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WHEN THERAPIES are compared for effectiveness, what happens? How often
does an innovation appear to be superior to its competitors? When innova-
tions are successful, for example, the Salk vaccine or the development of suc-
“cessful organ. transplantation, society gains a major victory. This paper
studies the effectiveness of new surgical and anesthetic therapies in their
" clinical setting.

' We reviewed a sample of 107 published papers appralsmg surgical and
anesthetic treatments. Of these therapies sufficiently promising to be tested
in human patients, we ask what proportion have proved to be substantial
improvements over- existing ones? What proportion have been moderately
successful? And what proportion have been found to be less effective than
had been hoped and expected?

Using these papers, we asséss the percentage improvement a new inno-
vation is apt to make, as well as the chance that it will turn out to have been
an improvement at all. Thus our aim is to describe the crop of newly tested
therapies for effectiveness compared with that of the treatments they are
designed to replace.
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Except for a major breakthrough like the introduction of antibiotics,
we have little reason to suppose that the development of new therapeutic
ideas will change drastically. Thus, we assume that a similar distribution of
successes and failures will occur in the near future. The results presented
here should give realistic expectations at least for the short term.

We drew a sample of papers evaluating different treatments actually
given to patients. To get this sample, we turned to the National Library of
Medicine’s MEDical Literature Analysis and Retrieval System (MEDLARS).
Computer-produced bibliographies can be retrieved from this data base
which, since January 1964, has provided an exhaustive coverage of the
world’s medical literature. By searching the system for prospective studies
(see the essay by Brown) of specified surgical operations or anesthetic drugs,
we were able to gather papers whose authors used human patients to evalu-
ate surgical and anesthetic treatments. The papers appeared between 1964
and 1972.

We considered only papers in English because of our own language dis-
abilities, and papers with ten or more patients in a group because we wanted"
to study large investigations rather than case studies. Any other bias in the
sample selections, then, arose from peculiarities of the MEDLARS indexing
system and contents at the time of the search rather than from our
prejudices.

The papers included many kinds of studies. To give an idea of the vari-
ety, some dealt with ulcers, appendectomy, cirrhosis, cancers, bone opera-
tions, colon operations, major vascular operations, stab wounds, antibiotics,
clot prevention, drainage, and the impact of anesthetic drugs and techniques.

Our sampled papers reported on three basic types of studies—random-
ized controlled trials, non-randomized controlled trials, and series. We use

the term randomized. controlled trials when the investigator compared two

or more treatment groups and assigned patients to the groups by a formal
randomization process (such as drawing random numbers to decide which
treatment is assigned to each patient). The non-randomized controlled trials
did not have such a formal randomization process and varied from compar-
ing groups treated concurrently in the same institution to comparing patients
treated previously by one method with patients treated currently with
another. The papers reporting on serjes described sets of patients treated in
some specified manner but with no ‘comparison except possibly with other
reports in the literature dealing with similar patients. In the rest of this paper
we are concerned with only the papers dealing with randomized controlled
trials.

If our MEDLARS approach were perfect and produced all the papers,
one might think that we have a census rather than a sample of papers. To
adopt this attitude would be to misunderstand our purpose. We think of a
process producing these research studies through time, and we think of our
sample—even if it were a census—as a sample in time from this continuing
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process. Thus our inference would be to the general process, even if we did
have all appropriate papers from a time period.

In appraising the results of comparative investigations, we take several
simplifying actions.

First, we classify each therapy as either an innovation or as a standard.
Some diseases have a widely recognized standard therapy against which all
others are measured. A good example of this has been (the standard) radical
mastectomy for cancer of the breast. In such instances the standard is easy
to recognize; all others can be considered as competing innovations regard-
less of how recent their introduction. We have used the letter “I” to denote
the treatment we regarded as an innovation and the letter “S” for
the standard.

Ideally one wishes an analysis to produce the maximum amount of in-
formation contained.in a body of data. It is often impractical to achieve this
in practice. Thus in trying to evaluate the difference in performance between
standard programs and innovations in our study we were unable to assign a
highly accurate and precise value to the observed differences. In many
studies we are content with knowing how many differences were positive
and how many negative. In our data often the two programs were essentially
equal in performance and so it was useful to acknowledge this in the scale. In
addition sometimes one program was not only better but was clearly much
better, and it was not hard to make a distinction between these two. The five
point scale that we have used is a happy solution to this problem because it
is relatively simple and easy to apply and it retains most of the relevant in-
formation that we need. The five point scale is widely used in both social
science and medicine because it allows us to capture much of the informa-
tion we want in a practical manner.

Second, we speak below of a pair of competitive therapies as having
three possible relations: About equal (S=I), the first named preferred to
the second named (S>I or I>>S), and the first named highly preferred to the
second named (S>>1 or I>>8). We have tried to report on this scale what
we think the original investigators would have reported. Usually their words
make this clear. _ '

Third, we have divided therapies into two classes: Primary therapies
intended to cure or ameliorate the patient’s primary disease, and secondary
therapies intended to prevent or treat such complications as infection or
thromboembolic disease or to offer improvements in anesthesia or post-
operative. care. The basic 107 studies included 36 randomized clinical trials.
Of these 36 papers, 21 deal with primary therapies and 15 deal with secon-
dary therapies. For techmcal reasons* several studies had to be set aside, also

*One study had too many comparisons; another had too small a sample size for its comphcatcd
design.
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some studies had more than one comparison. In Table I, we deal with com-
parisons, rather than studies. By coincidence the number of papers equals
the number of comparisons in the analysis.

Referring to Table 1 for randomized trials, we see that in five of the 36
comparisons, or about 14%, an innovation was highly preferred to a standard.
In 16 comparisons, including the previous five, about 44%, the new therapy
was regarded as successful, sometimes because it was no worse than a stan-
dard and thus became available as an alternative.

TABLE 1. Summary for Innovations in Randomized Clinical Trials

PRIMARY SECONDARY TOTAL

I>>8S: Innovation highly preferred 1 4 5
I>8: Innovation preferred n 5 2 7
I=8: About equal, innovation a
success 2 2 4
I=§: About equal, innovation a
disappointment 7 3 10
S$>1I: Standard preferred 3 3 6
S>>I: Standard highly preferred 1 3 4
Comparisons 19 17 36

T
~

In 10, or 28%, the equality of an innovation with a standard could.be
regarded as a disappointment because, although the innovation was more
trouble or more costly or more risky, it did not perform better. In 20 com-
parisons, about 56%, a standard was' preferred (counting innovative disap-
pointments) to an innovation.

Overall, Table 1 shows that innovations highly preferred to standard
treatments are hard but not impossible to find, and that almost half of the
innovations provided some positive gain. It is worth reflecting on what our
attitude might be toward extreme findings in either direction. Suppose that
nearly all studies, or even the lion’s share, found the innovation highly pre-
ferred; one would have to conclude that standard therapies were fairly easy
to improve on and indeed that the kind of medicine being appraised was in
its infancy or else that a sudden breakthrough had been made on all fronts.
This is unlikely with as many different’diseases and therapies as occur in the
sample. At another extreme, if no substantial gains occurred, the suggestion
is that the field has topped out, at least during the period of the study,
awaiting some new insights.

Figure 1 summarizes 11 primary studies in which survival was an approp-
riate measure of outcome and plots the percentage of survivors, often after
many years, for the standard therapy against that for the innovation. Two
papers had two comparisons of a standard against an innovation, making 13
comparisons in all. The seven points below the 45° diagonal line show the
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the size of samples (number of patients used in the studies), and we explore
this idea further later.

Figure 2 shows 24 comparisons based on 11 secondary studies (five had
1 comparison, four had 2, one had 3, one had 8). The 15 points below the
line indicate the innovation as an improvement over the standard treatment;
the 8 above indicate the reverse, and the 1 on the line gives a tie. -

The overall scatter about the 45° line in Figure 2 is large, encouraging
us to believe that larger percentage differences have been found here than in
the studies of Figure 1. By and large, the changes in rate of complications are
larger than the changes in survival rate. We make this more quantitative
below.

In the work reported so far, some innovations performed better than a
standard, others worse. We next regard these outcomes as a sample from the
population of all those surgical innovations developed by our medical system
and tested by randomized clinical trials. Every study has its. uncertainties
associated with sampling variability and other sources of unreliability. We
want to allow for sampling variability in our description of the gains and
losses. The general idea is that if we focus on a particular sort of perform-
ance, we may be able to gather strength from several studies even though
they deal with disparate operations. For example, among the primary studies
we focus on those where the main hope from the operation is the extension
of life. Then we might ask about the distribution (variety) of improvements
actually achieved by this type of innovation.

number of cases
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Histogram .of 24 observed dif-
ferences in percentages avoiding a
complication for several opera-
tions. This tllustrates one way of
representing a frequency distri-
bution function. -

GILBERT, McPEEK, AND MOSTELLER 57

We use the idea of distributions, and so we want to illustrate what these
are. In our study of post-operative complications we had 24 differences of
the form: the percentage of patients who did not develop complication
under the innovation MINUS the percentage who did not develop the com-
plication under the standard. We use these 24 differences for illustration. We
can ask of the data how many differences were in intervals of length 10 such
as between 0 and 9%, 10% and 19%, or between —20% and —29%. This infor-
mation is presented graphically in Figure 3.

Seven of the differences fell in the interval 0 to 9%, three in each of the
intervals 10 to 19%, 20 to 29%, and 30 to 39%, while one was so low that it
fell in the interval -60% to -70%. Thus Figure 3 gives us an idea of how
these differences are distributed with regard to their values. If we had had
many values we could have made much smaller intervals and we could think
of it being very like an idealized smooth curve that might look like:

N\

This curve is called the density function of the distribution.

Often it is more relevant or convenient to ask how many data points
were larger than a particular value on the scale, rather than asking how many
data points were within a particular interval as we did above. If we represent
this way of looking at the data graphically we obtain Figure 4.
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Figure 4 was obtained by adding up the number of squares, i.e. obser-
vations, to the right of each point on the horizontal scale of F igure 1. For
this reason it is called a cumulative distribution function. If again we think
of having many more points and using much smaller intervals we might find
the figure to approach a continuous curve that is the cumulative distribution
function that corresponds to the continuous density pictured above. This
curve looks like: _ o

100

0

difference
When the vertical axis is a percent or a proportion, we can read off the esti-

mated probability of a difference at least as large as the one on the horizon-
tal axis. :

If every study were based on an enormous sample of patients, so that
sampling errors would be very small, the reports of gains and losses would
give us the distribution of differences in true performance between innova-
tions and standards in our sample of papers. In turn that sample distribution
would estimate the distribution of gains in the population—the process gen-
erating these studies and comparisons. But studies are of necessity limited in
size, and, in reports of small studies, differences vary more due to sampling
error than in large ones. We need to have a way to pool the results of such
studies, large and small, that will give an idea of the distribution of true gains
and losses in the trials.

One such method is to allow for the sampling variability associated with
specific randomized trials and come up with a pooled figure. The observed
difference may be thought of as having two additive components—the true
difference plus the sampling error. A special statistical technique called anal-
ysis of variance produces estimates of the average and standard deviation of
the sample of true differences. (The standard deviation measures how spread
out the distribution is.) We can estimate how often various sizes of gains can
be expected to occur by making an assumption about the true differences,
namely that the differences approximately follow a normal distribution.
(The word normal here applics to a particular shape of distribution—it is not
being used in the sense of normal versus abnormal. Heights of adults and
scores on achievement tests are examples of distributions that are approx-
imately normal in shape. A normal distribution looks something like

A , but other distributions might look like A ,or
A_ , Or even /\/\ , Or

It is important to understand that this method develops summary statis-
tics for true- gains and losses across studies. The statistics reported are (a) the

for example.)

GILBERT, McPEEK, AND MOSTELLER 59 .

estimated average true gain, averaged across comparisons, and (b) the esti- -
mated standard deviation of the true gain, averaged across comparisons. If,
for example, the average gain were 0% and the standard deviation of the gain
6%, our assumption of a normal distribution allows us to calculate that gains
of 10% or more could occur in about one-twentieth of the opportunities. It
would still be true that the gain would be positive for about half the innova-
tions and negative (that is, a loss) in half, in agreement with Table 1. It then

-becomes the goal of clinical research to identify the favorable and unfavor-

able innovations so that we may use the former and avoid the latter.

The statistics in Table 2 summarize the results.

TABLE 2 Analysis of Variance Estimates of Average
and Standard Deviation of True Gains

ESTIMATED
ESTIMATED STANDARD DEVIATION
AVERAGE GAIN OF GAINS
Primary Therapies 1.5% 8%
Secondary Therapies . 0.4% 21%

The average gain for the primary therapies is not far from zero, a result
that agrees with our more qualitative analysis of Table 1. A zero average gain
is consistent with some innovations having substantial improvements bal-
anced by others having substantial losses or with other mixes such as many
small gains and a few large losses. The size of the estimated standard devia-
tion of effects of innovations lends added support to such interpretations.
(A zero standard deviation would imply that all innovations give essentially
the same amount of improvement.) And we know that some of these innova-
tions do produce substantial improvements even when sample size is taken
into account.

These figures also yield a rough guess about the proportion of compari-
sons having true differences favoring the innovation as great as, say, 10%.
For the primary therapies, the probability that a new therapy has a positive
gain of at least 10%, if the sample represents the future well, is about 0.13,
or about 13 chances in 100.

For the secondary therapies, a gain of at least 10% (a 10% reduction in a
specific complication) has a probability of 0.32.

The above procedure is rough and ready and leans hard upon an assump-
tion of a normal distribution in its calculation, but the real distribution may
not be normal. A new approach called “empirical Bayes” (Efron and Morris
1973) offers an alternative.
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If each comparison were based on an infinitely large experiment, we
would know the true gain exactly for that comparison. Then to estimate
the proportion of gains of more than 10% we would count the number of
comparisons with gains larger than 10% and divide by the total number
of comparisons. And so if we had 25 comparisons and 5 had gains greater
than 10%, we would estimate the probability of a gain of more than 10% as
5/25 or 0.20. This approach does not lean on any assumption about the
shape of the distribution of true gains. But we can’t use it because we do not
have infinitely large experiments.

The new method takes note of the uncertainty associated with
each observed gain, primarily using the sample sizes. Instead of regarding
an observed gain as greater than 10%, or not greater, it estimates the prob-
ability that the true gain is greater than 10%. And so each comparison yields
a probability of being greater than 10%, and we average these probabilities
from all the comparisons to get our estimate of the overall probability of a
gain of more than 10%.

If the observed gain is very large, say 30%, then its probability is nearly 1
(0.99, for example, or 99 chances out of 100) of having a true gain of more
than 10% because the variability of the experimental observation is very
much less than the 20% difference between 10% and 30%. This 0.99 corre-
sponds to the 1 we would have counted toward the numerator (our 5 of the
5/25) had we known the true gain exactly. If the observed gain is negative,
the probability that the true value exceeds 10% will be small, perhaps 0.01.
This 0.01 is like the 0 we would have counted for this comparison had we
known it to be exactly the true gain. When the observed gain is exactly 10%,
the probability is 0.5 that the true gain is larger than 10% and 0.5 that it
is smaller.

The same technique applies to finding the chance of gains greater than
5% or 0% or -7%, and so on. The resulting set of probabilities are conve-
niently graphed and thereby summarized by a cumulative distribution as
shown in Figure 3.

Figure 5 shows the estimated cumulative distributions of the true gains
in percentages for the primary and for the secondary therapies. By picking a
gain in percentage, z, and reading the corresponding vertical axis on the ap-
propriate curve, one can estimate the probability of a new therapy producing
a gain as large as or larger than the chosen value of z.

For examples we have:

(a) For primary therapies the chances (i) of a 10% gain or more in sur-
vival are about 4 in 100 (we regard this as a better estimate than that
given earlier {13 in 100] because we prefer the method rather than be-
cause we prefer the answer), (ii) of a2 0% gain or more are about 48 in
100, (iii) of a loss of no more than 10% are about 98 in 100 which
means that the chances of a loss in excess of 10% are about 2 in 100.
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(b) For secondary therapies, the chances (i} of a gain of 10% or more
in a specially chosen complication are estimated as 38 in 100 which is
close to the earlier 32 in 100, (ii) of a 0% gain or more 57 in 100,
(iii) of a loss of no more than 10% as 72 in 100, which means that a .
loss of 10% or more has chances of about 28 in 100.
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The Probability of a New Treat-
ment Producing a Gain as Large as
or Larger Than a Chosen Value, z
To find the probability of a dif-
ference in percentages greater
than a given number z, say z =
10%, erect a perpendicular from
10% on the horizontal axis to the .
appropriate curve, and read its
ordinate off the vertical axis,
about 0.04 for the primary and
about 0.38 for the secondary.

Is there some reason that secondary therapies are more likely to succeed
than primary therapies? Is there something special about a treatment aimed
at the disease process itself? We think the difference arises in large measure
because in our quantitative analysis we chose to analyze primary therapies
in which survival was an appropriate measure of outcome, while for second-
ary therapies the measure was avoidance of a specific complication. In a
way the incidence of a specified complication'is a much more discrete mea-
sure. One can envision a treatment having a large effect on a specific compli-
cation, whereas the difference between life and death may be the sum of the
effects of a variety of factors—the primary treatment, the primary disease
process, secondary treatments, and a variety of other disease processes and
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factors like old age and inter-current disease. Over the last generation the
expected length of life has increased only slightly, but great changes have
occurred in the variety and extent of postoperative complications as a result
of changes in therapy such as the introduction of antibiotics, and of newer
anesthetic agents, and techniques.

The sample of published papers is objectively chosen, and we think
rather a good one for reflecting the sorts of differences analyzed here. What
is less clear is how good a sample it is of therapeutic surgical research on pa-
tients generally during this period. First it is likely, and those we have talked
with agree, that published papers are reports on better work on the average
than that in unpublished research. Second, research that turns out well, our
discussants agree, is more likely to be published. This reasoning suggests that
the mass of unpublished research, insofar as it might produce measures com-
parable to those described in this paper, would have a lower average perfor-
mance for innovations compared with standards than those in our sample.
We suppose then that the innovations assessed by randomized clinical trials
and reported in the surgical literature, and here, are biased upwards—that is,
they present a more promising picture for innovation than if all innovations
were subjected to randomized clinical trials. No doubt some innovations are
so unsatisfactory that they are quickly abandoned, along with whatever trials
were initiated on them. These conjectures suggest that if one were to con-
sider adjusting the distributions shown in Figure 3 to report on all surgical
innovations versus standards, the mean of the distribution would be lower
and the standard deviation would probably be larger to allow for more fre-
quent large negative differences. We have no grounds but speculation for the
amount of such changes. :

In a recent review of randemized trials used in evaluating social programs
(Gilbert, Light, and Mosteller, 1976), the authors concluded that many new
programs do not work and the effects of those that do are usually small. In
contrast to these findings in the area of social innovations, this review pro-
vides strong evidence for a more optimistic view of the rate of progress in
surgery and anesthesia. Almost half of the innovations reported in this series
of controlled trials were at least as good as the standard, and a fair number
were substantially better. Thus the amalyses suggest that four out of ten in-
novations in secondary therapy produce a reduction in complication rates of
10% or more while two or three out of ten innovations in primary therapy
produce a 5% or greater increase in survival. These estimates are for the dis-
tribution of the underlying true effects of the innovations. In a sense these
results describe the clinical judgment that chooses those innovations as
promising enough to test. If innovations were successful in a high proportion
of trials, it would suggest that new therapies were heing delayed until we
were absolutely sure of their success, while if almost none were successful it
would suggest a scarcity of new ideas in the field. Thus these distributions
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also describe research productivity and its effects on the development of
better clinical care.

Another view is that this research process tries to reject all the innova-
tions that produce losses and to keep the ones with gains. If this were done,
then the median gain (the middle gain) retained for the primary therapies
would be about 4%, and that for the secondary therapies would be about
15%. Of course, this would be an idealized state, for we cannot hope to weed
out all the losses and detect all the gains. But it gives an estimated upper
limit to what could be accomplished.

We further emphasize that to say that a proportion of innovations are
substantial improvements does not serve to identify which they are.

Our findings give us an idea of the sorts of gains that can be made from
selecting the better of pairs of therapies that are tested by randomized trials
(we do not discuss the others here). The left sides of the curves warn us also
that innovations may lose rather than gain, and so evaluation is needed. For
example, in secondary therapies losses of as much as 20% could occur about
one-fifth of the time. These curves emphasize the size and frequency of the
losses as well as the gains. Thus as physicians well know, one cannot assume
in advance that a new treatment is an improvement over an old, even when it
looks promising enough to warrant a clinical trial. Our-distributions show
that some innovations provide important gains for the clinical care of pa-
tients, such as reducing a death rate by 5%. :

To give an idea of the risks represented by a five percent change in death
rate, we note that among all the people who died in recent years, 5% were in
the ten year age range 40-49. Thus we can think of this rate as correspond-
ing to the natural losses over a ten year period at middle age. Another way
to think of 5% is that it is about four times the average surgical death rate
from: all operations over the country as a whole. Thus its importance is not
small.

Reducing a death rate from 35% to 30% may be an important improve-
ment in patient care, but this does not mean that it will be easily identified
in the everyday setting of clinical practice. Indeed, statistical theory shows
that a well-run randomized controlled trial would need 1,105 patients in
each group to be 80% confident of detecting such a difference. Without a
large formal trial, the uncontrolled effects of patient selection, of concur-
rent treatments, and of other factors make the detection of such differences
even more difficult.

Since relatively small, even though important, numerlcal gains or losses
are to be expected from most innovations, clinical trials must regularly be
designed to detect these small differences accurately and reliably. Our
sampled papers, taken as a group, provide an optimistic picture of progress in
surgery and anesthesia. This progress depends on a judicious combination of
continued ' development of new therapeutic ideas and their evaluation in
good-sized unbiased clinical trials. :
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PROBLEMS

1. What are the three basic types of studies reported in the sampled
papers reviewed by the authors?

2. Describe the scale used in the evaluation of the innovations.
3. What is meant by primary and secondary therapies?

4. Why is it not appropriate to consider a complete enumeration of
papers during a certain period of time (say, 1964-1972) as a census
rather than as a sample?

5. Using Figure 3, calculate the estimated probability of an innova-
tion being an improvement over the standard. (Hint: In what fraction
of the 24 observed differences was I an improvement over S?)

6. Find the estimated probability of an innovation being an improve-
snent over the standard using Figure 4.

7. Does a 0% average gain imply that all the innovations had exactly
the same effect as the standards? Why, or why not?

8. Why do the authors prefer the empirical Bayes method to the
normal distribution method?

9. Refer to Figure 5. In the primary therapies and in the secondary
therapies what are the chances of
a. again of 30% or more?
b. aloss of no more than 20%?

c. a gain of more than 0%? Compare with the result for Problems
5 and 6. -

10. Why do the authors suppose that the innovations assessed by ran-
domized clmical trials and reported in the surgical literature are “biased
upwards”? What is meant by “biased upwards*’?
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