9 Problems of Sampling: Averages

The observations to which the application of statistical methods is par-
ticularly necessary are those, it has been pointed out, which are in-
fluenced by numerous causes, the object being to disentangle that multi-
ple causation. It has also been noted that the observations utilised are
nearly always only a sample of all the possible observations that might
have.been made. For instance, the frequency distribution of the stature of
Epghshmen — i.e. the number of Englishmen of different heights — is not
based upon measurements of all Englishmen but only upon some sample
of them. The question that immediately arises is how far is the sample
representative of the population from which it was drawn, and, bound up
with that question, to what extent may the values calculated from the
s_ample —e.g. the mean and standard deviation — be regarded as true es-
timates of the values in the population sampled? If the mean height of
1000 men is 169 cm with a standard deviation of 7 cm, may we assert.
that the values of the mean and standard deviation of all the men of
whom these 1000 form a sample are not likely to differ appreciably from
169 and 7? This problem is fundamental to all statistical work and
reasoning; a clear conception of its importance is necessary if errors of in-
terpretation are to be avoided, while a knowledge of the statistical
techniques in determining errors of sampling will allow conclusions to be
drawn with a greater. degree of security.

Elimination of Bias

Cor_lgideration must first be given, as previously noted, to the presence
of selection or bias in the sample. If owing to the method of collection of
the observations, those observations cannot possibly be a representative
sample of the total population, then clearly the values calculated from the
sample cannat be regarded as true estimates of the population values, and
no sta'tlstlcal echnique can allow for that kind of error. That problem
was discussed in Chapter 3. In the present discussion we will presume
that the sample is ‘unselected’ and devote attention entirely to the
problem of the variability which will be found to occur from one sample
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to another in such values as means, standard deviations, and proportions,
due entirely to what are scmetimes known as the ‘errors of sampling.’
This is not in fact a very good description. We are not concerned with
error in the usual sense of that word but with the variability that must
occur through the play of chance. Attention may first be given to the
mean.

The Mean

Let us suppose that we are taking samples from a very large popula-
tion, or universe, and that we know that an individual in that universe
may measure any value from 0 to 9 — e.g. we may be recording the
number of attacks of the common cold suffered by each person during a
specified period, presuming 9 attacks to be the maximum number possi-
ble. The mean number of attacks per person and the standard deviation
in the whole population we will presume to be known; let the average
number of attacks per person be 4-50 (i.e. the total attacks during the
specified period divided by the number of persons in the universe) and let
the standard deviation be 2-87 (as found, in the previous two chapters, by
calculating how much the experience of each person deviates from the
average, finding the average of the squares of these deviations, and the
square root of this value). From that universe we will draw, at random,
samples of 5 individuals. For each sample we can calculate the mean
number of attacks suffered by the 5 individuals composing it. To what
extent will these means in the small samples diverge from the real mean —
i.e. the mean of the universe, 4.50?

In Table 15 are set out a hundred such samples of 5 individuals
drawn at random from the universe. The ‘universe’ actually used for this
and later demonstrations was composed of Random Sampling Numbers
of the kind shown on pp. 305 to 312.

Sets of unit random numbers were taken in fives, tens, twenties, and
fifties as required. For instance, in the first sample of Table 15 there were
3 individuals who had 2 colds each, one fortunate person who had none,
and one unfortunate who had 4. From each of these samples a mean can
be calculated which, in all, gives one hundred mean values; and of these
means we can make a frequency distribution. In the first sample the
meanis (2 + 2+ 2+ 0+ 4) + 5= 2.0, in the second itis (6 + 9 + 7 +
5+ 9)+ 5=7-2,and so on. The grouped distribution of these meansisgiven
in Table 16, column (2). There was one sample in which the mean was only
1.2 and one in which it was as high as 7-4 (the possible minimum and
maximum values are, of course, 0 and 9). A study of this distribution
shows:—
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(@) That with samples of only 5 individuals there will be, as might be
expected, a very wide range in the values of the mean; the mean number
of attacks of the whole 500 individuals is 4-43, which is very close to the
mean of the universe sampled — namely, 4-50 (as given above) — but in
the individual samples of 5 persons the values range from between 0-75
and 1-25 (tBe one at1-2) to between 7-25 and 7-75 (the one at 7-4). In
samples of 5, therefore, there will be instances, due to the play of chance,
in which the observed mean is very far removed from the real mean.

(3) On the other hand, these extreme values of the observed mesdn are
relatively rare, and a large number of the means in the samples lie fairly

TABLE 16

MEAN NUMBER OF COLDS PER PERSON.IN SAMPLES
OF DIFFERENT SIZE

Frequency with which Mean Values, as
shown in Column (1), occurred
Value of Mean Samples Samples Samples Samples
in Sample of 5 of 10 of 20 of 50
(1) (2) 3) @ ()
0-75— 1 — - —
1.25— 1 — — —
1-75— 4 1 — —
2-25— 2 2 — -
2.75— 12 5 2 1
3.25— 15 -8 9 5
3.75— 12 16 24 22
4.25— 10} 39 | 26158 | 31177 | 45 };91
4.75~ 17 16 22 24}
5.25— 8 15 10 3
5.75— 6 8 2 —
6-25— 7 3 — —
6-75— 4 — — -
7.25-7.75 1 — — —
Total number of means 100 100 100 - 100
Total observations 500 1000 2000 5000
Grand means 4.43 4.61 [ 4.50 - 4.48
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close to the mean of the universe (4-50); 39 per cent of them lie within
three-quarters of a unit of it (i.e. between 3.75 and 5.25).%

When in place of samples of 5 individuals a hundred samples of 10 in-
dividuals were taken at random from this universe, the distribution of the
means in these samples showed a somewhat smaller scatter — as is shown

in column (3) of Table 16, The extreme values obtained now lie in the

~ groups 1-75-2-25 and 6.25-6.75, and 58 per cent of the values are within
three-quarters of a unit of the real mean — i.e. the mean of the universe.
When 100 samples of 20 were taken (column 4) the scatter was still
further reduced; the extreme values obtained lay in the groups 2-75-3.25
and 5-75-6-25, and 77 per cent of the values lay within three-quarters of
a unit of the real mean, Finally, with samples of 50 (column 5) there were
91 per cent of the means within this distance of the true mean, and 45 per
cent lay in the group 4.25—4.75 — i.e. did not differ appreciably from the
real mean. Outlying values still appeared, but appeared only infrequently.

Two Factors in Precision ‘

These results show, what is indeed intuitively obvious, that the preci-
sion of an average depends, at least in part, upon the size of the sample.
The larger the random sample we take the more accurately are we likely
to reproduce the characteristics of the universe from which it is drawn.
The size of the sample, however, is not the only factor which influences
the accuracy of the values calculated from it. A little thought will show
that it must also depend upon the variability of the observations in the
untverse. If every individual in the universe could only have one value —
e.g. in the example above every individual in the universe had exactly 3
colds — then clearly, whatever the size of the sample, the mean value
reached would be the same as the true value. If on the other hand the in-
dividuals could have values ranging from 0 to 900 instead of from 0 to 9,
the means of samples could, and would, have considerably more variabili-
ty in the former case than in the latter. The accuracy of a value calculated
from a sample depends, therefore, upon two considerations:—

(a) The size of the sample,

* The noticeable unevenness of the distribution with samples of 5 is artificial, being
due merely to the group intervals used. With only whole numbers in the universe the
mean of 5 observations must end in an even number (see Table 15). The groups 0-75 to
1.25, 175 to g-25. etc., however, contain 3 possible values (0-80, 1.00 and 1-20, 1-80,
2-00 and 2-20, etc.) while the groups 1:25 to 1.75, 2.25 to 2.75 contain only-2 possible
values(1-40 and 1-60,2-40 and 2. 60, etc.). This defect does notapply to the samples of 10, 20

i
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(b) The variability of fhe characteristic within the unive;'se from

which the sample is taken.

The statistician’s aim is to pass from these simple rules to more

precise formulae, which will enable him to estimate, with a certain degree

of confidence, the value of the mean, etc., in the universe and also to
avoid drawing conclusions from differences between means or b'etwegn
proportions when, in fact, these differences might easily have arisen by

chance.

Measuring the Variability of Means

step we may return to Table 16 and measure the variabih_ty
shov‘?r; ?)gr;:e ::zans in t}},le samples of diﬁ'?rent sizes. So far we have il-
lustrated that variability by drawing attention to the range of the means,
and, roughly, the extent to which they are concer.ltr.ated round the centre
point; a better measure will be the standard deviations of _-the‘frequency
distributions. The results of these calculations are shown in Table 17.

TABLE 17

2. .
VALUES QOMPUTED FROM THE FREQUENCY
DISTRIBUTIONS OF MEANS GIVEN IN TABLE 16

Number of The Mean, The Variability | The Standard Dew{iation
Individuals | or Average, or Standard of the Observat}ons
in each of the Deviation of S in lﬂ:le Pospulatlo; .
* h 100 Means ampled + Square Roo
Sample 100 Means eac o e of Sample
. : "
5 443 1.36 1.2
10 4.61 0-91 0-91
20 4-50 0-61 0-64
50 4.48 0-44 0-41

ions is in fact closer to the true
. by chance that the grand mean of the 500 observations is in
mean {;:: E}F::?;ivin by the 1000 observations, while that based on 2000 is exact and that based :(;1
5000 differs slightly. The observed standard deviations were calculated from the original ungroup

data.

The standard deviation, or scatter, of the means round the grand
mean of each of the total 100 samples becomes, as i.s obvious from t.he
frequency distributions, progressively smaller as the size of the sample in-
creases. It is clear, however, that the standard de'v:atxon. does not vary
directly with the size of the sample; for instance, increasing the sample
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from 5 to 50 — i.e. by ten times — does not reduce the scatter of the means
by ten times. The scatter is, in fact, reduced not in the ratio of 5 to 50 but
of /5 to \/56 —ie. not ten times but 3.16 times (for V5=2-24 and
J/50=7-07 and 7.07/2-24 = 3-16). This rule is very closely fulfilled by
the values of Table 17; the standard deviation for samples of 5 is 1.36,
and this value is 3-09 times the standard deviation, 0-44, with samples of
50. The first more precise rule, therefore, is that the accuracy of the mean
computed from a sample does not vary directly with the size of the sample
but with the square root of the size of the sample. In other words, if the
sample is increased a hundredfold the precision of the mean is increased
not a hundredfold but tenfold. _ _

As the next step we may observe how frequently in samples of
different sizes means will occur at different distances from the true mean,
For instance it was pointed out above that with samples of 5 individuals
39 per cent of the means lay within three-quarters of a unit of the true
mean of the universe. The grand mean of these 100 samples, 4-43, is not
quite identical with the true mean of the universe, 4-50, as, of course, the
fotal 500 observations are themselves only a sample; it comes very close
to it as the total observations are increased — it is 4-48 with 100 samples
of 50. Instead, therefore, of measuring the numBer lying within three-
quarters of a unit, or one unit, of the grand mean (or true mean, taking
them to be, to all intents and purposes, identical), we may see how many
lie within the boundary lines ‘grand mean plus the value of the standard
deviation’ and ‘grand mean minus the value of the standard deviation’ —
ie. 443+ 1.36 =579 and 4-43 — 1.36 = 3.07. The calculation can be
made only approximately from Table 16, but it shows that some two-
thirds of the means will lie between these limits. If we extend our limits
to ‘grand mean plus twice the standard deviation’ and ‘grand mean minus
twice the standard deviation’ — i.e. 4-43 + 2 (1:36)=7-15 and 4-43 — 2
(1:36) = 1-71 — it will be seen that these include nearly all the means of the
samples, only about 3 per cent lying beyond these values (according to
theory we expect 5 per cent beyond + twice the standard deviation).
Roughly the same results will be reached if these methods are applied to
the larger samplee. Our conclusions are therefore:—

(a) If we take a series of samples from a universe, then the means of
those samples will not all be equal to the true mean of the universe but
will be scattered around it.

(5) We can measure that scatter by the standard deviation shown by
the means of the samples; means differing from the true mean by more
than twice this standard deviation, above or below the true mean, will be

only infrequendy{bsewed.
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'The Means Show a ‘Normal’ Distribution

To be rather more precise, it can be proved th.at the means of the
samples will be distributed round the mean of the universe approximately
in the shape of the normal curve discussed on pp. 82-85. In ot!1er words,
as shown there, it can be calculated how many of them will lie, in the long
run, if we take enough samples, within certain distances of the real mean,
those distances being measured as multiples of the standard deviation.
To illustrate this more exactly than can be done with the figures of Table
16, a further 100 samples of 10 observations were taken from random
sampling numbers. The distribution shown by these 100 means is set out
in Table 18. The true mean of the universe is 4.50 and the means 9f the
samples will be distributed round that value with a standard deviation of
0-91 (see Table 17). If they are following a n‘orfnal curve we can
theoretically calculate how many of them should lie in such intervals as
(a) (real mean) to (real mean + 1 times S.D.), () (rea.l r!}ean) to (real mean
+ 2 times the S.D., ) etc. From Table 18 we can similarly calculate the

TABLE 18

THE DISTRIBUTION OF MEANS IN 100 SAMPLES OF 10
OBSERVATIONS, THE TRUE MEAN OF THE UNIVERSE

BEING 4-50
Value of the Mean in |Number of Means | Number of Means
Terms of the Actual observed with theoretically
Units of Measurement given Value expected
Less than 1-770 0 0-135
1.770- 0 0-486
2-225~ 1 1.654
2-685— 5 4-406
3-135— 7 9.185
3-590- 14 14.988
4-045— 21 19-146
v 4500- 20 19-146
4.955— 15 14.988
~ 5-410- 9 9-185
5-865— 5 4-406
6-320- 3 1.654
6-775— 0 0-486
7-230 or more 0 0-135
Total 100 100
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actual number that did ‘turn up’ in these intervals, since the observations
have been placed in groups with a class-interval of $(0-91)=0-455 =
the standard deviation. :

Observation and theoretical calculation gave the results set out
below where it can be seen that the values given by the experiment are
extremely close to the theoretical values expected. Some very extreme
‘values — more than 2} times the standard deviation away from the real
mean — would in time turn up, but as there should be only 12 such values

in 1000 it is obviously not surprising that no such value was noted in only
100 samples.

Number of sample means that lie between—|  Observed Expected
Number Number
Real Mean of 4-50 and Real Mean +18.D,
i.e. between 3-590 and 5-409 70 68-27
‘Real Mean of 4-50 and Real Mean + 14 8.D,
i.e. between 3-135 and 5.864 86 86-64
Real Mean of 4-50 and Real Mean +28.D,
i.e. between 2.685 and 6-319 96 95-45
Real Mean of 4-50 and Real Mean +24S.D, )
i.e. between 2.225 and 6.774 100 98.76
Real Mean of 450 and Real Mean +3S.D,
i.e. between 1.770 and 7.229 100 99.73

The numbers of means occurring within different distances from the
real mean are shown in Fig. 12, together with the superimposed normal
curve. It is clear that the means occurring in the experiment do follow
that curve and that we should, therefore, from our knowledge of this
curve, expect only about 1 in 22 to differ from the true mean by more
than twice the standard deviation (for 95-45 per cent lie within that dis-
tance, and the 4-55 per cent outside these limits js 1 in 22); and we
should expect only 1 in 370 to differ from the true mean by more than 3
times the standard deviation (for 99-73 per cent lie within that distance
and the 0-27 per cent outside these limits is 1 in 370). In other words, we
have found once more that a mean in a sample that differs from the real
mean of the universe by more than twice the standard deviation shown
the sample means is a Jairly rare event, and one that differs from the real
mean by more than 3 times that standard deviation is a very rare event.

In comparison with Table 17 it may be noted that this second series
of samples of 10 hg\s\a grand mean of 4-57 and a standard deviation round
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Fig. 12. Histogram of 100 means observed in samples of 10 observations and
normal curve superimposed.

that mean of 0-97. Within the limits of only 100 samples, open to the play
of chance, we have again reached approximately the real mean and a cor-
responding degree of scatter round it, as measured by the standard devia-
tion of the sample means.

ing the Standard Deviation o
De’(}ﬁcpragctice, however, we do not know this standard deviation of the
means, for we do not usually take repeated samples. W'e take a single
sample, say of patients with diabetes, apd we calcula.lte a single mean, say
of their bodyweight. Our problem is this: how precise is that mean — i..
how much would it be likely to vary if we did take another, _eqpally ran-
dom, sample of patients? What would be the standard dev1at1.on of the
means #f we took repeated samples? It can be shown mathematically that
the standard deviation of means of samples is equal to -t}fe standard
deviation of the individuals in the population sampled divided by the
square root of the number of individuals included in the sample (usually
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written as o/,/n1). These values have been added to Table 17 (right-hand
column) and it will be seen that they agree very closely with the standard
deviations calculated from the 100 means themselves (they do not agree
exactly because 100 samples are insufficient in number to give complete
accuracy). With this knowledge we can conclude as follows: the mean of
the universe is 4-50 and the standard deviation of the individuals within
it is 2-87 (see p. 97); if we take a large number of random samples com-
posed of 5 persons from that universe, the means we shall observe will be
grouped round 4-50 with a standard deviation of 2-87/,/5; means that
differ from the true mean, 4-50, by more than plus or minus twice 2- 87/./5
will be rare. If we take a large number of samples of 50, then the means
we shall observe will be grouped around 4-50 with a standard deviation
of 2.87/,/50, and means that differ from 4-50 by more than plus or minus
twice 2-87/,/50 will be rare.

The final step is the application of this knowledge to the sinigle mean
we observe in practice. In Chapter 7 the mean systolic blood pressue of

566 males (drawn from the area in and around Glasgow) was given as .
128-8 mm. We want to determine the precision of this mean — i.e. how -

closely it gives the true mean blood pressure of males in this district.

Suppose that the true mean is M. Then from the reasoning developed
above we know that the mean of a sample may well differ from that true
mean by as much as twice o/,/n, where ¢ is the standard deviation of the
blood pressures of individuals in the unverse from which the sample was
taken and # is the number of individuals in the sample; it is not likely to
differ by more than that amount — i.e. our observed mean is likely to lie
within the range M + 2 (o//n). Clearly, however, we do not know the
value of ¢ and as an estimate of it we must use the standard deviation of
the values in our sample. It must be observed that this is only an es-
timate, for just as the mean varies from sample to sample so also will the
standard deviation. But the latter varies to a slighter extent and so long
as the sample is fairly large the estimate is a reasonable one, and unlikely
to lead to any serious error. In the example cited the standard deviation
of the 566 measures of systolic blood pressure was 13.05 mm. We
therefore estimate that the standard deviation of means in samples of 566
would be 13-05/,/566 = 0-55 mm.

We may conclude (presuming that the sample is a random one) that
our observedknn;ean may differ from the true mean by as much as +2
(0-55) but is tnlikely to differ from it by more than that amount. In other
words, if the true mean were 127-7 we might in the sample easily get a
value that differed from it to any extent up to 127.7 + 2(0-55) = 128.8.
But we should be l,QJikely to get a value as high as 128.8 if the true mean
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were lower than 127.7. Similarly if the true mean were 129-9 we might in
the sample easily get a value that diﬁered‘fron} it to any extent down to
129.9 — 2(0:55) = 128-8..But we should be unlikely to get a value as low
as 128.8 if the true mean were higher than 129-9. In short, the true mean
is likely to lie within the limits of 128-8 + 2 (0-55) or bet?veen 127-7 and
129.9, for if it lay beyond these points we should be unlikely to reach a
value of 128.8 in the sample. _

The value ¢/,/n is known as the standard error of the -mean_and is
used as a measure of its precision. (In publication it should t?e given as
Standard Error or S.E. and not merely by the sign + which can be
misleading).

Havingg) calculated its value we can, as illustrated a?ox_r_e, fix
‘confidence limits’ to the true mean. If the mean of the sample is X, then
we can estimate that the true mean of the universe, M, is not more thgn
twice the S.E. away (plus or minus) and we can expect to be wrong in
that conclusion only once in approximately 20 times. If we w13h to be
more ‘confident,” we can estimate that the true mean of the universe is
not more than two and a half times the S.E. away (i.e. wider- limits? and
we can then expect to be wrong in our conclusion only once in 80 times.

This estimation is clearly inapplicable if the sample is very small (say,
less than 20 observations), for the substitution of the standard dev1.at10n
of the few observations in the sample in place of the standard deviation of
the whole universe, from which the few observations were taken, may be
a serious error (see pp. 93—95, where it is shown that the §tandard deviations
shown by samples of 5 observations often differ widely from the real
standard deviation of the universe).

Summary

In medical statistical work we are, nearly always, using samples of
observations taken from large populations. The values calculated from
these samples will be subject to the laws of chance — e.g. the means, stan-
dard deviations, and proportions will vary from sample to sample. It
follows that arguments based upon the values of a single sample: must
take into account the inherent variability of these values. It is lle to
generalise from a sample value if this value is likely to ditfer materially
from the true value in the population sampled. To determine how far a
sample value is likely to differ from the true value, a standar("l error of the
sample value is calculated. The standard error of a mean is -del?epdent
upon two factors — viz. the size of the sample, or number of md.lv.lduals
included in it, and the variability of the measurements in the individuals
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in the univerge'_fr.om which the sample is taken. This standard error is es-
timated by dividing the standard deviation of the individuals in the sam-
ple by the square root of the number of individuals in the sample. The

mean of the population from which the sample is taken is unlikely to differ

from the value found in the sampl b i i i
ple by more than plus
standard error. This estimation . P oplicable to o e this

is, however, not applicable to very small
samples, of, say, les_}s than 20 individuals, and must be interpret?:i with
reasonable caution in samples of less than 100 individuals. -

10 Problems of Sampling: Proportions

In the previous chapter the concept of the standard error was developed,
and was illustrated by the calculation of the standard error of the mean.
In addition it was pointed out that every statistical value calculated from a
sample must have its standard error — i.e. may differ more or less from the
real value in the universe that is being sampled. For example, the standard
deviation, or measure of the scatter, of the observations will vary from sam-
ple to sample, and its standard error will show how much variability this
value is, in fact, likely to exhibit from one sample to another taken from the
same universe (see, forexample, Table 14, p. 94). In practical statistical work
avalue which is of particular importance, owing to the frequency with which
it has to be used, is the proportion. For example, from a sample of patients
with some specific disease we calculate the proportion who die. Let us sup-
pose that from past experience, covering a very large body of material, we
know that the fatality-rate of such patients is 20 per cent (the actual figure,
from the point of view of the development of the argument, is immaterial).
We take, over a chosen period of time, a randomly selected group of a hun-
dred patients and treat them with some drug. Then, presuming that our sam-
- ple is a truly representative sample of all such patients — e.g. in age and in
severity — we should observe, if the treatment isvalueless, about 20deaths (it
may be noted that we are also presuming that there has been no secular
change in the fatality-rate from the disease). We may observe precisely 20
deaths or owing to the play of chance we may observe more or less than that
number. Suppose we observe only 10 deaths; is that an event that islikely or
-unlikely to occur by chance with a sample of 100 patients? If such an event is
quite likely to occur by chance, then we must conclude that the drug may be
of value, but, so far as we have gone, we must regard the evidence as in-
sufficient and the case unproven. Before we can draw conclusions safely we
must increase the size of our sample. If, on the other hand, such an event is
very unlikely to occur by chance, we may reasonably conclude that the drug
is of value (that is, of course, having satisfied ourselves that our sample of
patients is comparable with those observed in the past in all respects except
that of the treatment). Before we can answer the problem as to what isa likely




