experiment to exert its proper influence on
the regression line. It will be observed that #’ is a function not only of an
observed frequency s/n, but also of X, the corresponding point on the
regression line. It is only fictitious in the sense that it is not calculated
from the result of just a single experiment, but requires also a knowledge
of the expected value X inferred by fitting the regression line to other
experiments. When s=0, (z' — X) is always positive, so that the fictitious
frequency to which z’ corresponds is always less than that expected, as is
evidently proper when the observed frequency is zero. The fictitious value
¥/, if used with its proper weight in recalculating a regression line of which
an approximate estimate has already been made, will then allow experi-
ments with few or no survivors to exert their proper influence in adjusting
the line. It is of some importance to take this step, since the omission of
experiments merely because they show no survivors must constantly
bias our estimates in the sense of exaggerating the number of survivors
to be expected.

When s=0, the value of 2z’ depends only on X, though, of course, the
weight assigned to the observation depends also on n, the whole number
tested, equation (IV) becoming

r'—X=

These values are shown in Table II.
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VI. SummMary.

The sigmoid dosage-mortality curve, secured so commonly in toxicity
tests upon multicellular organisms, is interpreted as a cumulative normal
frequency distribution of the variation among the individuals of a
population in their susceptibility to a toxic agent, which susceptibility is
inversely proportional to the logarithm of the dose applied. In support
of this interpretation is the fact that when dosage is inferred from the
observed mortality on the assumption that susceptibility is distributed
normally, such inferred dosages, in terms of units called probits, give
straight lines when plotted against the logarithm of their corresponding
observed dosages. It is shown that this use of the logarithm of the
dosage can be interpreted in terms either of the Weber-Fechner law or of
the amount of poison fixed by the tissues of the organism. How this trans-
formation to a straight regression line facilitates the precise estimation
of the dosage-mortality relationship and its accuracy is considered in
detail. Statistical methods are described for taking account of tests which
result in 0 or 100 per cent. kill, for giving each determination a weight
proportional to its reliability, for computing the position and slope of the
transformed dosage-mortality curve, for measuring the goodness of fit of
the regression line to the observations by the y? test, and for calculating
the error in position and in slope and their combined effect at any log.
dosage. The terminology and procedures are consistent with those used
by R. A. Fisher, who has contributed an appendix on the case of zero
survivors. Except for a table of common logarithms, all the tables re-
quired to utilise the methods described are given either in the present
paper or in Fisher’s book. A numerical example selected from Strand’s
experiments upon T'ribolium confusum with carbor disulphide has been
worked out in detail.

It is a pleasure to record my indebtedness to Prof. R. A. Fisher, not
only for the note appended to the paper, but alsc for invaluable advice
throughout its preparation and for the facilities of the Galton Laboratory
which have so generously been placed at my disposal. Among others who
have been kind enough to read and criticise my manuscript, I wish
especially to thank Prof. A. J. Clark, Dr F. Tattersfield, Dr J. O. Irwin,
Dr A. B. P. Page, Mr H. H. S. Bovingdon, and Dr A. E. Brandt.
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