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Estimating the Error Rates of Diagnostic Tests

S. L. Hui' and S. D. Walter

Department of Epidemiology and Public Health, Yale University, 60 College Street,
New Haven, Connecticut 06510, U.S.A.

SUMMARY

It is often required to evaluate the accuracy of a new diagnostic test against a standard test with
unknown error rates. If the two tests are applied simultaneously to the same individuals from two
populations with different disease prevalences, then assuming conditional independence of the
errors of the two tests, the error rates of both tests and the true prevalences in both populations can
be estimated by a maximum likelihood procedure. Generalizations to several tests applied in several
populations are also possible.

1. Introduction

The presence of a disease in an individual often cannot be determined with certainty.
Diagnostic procedures with high accuracy are obviously desirable but are frequently too
expensive or hazardous to be used on a large scale. When investigating disease in large
population groups, therefore, a less sophisticated screening test with greater error rates
may be preferred.

When a new diagnostic test is developed, its error rates must be determined and
weighed against its cost. The false positive (negative) rate a(B) is defined as the
proportion of nondiseased (diseased) people who have positive (negative) outcomes in
the test. Their complements 1—« and 1— 3 are, respectively, the specificity and sensitivity
of the test. Error rates can be estimated directly if the test can be applied to some
individuals whose true disease states are known, but this is usually difficult or not feasible.
In such cases, the new test is customarily evaluated against a standard test with its own
errors by applying both tests simultaneously to each individual.

Greenberg and Jekel (1969) and Gart and Buck (1966) have investigated the effects of
known error rates of the standard test on the estimates of the error rates of the new test.
These authors point out that the error rates of the standard test, if not taken into account,
can lead to biased estimates of the error rates of the new test. Specifically, if the nonzero
false positive (negative) rate of the standard test is assumed to be zero then the false
negative (positive) rate of the new test will be overestimated. For example, the errors of
computer diagnosis are inflated when it is evaluated against a physician’s diagnosis which
is taken as correct (e.g. Van Meerten, Durinck and Dewit, 1971).

Goldberg (1975) considered the problem where the test error rates are allowed to take
different known values in various population groups. Rogan and Gladen (1978) investi-
gated the properties of the estimate of disease prevalence when one diagnostic test is used
in a single population, again with the error rates assumed known. In cases where the error
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168 Biometrics, March 1980

rates of the standard test are not known, Greenberg and Jekel (1969) suggest that the
false positive (negative) rate of a new test be estimated in a population with low (high)
prevalence of the disease. Estimates so obtained are only very slightly biased even if the
standard test is assumed to be error-free.

If data are available from any two populations with different prevalences, it is shown in
this paper that one can then estimate the error rates of both tests and the prevalences in
both populations. The populations might in practice be taken as subgroups of a large
population of interest, for example males and females or different age groups.

2. Model and Estimation

Let the standard test (Test 1) and the new test (Test 2) be applied simultaneously to each
individual in samples from S populations. Let N, be a fixed sample size, 6, be the
probability of a diseased individual, and a,, and B, the false positive and false negative
rates of test h (h =1, 2) in a sample from population g (g=1,...,S), and let the 6,’s all
be distinct. Finally, we assume that, conditional on the true disease state, the two tests on
each individual are subject to independent errors; this should be reasonable if the tests
have unrelated bases, e.g. X-ray versus blood test.

Under these assumptions, the frequencies of the possible test outcomes in the S
populations are distributed as S independent multinomials. The likelihood [ is

S

=11 {0, (1= B (1= By2) + (1= 6, ) gy g} NP

g=1

X{0,(1—B,1)Bgat (1—6,) g, (1— agz)}Nngn
X{0,Bg1(1— By2) +(1—6,)(1— agl)agZ}Nngzl
X {englﬁgZ + (1 - eg)(l - agl)(l — agz)}nggzz’

where p,;- is the observed proportion of sample g with test outcomes j and j' in Tests 1
and 2, respectively: j=1 (2) if Test 1 is positive (negative) and j'=1 (2) if Test 1 is
positive (negative).

In general, for R tests applied to S populations, there are (2% —1)S degrees of freedom
for estimating (2R +1)S parameters. Therefore the likelihood with no functional con-
straint placed on the parameters is over parameterized for R less than three. For R greater
than or equal to three, there is no simple closed-form solution for the maximum likelihood
estimates but they can be evaluated numerically.

We will now assume that oy, =, and B,, =8, for all g, in order to study the most
important case when R =2. In general, the number of parameters then reduces to 2R + S,
which does not exceed the number of degrees of freedom available whenever S=
R/(2R"'—1). Unless equality obtains, the maximum likelihood estimates must be
evaluated numerically. In the special case of most practical importance when R =2,
equality holds with S =2. Then the model is saturated with six parameters and the global
maximum of the likelihood function occurs at points with the following coordinates:

& = (Pr1.Pi1— PniPr1.t P211— P+ D)/2E,

Br. = (Ph2Pr2.~ Ph2.Pr2t D122~ D222+ D)/2E,
0, = 3+ {pgl.(pl.l —p21)t Pg.l(Pu. = P21)+ P211— P111}/2D,

where

Ei=p>1—P11, E,=ps1.— P11
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and

D= ={(p11.p21—P21.P1.1+P111— qu)2 —4(p11.— P21.)(P111P21— P211P1.1)}1/2

are nonzero, h=2 (1) if h=1 (2), and . denotes summation over an index. When E,
and/or E, are zero and D =0, some parameters are nonestimable, there being an infinite
solution set in this case. When E; and/or E, are zero but D# 0, or when D alone is zero,
not all of the maximum likelihood equations can be simultaneously satisfied and numeri-
cal maximization of the llkehhood should be used.

Except when 0 =a, =B, = 2, for g, h=1,2, two distinct points exist in each solution
set given above, such that if (0, &, B) is a solution so is (1—6,1— B, 1—@&). Therefore a
solution which can be used as an estimate must be defined by appropriate constraints
derived from prior knowledge of the error rates of the standard test, e.g. 1—a; —3,>0,
which would be a reasonable assumption if the standard test is of practical value (Bross,
1954; Goldberg, 1975). A real solution with coordinates which satisfy these constraints is
a maximum likelihood estimate. In other cases when the points of the global maximum
are complex or lie outside the unit hypercube, estimates can be obtained by numerical
maximization of | with the solution restricted to be within the unit hypercube, again
subject to appropriate constraints. Asymptotically, because the observed proportions p,;:
are continuous functions of the parameters, the maximum likelihood solution will con-
verge to (0, a, B).

If we define L =In [, then the information matrix has elements as follows:

L
E( aa) ZN(l 0,)*fg{od, (1 - ag)?, o, (1~ 5)*}

&L
E( —aahth> = —Zg: N0, (1— 6,)fen{ar(1—Br), (1— ) Br ar(1—Br), (1— az)Br}
2L
E(_a(jhaaﬁ) L N,(1=6,fudanar ~au(1 =), ~(1=aag, (1-a)(1= a0}
E(— 62L> Y N6, (1 6, fud— (1~ ), (1 - ap)(1- B, anB — (1 - ap)B)
aahaBE - gh h h h h/s “hiPhs h/Ph
E(_ FL )=Nf {ar(1=B1)(1 = Bo), (1= ) (L= BB ~ B (1= Be), — (1= ) B1Ba)
86,00y, ) EH T . ' v e v
32L 2 2
E<—£> L N3 o1 B0 B (1= B0, )
&L >
E(—thaﬁﬁ) L NO3fo1- 801~ ), ~(1= 808, ~B,(1- ), B8]
E(‘ - >=Nf {a0a(1 - B), @, (1 ag) B — (1 - @) ag(1=Bg), — (1~ )(1- ) B}
6936Bh g/gh 142 h/s Ch h hs h h h/» 1 2/Ph

= Ngfgl[{alaz -(1-B)(1- Bz)}z, {a(I-ay)—(1- 31)32}27
{A-ay)a,— B (1- Bz)}z, {I-a)(1-ay)— ﬁle}z]
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where
fgh(a’ b, ¢, d) = a/ﬁgll+ b/pghﬁ-" C/l_)gﬁh + d/ﬁgzz
with
Pg11= Og(l —B)(1-B)+(1— eg)alaZ
pghﬁ = eg(l_Bh)Bﬁ+(1_ eg)ah(l - a,;)
Pg22= 0g3132+(1 - eg)(l —a)(1—ay).

If the parameters in the above elements are replaced by their estimated values, an
estimated information matrix is obtained and this may be inverted numerically to give an
estimated asymptotic variance—covariance matrix.

3. Example

In our example, the new Tine test (Test 2) is to be evaluated against the standard
Mantoux test (Test 1) for the detection of tuberculosis. Both are skin tests applied to the
arms. After 48 hours the presence of an induration larger than a fixed size constitutes a
positive result. The criteria were determined from previous experience and they affect the
error rates. Data for Population 1 are taken from Greenberg’s and Jekel’s study in a
southern U.S. school district. The original data were reclassified into positive or negative
for each test according to the same criteria as those for Population 2 in a second study at
the Missouri State Sanatorium (Capobres et al., 1962). The data are presented in Table 1.
The maximum likelihood estimates with their standard errors were found to be

é,=0.0067+0.0038  B,=0.0339+£0.0069  6,=0.0268+0.0071
4,=0.0159+0.0056  B,=0.0312+0.0062  6,=0.7168+0.0128.

The upper triangle of the variance—covariance matrix and the lower off-diagonal triangle
of the correlation matrix are jointly shown as follows:

a; B: [P B 0, 6,
@, 1.45%107° -1.41x107"7 2.72x1077  —6.68x107° -2.07x107° —4.43x10°°
g, | —0.0054 4.83x107° -1.37x107° 1.26x107° 2.17x10°° 1.00x10°°
a, 0.0127 -0.3516 3.15x107° -1.40x1077 -2.36x10"° -0.96x107°
B, | —0.2820 0.0290 —-0.0040 3.88x10°° 1.86x107° 4.99x107°
6, \ —0.0763 0.0438 -0.0590 0.0420 5.08x107° 1.56x107°
6, \-0.0911 0.1126 -0.1338 0.0626 0.0171 1.64x107*

One check of the validity of the model in the example is to compare our estimates of 3,
and B, to those of Capobres et al. (1962), who applied the Mantoux and Tine tests to 362
patients with pulmonary tuberculosis proven by positive culture of acid-fast bacilli.

Table 1
Results of Mantoux and Tine tests for tuberculosis in two populations
Population 1 Population 2
Tine test Tine test
Mantoux test Positive Negative Total Positive Negative Total
Positive 14 4 18 887 31 918
Negative 9 528 537 37 367 404

Total 23 532 555 924 398 1322
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Assuming that the culture has zero false positive rate (i.e. a; =0), they estimated false
negative rates with standard errors for the Mantoux and Tine tests to be 0.0304+0.0090
and 0.0331+£0.0094, respectively. Our estimates 0.0339+0.0069 and 0.0312+0.0062
show satistactory agreement.

Following Greenberg’s and Jekel’s (1969) suggestion, we assumed «;= ;=0 and
estimated a, (8,) from Population 1 (2) with low (high) disease prevalence. The estimates
for the Tine test are &, =0.0168+0.0055 and B, =0.0338+0.0050, compared to &, =
0.0159+0.0056 and B,=0.0312+0.0062 from our model. This shows that their method
is adequate when the prevalences are as extreme as in this example. When no such
populations can be found, our method can still be used as it only requires unequal ’s.
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REsuME

On asouvent besoin d’évaluer la précision d’un nouveau test diagnostique relativment a un test standard
a taux d’erreur inconnu. Si 'on applique simultanément des deux tests aux mémes individus de deux
populations a fréquences de la maladie différentes, on peut estimer, par une procédure du maximum de
vraisemblance, les taux d’erreur des deux tests et les vraies fréquences dans les deux populations, en
supposant Pindépendance conditionnelle des erreurs des deux tests. On peut aussi généraliser la
procédure a plusieurs tests appliqués a plusieurs populations.
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