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 Estimating the Error Rates of Diagnostic Tests

 S. L. Hui1 and S. D. Walter

 Department of Epidemiology and Public Health, Yale University, 60 College Street,

 New Haven, Connecticut 06510, U.S.A.

 SUMMARY

 It is often required to evaluate the accuracy of a new diagnostic test against a standard test with

 unknown error rates. If the two tests are applied simultaneously to the same individuals from two
 populations with different disease prevalences, then assuming conditional independence of the
 errors of the two tests, the error rates of both tests and the true prevalences in both populations can
 be estimated by a maximum likelihood procedure. Generalizations to several tests applied in several
 populations are also possible.

 1. Introduction

 The presence of a disease in an individual often cannot be determined with certainty.

 Diagnostic procedures with high accuracy are obviously desirable but are frequently too

 expensive or hazardous to be used on a large scale. When investigating disease in large

 population groups, therefore, a less sophisticated screening test with greater error rates

 may be preferred.

 When a new diagnostic test is developed, its error rates must be determined and

 weighed against its cost. The false positive (negative) rate a(X3) is defined as the

 proportion of nondiseased (diseased) people who have positive (negative) outcomes in

 the test. Their complements 1- a and 1- {3 are, respectively, the specificity and sensitivity

 of the test. Error rates can be estimated directly if the test can be applied to some

 individuals whose true disease states are known, but this is usually difficult or not feasible.

 In such cases, the new test is customarily evaluated against a standard test with its own

 errors by applying both tests simultaneously to each individual.

 Greenberg and Jekel (1969) and Gart and Buck (1966) have investigated the effects of

 known error rates of the standard test on the estimates of the error rates of the new test.

 These authors point out that the error rates of the standard test, if not taken into account,

 can lead to biased estimates of the error rates of the new test. Specifically, if the nonzero

 false positive (negative) rate of the standard test is assumed to be zero then the false

 negative (positive) rate of the new test will be overestimated. For example, the errors of

 computer diagnosis are inflated when it is evaluated against a physician's diagnosis which

 is taken as correct (e.g. Van Meerten, Durinck and Dewit, 1971).

 Goldberg (1975) considered the problem where the test error rates are allowed to take

 different known values in various population groups. Rogan and Gladen (1978) investi

 gated the properties of the estimate of disease prevalence when one diagnostic test is used

 in a single population, again with the error rates assumed known. In cases where the error
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 rates of the standard test are not known, Greenberg and Jekel (1969) suggest that the
 false positive (negative) rate of a new test be estimated in a population with low (high)
 prevalence of the disease. Estimates so obtained are only very slightly biased even if the
 standard test is assumed to be error-free.
 If data are available from any two populations with different prevalences, it is shown in
 this paper that one can then estimate the error rates of both tests and the prevalences in
 both populations. The populations might in practice be taken as subgroups of a large
 population of interest, for example males and females or different age groups.

 2. Model and Estimation

 Let the standard test (Test 1) and the new test (Test 2) be applied simultaneously to each
 individual in samples from S populations. Let Ng be a fixed sample size, og be the
 probability of a diseased individual, and °Egh and gh the false positive and false negative
 rates of test h (h = 1, 2) in a sample from population g (g= 1, . . ., S), and let the og'S all
 be distinct. Finally, we assume that, conditional on the true disease state, the two tests on
 each individual are subject to independent errors; this should be reasonable if the tests
 have unrelated bases, e.g. X-ray versus blood test.
 Under these assumptions, the frequencies of the possible test outcomes in the S

 populations are distributed as S independent multinomials. The likelihood I is

 I n {0g(l g1)(l g2) + (1 Og)tglag2} g
 g=l

 X {0g(l gl)g2 + (1 Og)ag1(l ag2)} g
 x {0g/3g1(1-/3g2) + (1-Og)(l-agl)tg2} g g21

 { gglg2+ (1 eg)(l-agl)(l-tg2)}Ngpg22

 where Pgiit iS the observed proportion of sample g with test outcomes j and j' in Tests 1
 and 2, respectively: j= 1 (2) if Test 1 is positive (negative) and j'= 1 (2) if Test 1 is
 positive (negative).
 In general, for R tests applied to S populations, there are (2R-1)S degrees of freedom

 for estimating (2R+1)S parameters. Therefore the likelihood with no functional con-
 straint placed on the parameters is over parameterized for R less than three. For R greater
 than or equal to three, there is no simple closed-form solution for the maximum likelihood
 estimates but they can be evaluated numerically.

 We will now assume that cxgh = cxh and gh = h for all g, in order to study the most
 important case when R = 2. In general, the number of parameters then reduces to 2R + S,
 which does not exceed the number of degrees of freedom available whenever S >
 R/(2R-1- 1). Unless equality obtains, the maximum likelihood estimates must be
 evaluated numerically. In the special case of most practical importance when R =2,
 equality holds with S = 2. Then the model is saturated with six parameters and the global
 maximum of the likelihood function occurs at points with the following coordinates:

 (th (Ph l.Ph.l Ph.lPh-l. + P211-Pl11 + D)/2Eh
 A

 h (Ph2Ph2. Ph2.Ph-.2 + P122-P222 + D)/2Eh
 A

 Og = 2 + {Pgl.(P1.1 - P2.1) + Pg.1(P11. - P21.) + P211 - p1ll}/2D,

 where

 E1 = P2.1-P1.1, E2 = P21.-P11.
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 and

 D = i {(Pt1.P2.1 - P21.P1.1 + P111 - P211) - 4(P11. - P21.)(PlllP2.1 - P211P1.1)} /

 are nonzero, h = 2 (1) if h = 1 (2), and . denotes summation over an index. When E1

 and/or E2 are zero and D = O, some parameters are nonestimable, there being an infinite

 solution set in this case. When E1 and/or E2 are zero but D 0, or when D alone is zero,

 not all of the maximum likelihood equations can be simultaneously satisfied and numeri-

 cal maximization of the likelihood should be used.
 A A

 Except when Og = th -- ffi1 = 2, for g, h = 1, 2, two distinct points exist in each solution

 set given above, such that if (0, ai, ,(s) is a solution so is (1- 0, 1- ,(, 1- a). Therefore a

 solution which can be used as an estimate must be defined by appropriate constraints

 derived from prior knowledge of the error rates of the standard test, e.g. 1- a1 - 1 > O,

 which would be a reasonable assumption if the standard test is of practical value (Bross,

 1954; Goldberg, 1975). A real solution with coordinates which satisfy these constraints is

 a maximum likelihood estimate. In other cases when the points of the global maximum

 are complex or lie outside the unit hypercube, estimates can be obtained by numerical

 maximization of I with the solution restricted to be within the unit hypercube, again

 subject to appropriate constraints. Asymptotically, because the observed proportions pgjj,

 are continuous functions of the parameters, the maximum likelihood solution will con-

 verge to (0, aL, ).

 If we define L = ln 1, then the information matrix has elements as follows:

 ( at h) E Ng (1 Og) fg«l{th-, (1 _ th)2, a2h (1 _ a )2}

 E (- 3 ) =-E Ng Og ( l-og )fgh {th ( l-h ), ( 1-Rh ) h, th ( l-h ), ( 1 th ) h}

 E( a, a ) E Ng(l Og) tgh{hah,-th(l-ah), -(1-Rh)Rh, (l-,,)(1-Rh)}

 E ( aa a ) E Ng Og ( l og )tgpl t th ( l h ) 7 ( 1 th ) ( l h ) 7 Rhhv -( 1-th ) h }

 E(- 0 ) = Ngfgh{Rh(l-1)(1-2), (1-Rh)(l-h)h, thh(l h), (1 Rh)h1h2}

 Et _ a ) = E Ng02gfgh{(l-h), h-v (1-h), h}

 Et - ( ) = E Ngogfgh {(l-h )(l-h),-( 1-h ) h, kh ( l kh), hh}

 Et ao a: ) = Ngfgh{obl(22(l h), Rsz(1 Rh)h, (1 Rh)th(l h), (1 R1)(1 t2)h}

 Et 2) = Ngfgl[{ala2-(1-l)(l-/32)}2, {t1(1-a2)-(1-1)a2} r

 {(1-(t1)(t2-1(1-2)}2, {(1-t1)(1-t2)-1a2} ]

 ( 82L )
 801802
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 where

 fgh(a, b, c, d) = a/pgll + b/Pghh + C/Pghh + d/Pg22

 with

 Pgll = og(l-1)(l-2) + (1-og)t1t2

 Pghh og ( 1 h ) h + ( 1-og ) th ( 1-th )

 Pg22 = og102 + (1-og)(l-a1)(l-a2).

 If the parameters in the above elements are replaced by their estimated values, an

 estimated information matrix is obtained and this may be inverted numerically to give an

 estimated asymptotic variance-covariance matrix.

 3. Example

 In our example, the new Tine test (Test 2) is to be evaluated against the standard

 Mantoux test (Test 1) for the detection of tuberculosis. Both are skin tests applied to the

 arms. After 48 hours the presence of an induration larger than a fixed size constitutes a

 positive result. The criteria were determined from previous experience and they affect the

 error rates. Data for Population 1 are taken from Greenberg's and Jekel's study in a

 southern U.S. school district. The original data were reclassified into positive or negative

 for each test according to the same criteria as those for Population 2 in a second study at

 the Missouri State Sanatorium (Capobres et al., 1962). The data are presented in Table 1.

 The maximum likelihood estimates with their standard errors were found to be

 cx1 = 0.0067 zt 0.0038 /31 = 0.0339:t 0.0069 01 = 0.0268 zt 0.0071

 (t2 = °.° 159 zt 0.0056 2 = 0.0312 i 0.0062 01 = 0.7168 i 0.0128.

 The upper triangle of the variance-covariance matrix and the lower ofi-diagonal triangle

 of the correlation matrix are jointly shown as follows:

 ^ ^ A A

 °t1 g 1 2 2 01 02

 °t1 1.45x 10-5 -1.41x 10-7 2.72x 10-7 -6.68x 10-6 -2.07x 10-6 -4.43x 10-6 \

 {3 -0.0054 4.83 x 10-5 -1.37 x 10-5 1.26 x 10-6 2.17 x 10-6 1.00 x 10-5

 °t2 0.0127 -0.3516 3.15 x 10-5 -1.40 x 10-7 -2.36 x 10-6 -0.96 x 10-5

 2 -0.2820 0.0290 -0.0040 3.88 x 10-5 1.86 x 10-6 4.99 x 10-6
 01 -0.0763 0.0438 -0.0590 0.0420 5.08 x 10-5 1.56 x 10-6

 02 \ -0.0911 0.1126 -0.1338 0.0626 0.0171 1.64x 10-4 /.

 One check of the validity of the model in the example is to compare our estimates of /31

 and 2 to those of Capobres et al. (1962), who applied the Mantoux and Tine tests to 362

 patients with pulmonary- tuberculosis proven by positive culture of acid-fast bacilli.

 Table 1
 Results of Mantoux and Tine tests for tuberculosis in two populations

 -

 Population 1 Population 2

 Tine test Tine test

 Mantoux test Positive Negative Total Positive Negative Total

 Positive 14 4 18 887 31 918

 Negative 9 528 537 37 367 404

 Total 23 532 555 924 398 1322
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 Assuming that the culture has zero false positive rate (i.e. a1 = 0), they estimated false

 negative rates with standard errors for the Mantoux and Tine tests to be 0.0304:t0.0090

 and 0.0331i0.0094, respectively. Our estimates 0.0339i0.0069 and 0.0312:t0.0062

 show satisfactory agreement.

 Following Greenberg's and Jekel's (1969) suggestion, we assumed a1 = {31 = O and

 estimated R2 ({32) from Population 1 (2) with low (high) disease prevalence. The estimates

 for the Tine test are cx2=0.0168:tO.0055 and ,(32=0.0338:tO.0050, compared to ct2=

 0.0159:t0.0056-and {32=0.0312:tO.0062 from our model. This shows that their method

 is adequate when the prevalences are as extreme as in this example. When no such

 populations can be found, our method can still be used as it only requires unequal 0's.

 ACKNOWLEDGEMENTS

 We are grateful to Dr J. Jekel of this department for providing the original data from

 the study in Population 1. The helpful comments of the referees and Editor on an earlier

 draft are also acknowledged.

 RESUME

 OI1 a souvent besoin d'evaluer la precision d'un nouveau test diagnostique relativment a un test standard

 a taux d'erreur inconnu. Si l'on applique simultanement des deux tests aux memes individus de deux

 populations a frequences de la maladie differentes, on peut estimer, par une procedure du maximum de

 vraisemblance, les taux d'erreur des deux tests et les vraies frequences dans les deux populations, en
 supposant l' indepen dance condition nelle des erreurs des deux tests . On peut aussi generaliser la
 procedure a plusieurs tests appliques a plusieurs populations.
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