EPIDEMICS

Maurice S. Bartlett Ozford University

[Editorial comment. Many advisors have suggested that this volume include an apphi-
cation in which a statistical or stochastic model is especially constructed to fit a real
world process. These advisors want the volume to show the reader the model builder
at work, to show how the model is tested, and to explore the new things it demon-
strates. To appreciate the whole process requires some mathematics. We also might
have to see the worker’s wastebasket to appreciate how much effort may go into at-
tempts he found unsatisfying. :

Even the reader who has little mathematical equipment can gain considerable
insight into the mathematical study of the birth, death, and maintenance of epidemics
by skipping the harder mathematics in the piece Professor Bartlett has so kindly pro-
vided. For those who wish to skip along, the more mathematical parts have been
set off and indented, and a few words, sometimes redundant, of transition have been
inserted—J.T.]

A cLassic book by the late Professor Greenwood, a medical statistician who
was an authority on epidemics, has the title Epidemics and Crowd Diseases,
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not yet infective; some might not be infected, at least visibly, and yet be
infective—so-called carriers. As we are considering the simplest case, how-
ever, we merely suppose there is a number I, say, of infective persons. When,
as is to be hoped in real life, these persons recover, they may become resuscepti-
ble sooner or later (as for the common cold) or permanently immune, as
is observed with a very high proportion of people in the case of measles.

While these ingredients for our epidemic recipe are very basic and common
to many situations, there is a better check on our model if we are more
definite and have one disease in mind, so let us consider only measles from
now on. This is largely a children’s complaint, mainly because most adults
in contact with the virus responsible have already become immune and so
do not concern us. Measles is no longer as serious an illness as it used to
be (even less now that there is a preventive vaccine), but is a convenient
one to discuss because many of its characteristics are fairly definite: the per-
manence of subsequent immunity, the incubation period of about a fortnight,
and the requirement of notifiability in several countries, including the U.S.,
England, and Wales. The last requirement ensures the existence of official
statistics, though it is known that notifications, unfortunately, are far from
complete. Provided we bear this last point in mind, however, and where
necessary make allowance for incomplete notification, it should not mislead

us,

A DETERMINISTIC MATHEMATICAL MODEL

To return to our mock epidemic, we next suppose that the infective persons
begin to infect the susceptibles. If the infectives remain infective, all the
susceptibles come down with the infection eventually, and that is more or
less all there is to be said. A more interesting situation arises when the
infective persons miay recover .(or die, or be removed from contact with sus-
ceptibles) because then a competition -between the number of new infections
of susceptibles and the number of recoveries of infectives is set up. At the
beginning of theé epidemic, when there may be a large number of susceptibles
to be infected, 4 kind of chain reaction can occur, and the number of notifica-
tions of new infected persons may begin to rise rapidly; later on, when there
are fewer susceptibles, the rate of new notifications will begin to go down,
and the epidemic will subside.

If we drew a graph of the number of infectives I
of susceptibles S at each moment, it would look broadly like the curve in
Figure 1. The precise path, of course, will depend on the exact assumptions
made on the overall rate of infection, on whether this is strictly proportional
to the number I, and on whether also proportional to S, so that the rate
at any moment is, say, calculated from the formula @IS where a is a constant.
The path will depend also on the rate of recovery of the infected population,

against the number
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in an ever-
right before it reaches the axis I = 0 and can be shown to.l.;;)rc?::;eld Lnint e
decreasing spiral (Figure 2) till it finally arrives at an equilibrium point,
is determined by the equation; ’

c—alS =0, al§ — bI = 0.

The second of these giQes S = b/a (the critical threshold value), and ﬂ;eﬁ:;sst
thefl yields I = ¢/b. These results are partly 'encouragmg,.dbut. c;;z‘lrt‘i’); e:;n eve!;
? ¥ dency to recurrent epidemics;

The encouraging feature is the tex.l e
' ﬁn; the period of the cycle, which is found to be approximately

21
Vac — Y4a%?/b

in 1906

Sir William Hamer, who first put forward the above. model fo:‘;nr:aileisn ::biﬁm;
took b = 1% when ¢ is reckoned in weeks, correspond.mg to a;l200 '%hc ouvatior.

jod of a fortnight, and ¢ for London at.that time as . A
Peirslomore uncertain, but one method of arriving at it is to note t".il'm}tl t ﬂ(;eoretical
flumber of susceptibles, which was put at 150,000, s%lould be arot‘xlrll : etn ; e e
equilibrium value b/a giving a = 1 /390,000. Notl.ce thzit i w:emam e
portional to the size of the community, so t.hat if ac h;: ‘sonot ain consians,
must be inversely proportional to the popu!atlon, bl.lt t. fl Dot e
assumption; it is consistent, for example, with effective ini ;(1: v );f ver B come:
urban area, the entire town being regarded as an assemblage

The introduction of an influx of susceptibles s.howe_d th?.t hltnsftsﬁg V:)fa.fc;lrl)ci)l\‘/\;’1
ing the simple curved path of Figure 1,. an epidemic m}g L oo @ s
until it finally settled down with a particular nfxmb?r of s ;)for e
time to go around the spiral once, called the pen.od, is estlma-.ted or Loncon
data at 74 weeks, in reasonable agreex;ent V\(;itlflo;]:xvle;;:rjg‘eﬂsserilz F?nglznd e
less than two years that has been observe s in Bngand an

, comparable countries in pres
i (Se\eN;T i‘:);il; )l;a;:llley Ie-i.séc:l:ﬁe epidIl)emic pattern to remain prec1sily_
tcl?: tlslarl);;e under very different social conditions, though ';he :}?n:ienmtzz :lsl
mortality figures for London quoted from John Graunt‘thor erheaps ity
century (Table 1) suggest a similar pattern even then (with p ‘
longer average period of 2 to 3 years).

. o
“TasLe 1. Deaths from Measles in London in the Seventeenth Century

1648
1636 163746 1647
1632 1633 1634 1635 1 o
o g0 80 21 33 27 12 Not 5
“ ’ ’ recorded .
' 1659 166
1655 1656 1657 1658
651 1652 1653 1654 e
16:9 1':55:550 133 62 8 52 11 153 15 80 6
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UNSATISFACTORY FEATURES OF THE MODEL v

The erroneous feature of the improved model is that actual measles in London
or other large towns recurs in epidemics without ‘settling down to a steady
endemic state represented by the theoretical equilibrium point. What aspects
of our model must we correct? There are some obvious points to look at:

(1) Our assumptions about the rate of recovery correspond to a gradual
and steadily decreasing fraction of any group infected at the same time,
whereas the incubation period is fairly precise at about two weeks, before
the rash appears and the sick child is likely to be isolated (this being
equivalent to recovery).

(2) We have ignored the way the children are distributed over the town,
coming to school if they are old enough or staying at home during a
vacation period.

(3) Measles is partly seasonal in its appearance, with a swing in average

notifications from about 60% below average in summer to 60% above
average in winter.

INTRODUCING CHANCE INTO THE MODEL

We will consider these points in turn. The effect of point (1) is to lessen
the “damping down” to the equilibrium level, but not, when correctly formu-
lated, to eliminate it. Point (2), on the movement over the town, raises inter-
esting questions about the rate of spread of infection across different districts,
but is less relevant to the epidemic pattern in time, except for its possible
effect on (3)." If we postulate a *=10% variation in the “coefficient of infec-
tivity” a over the year, it is found to account for the observed *+60% or.
so in notifications. There seems to be little evidence of an intrinsic change
in a due, say, to weather conditions, and it may well be an artifact arising
from dispersal for the long summer vacation and crowding together of children
after the holidays. Whatever its cause, it does not explain the persistence
of a natural period; only the seasonal variation would remain and give a
strict annual period, still at variance with observation.

To proceed further, let us retrace our steps to our closed epidemic model
of Figure 1. To fix our ideas, suppose we initially had only one infective indi-
vidual in the community. Then the course of events is not certain to be .as
depicted; it may happen that this individual recovers (or is isolated) before
Ppassing on' the infection, even if the size of susceptible population is above the
critical threshold. This emphasizes the chance element in epidemics, especially
at the beginning of the outbreak, and this element is specifically introduced by
means of probability theory. To examine the difference it makes, let us suppose
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the chance P of a new infection is now proportional to aIS and the chz?.nce Q
of a recdvery proportional to bI. Denote the chance of the outbreak ultlmately
fading out without causing a major epidemic by p. We shall suppose also that
the initial number So of susceptibles is large enough for us not to worry about
the proportionate change in § if the (small) number of infective persons‘chaflges.
Under these conditions two infective persons can be thought of as actmg inde-
pendently in spreading infection, so that the chance of the outbreak fading out
with two initial infective persons must be p°. . o

Now consider the situation after the first “happening.” Either t‘h{s s a new
infection or a recovery, and the relative odds are P/Q = tZSn/b.' If’lt is a new
infection, I changes from 1 to 2, and the chance.of fade-otxt is p* from now
on, or I drops to zero, and fade-out has already occurred. This gives the relation

- ey 2
_P+Q"+P+Q

?

- whence either p=1 or p=Q/P = b/(aSs). If b2 aSe (that is, if we are
below the critical threshold) the only possible solution is p = 1: implying as ex-
pected that the outbreak certainly fades out. However, the ultimate prot‘Jz?blllty
of fade-out can be envisaged as the final value reached b).f‘the pro.bab-lhty of
fade-out up to some definite time ¢, this more general probablllt).' steadily increas-.
ing from zero at ¢t = 0 to its limiting value, which therefore w1ll‘be t'he xmalle‘r

" of the roots of the above quadratic equation. This is b/(aS,) if thls value is
less than one, providing us with a quantitative (nonzero) valu‘e of the chance
of fade-out even if the critical threshold is exceeded and stressing the new and

rather remarkable complications that arise when probabilistic concepts are brought

in.

The mathematics shows that if the initial number of susceptibles is smallerv
than a value determined by the ratio of some rates used in ‘the r'n‘odel, then
the epid.émic. will certainly fade out. If it is larger .than-thls'cntlcal value,
then there is still a positive probability that the epidemic will fade out.

When new susceptibles are continually introduc‘e'd, represented by ¢, 'the,
complications are even greater. For small communities, however, the qu‘ahta-
tive features can be guessed. Once below the threshold, f:he number qf infec-
tives will tend to drop to zero, and though the susceptibles § can increase
because of ¢,.it seems unlikely that the number will' pass the threshold before
I has dropped to zero. The epidemic is now finished, and cannc'>t re-start
unless we introduce some new infection from outside the commlfmty. This
is exactly what is observed with measles in a smal.l isolated comm}xnlty, whethe}ll-
it is a boarding school, a rural village, or an island community. For suc
communities, the period between epidemics depends. partly on the rate c.of
immigration of new infection into the area and not Ju'st on the natural epi-
demic cycle. Moreover, when new infection enters, it cannot take proper
hold if the susceptible population is still below the threshold, and even if
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TasLE 2. Measles Epidemics for Towns in England and Wales (1940-56)

MEAN MEAN
PERIOD PERIOD

BETWEEN BETWEEN

POPULATION EPIDEMICS POPULATION EPIDEMICS

TOWN (THOUSANDS)  (WEEKS) TOWN  (THOUSANDS) (WEEKS)
Birmingham 1046 73 Newbury 18 92
Manchester 658 106 . Carmarthen 12 79
Bristol 415 92 Penrith 11 98
Hull . 269 93 Ffestiniog 7.1 199
Plymouth 180 94 Brecon 5.6 149
Norwich 113 80 Okehampton 4.0 105
Barrow-in-Furness 66 74 Cardigan 3.5 >284
Carlisle 65 75 South Molton 3.1 191
Bridgwater To22 86 Llanrwst 2.6 >284
Appleby 1.7 175

Source: Bartlett (1957), Tables 1 and 2.

wbove, new infection may have to enter a few times before a major outbreak
ccurs, The average period ténds to be above the natural period for such
:ommunities. If we assume that the rate of immigration of new infection
s likely to be proportional to the population of the community, the average
reriod between ‘epidemics will tend to be larger the smaller the community,
ind this again is what is observed (Table 2). ' :

Consider now a larger community. We expect random effects to be pro-
rortionately less; there is still, however, the possibility of extinction when
he critical threshold is not exceeded. Nevertheless, before all the infectives
:ave disappeared, the influx ¢ of new susceptibles may have swung S above
he threshold, and the stage is set for a new epidemic. Under these conditions
and provided a¢ remains constant, as already assumed), the natural period
7ll change little with the size of community. '

RITICAL SIZE OF COMMUNITY

Tow large does the community have to be if it is to begin to be independent of
utside infection and if ifs epidemic cycle is to be semipermanent? Exact
1athematical results are difficult to obtain, but approximate solutions have been
1pplemented by simulation studies of the epidemic model, using computers.
.n example of one such series plotted to extinction of infection after four epi-
emics (an interval representing nearly seven years) is shown in Figure

‘This particular series has no built-in seasonal incidence, but some internal
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NOTIFICATIONS

FIGURE 3

Results of simulation of four
epidemiés of measles over a
seven-year period for a town
whose average susceptible popu-
lation is 3700

TIME IN UNITS OF } FORTNIGHT

migration within its population boundaries; its average susceptible population
is 3700. It appears from all such results that the critical size of the susceptible
population is, for the measles model, of the order of 7000, or if the factor
of 40 estimated for Manchester, England, between total and susceptible popu-
lation is used, over a quarter of a million people in the community.

Now we do not need to use this theoretical figure as more than an indica-
tion of what to look for. By direct examination of measles notifications for
any town, we can see whether notifications have been absent for more than
two or three weeks. In view of the rather well-defined incubation period,
we would infer from this lack of notifications that the infection had disappeared
if we knew that notifications were complete. Incomplete notification is a com-
plication, but not one that is likely to affect these quantitative conclusions very
much, for fade-out of infection is found to increase rather rapidly as the com-
munity size decreases and soon becomes quite recognizable from the detailed
statistics. In this way, it was ascertained that in England and Wales, during
the period 1940-56, cities of critical size were Bristol (population about 415,000)
and Hull (269,000). This investigation was supplemented by an examination
of U.S. statistics for the period 1921-40, from which it was found that some
comparable North American cities were Akron (245,00C), Providence
(254,000), and Rochester (325,000). Therefore, there is an observed critical
community size of around 300,000, in reasonable agreement with what we were .
expecting. _ '

Of course, towns of such size are not completely isolated from other com-
munities as assumed in our model; this could tend to lessen the observed
critical size, especially if the isolation is comparatively slight. In Table 3
the fade-out effect is shown for aggregates of individual “wards” in Manchester
to demonstrate how it decreases with the population aggregate. The critical
size (defined precisely in terms of 50% probability of fade-out after an epi-
demic) is, again as expected, smaller than for complete towns due to the
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TaBLE 3. Observed (Aggregate) Fade-Out Effect in Manchester Wards

NUMBER OF
CUMULATIVE EPIDEMICS PROBABILITY
POPULATION FOLLOWED OF FADE-OUT

WARDS , (THOUSANDS) BY FADE-OUT (%)

Ardwick 18.4 12 100

St. Mark’s 38.2 12 100

St. Luke’s and New Cross 71.8 9 75

All Saints, Beswick, and Miles Platting 140.8 4 33
Openshaw, Longsight, N. and S.

Gorton, Bradford, and St. Michaels 254.1 1 8

Medlock St., W. and E. Moss Side,
Rusholme, Newton Heath, Colly-
hurst, Harpurhey, and Cheetham 419.3 0 0

Source: Bartlétt (1957), Table 3.

extensive migration across the ward boundaries; it is estimated to be 120,000
total population living within the area.

CONCLUSIONS

If we review these results, we may justifiably claim that our theoretical model
for measles, idealized though it inevitably is, has achieved some fair degree of
agreement with the observed epidemic pattern. In particular:

(1) It predicts a “natural” period between epldemlcs of rather less than
two years.

(2) A small (+109%) seasonal variation in infectivity (whether or not
an artifact of seasonal pattern in school-children’s movements) accounts
for the larger (=609) observed seasonal variation in notifications.

(3) It predicts extiriction of infection for small communities, with conse-
quent extension (and greater variability) of periods between epidemics.
(4) It predicts a critical community size of over a quarter of a million
necessary for the infection to remain in the community from one epidemic
to the next. :

Epidemic patterns, of course, will be very sensitive to changing customs
and knowledge; and the introduction of a vaccine for measles will inevitably
change its epidemic pattern, and perhaps in time eliminate the virus com-
pletely. However, the greater understanding of epidemics that follows from
appropriate models may be applied to other epidemic infections, and should
assist in predicting and assessing the consequences of any changed medical
practice or social customs even for measles.
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PROBLEMS

1. Explain the difference between a deterministic mathematical model
and a chance model.

The following problems refer to the material in small print.

2. Explain what is meant by “critical community size.”

3. The deterministic model in Figure 2 predicts that there is an equi-
librium point of LS; i.e., the epidemic will never fade out. What is t.he»
concept that had to be introduced into the model to alter .thls.predlc-
tion and thus better explain the data in Table 3 where we notice that
in some communities nearly all the epidemics eventually fade-out?

4. Stated in words the formula S, =S, -al,S, says that “the number

of susceptibles at the time f+1=number of susceptibles at time t-
at time t.

5. What is the equilibrium point (S,,l,) for the deterministic model

shown in Figure 2?

6. Check by substitution that » =1 and p =Q/P are the solutions of the
equation p =p 2P/(P+Q)+ Q/(P+Q).
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