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Abstract—We review methods for the analysis of categorical clinical and epidemiological data, in
which the observations are subject to misclassification. Under certain conditions, it is possible to
estimate error parameters such as sensitivity, specificity. relative risk, or predictive value, even
though no definitive classification (gold standard) is available. The parameter estimates are
obtained by modelling the data, using maximum likelihood, with or without some constraints. The
models recognize that the true classification of an individual is unknown, and so are sometimes
referred to as “latent class™ models.

The latent class approach provides a unified framework for various methods found in a dispersed
literature, characterising cach by the number of populations or subgroups in the data, and the
number of observations made on each individual; the statistical degrees of freedom are implied by
the sampling design. Data sets with less than three replicate observations per individual necessarily
require constraints for parameter estimation to be possible. Data sets with three or more replicates
lead directly to estimates of the misclassification rates, subject to some simple assumptions.

Some more complex problems are also discussed, including data where the response variable has
more than two levels, sequential and irregular designs and the effects of assumption violations.
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1. INTRODUCTION

Clinicians and epidemiologists often measure or
classify individuals according to the presence
or absence of a disease, signs or symptoms, or
exposure to risk factors. In practice, errors in
measurement or classification can occur for
many reasons, including the use of subjective
clinical judgment, technical imperfections of a
diagnostic test. memory loss, deliberate mis-
statement or interpretational errors by inter-
viewers or patients. and clerical errors.

Errors of measurement or misclassification in
exposure variables, outcomes or confounders
lead to bias in estimated indices of association
such as the relative risk, and distortion of the

* Based in part on work done at the Institute for Bio-
statistics of the South African Medical Research Council.

p-values of their statistical tests of significance.
Even modest probabilities of misclassification
can have a substantial impact [1--5].

The ideal way of assessing the probability of
misclassification with a particular method of
observation is to compare it to a “*definitive” or
*gold standard™ method which is error free [6].
For diagnostic testing, this is often not possible
because of cost or risk to the subjects or ethical
considerations. It has been found that in about
1/3 of medical articles describing diagnostic test
evaluation, no well-defined gold standard was
used [7]. Similarly, for epidemiologic risk fac-
tors, there is often no definitive method of
measurement available.

In situations where error-free measures are
difficult to obtain, reliability (i.e. reproducibility
or repeatability) is often assessed by comparing
the classifications of a set of individuals by two
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or more observers or methods. It is sometimes
tempting to assume that one of the methods is
indeed error free, for instance that a senior
clinician always makes an accurate diagnosis, at
least relative to junior students! However such
an assumption clearly biases the estimated error
rates in the other observations.

Another strategy might be to analyse the level
of inter-observer agreement, perhaps compared
to the majority opinion [8,9]. This method is
useful if the number of observers is large, when
the estimation of all the observer-specific error
rates may be computationally difficult or unsta-
ble. It is also possible to identify those observers
who agree least often with the majority. Such
observers are not necessarily any less accurate,
but may be using different criteria for their
classification [9].

One difficulty in the interpretation of agree-
ment analyses is that the commonly-used indices
of agreement, such as the kappa statistic [10]
depend on the true prevalence of the attribute in
the data [11-13]. Kappa will tend to be lower in
populations where the attribute prevalence is
very high or very low, even if observer error
rates remain constant. The same difficulty ap-
plies to other indices of agreement [14], making
the analysis of agreement an inherently less
attractive option than direct estimation of
misclassification rates, if the latter is feasible
[11].

In this paper we review various ways in which
observer error rates can be estimated in some
generic clinical and epidemiological settings.
Unless otherwise stated, we assume that all of
the measurements are subject to potential error.
The misclassification probabilities of the observ-
ers, will be estimated using various models
which assume the “true” classifications to be
unknown values.

In many situations, there is also interest in
estimating the prevalence of an attribute (e.g.
disease, symptoms, risk factor exposure), or in
functions of prevalence such as relative risk. The
estimability of these parameters depends on the
number of populations or distinguishable
groups of individuals sampled, the pattern of
observations (especially the number of obser-
vations made on each individual), and how
many statistical constraints are imposed. It will
be shown that most of the methods which have
been suggested for data with one or two observ-
ers require constraints in order to render a
subset of parameters estimable. In contrast,
when there are three or more observers, all the

S. D. WALTER and L. M. Irwic

relevant parameters can be estimated without
constraints.

2. TERMINOLOGY AND NOTATION

Suppose that in a population, a proportion 4
of persons are actually “positive” for an attri-
bute of interest; § is known as the prevalence.
For a given observer, the probability that an
individual who is actually negative will be
classified positive will be denoted by a, this
being the false positive rate for that observer;
1 — & is known as the specificity, the probability
that a truly negative individual is correctly
classified. The corresponding parameters for
truly positive individuals are f (the false-
negative rate), and the sensitivity 1 — f, (the
probability of correct classification for truly
positive individuals). This follows the notation
of Hui and Walter [15].

We will usually refer to the classifications as
“observations”; depending on the context, an
observation might be a diagnostic test, one of
several alternative data sources (e.g. patient
interview or hospital records), or a repeat
classification by the same method on a different
occasion. For situations where there is more
than one observer, parameters will be sub-
scripted accordingly.

Also of interest are the predictive values. The
positive predictive value PV + is the probability
that an individual observed as positive is actu-
ally a true positive, and PV — is the probability
that an apparently negative individual is truly
negative. PV + and PV — depend on the preva-
lence 0, and so may vary between populations,
even though the sensitivity and specificity re-
main constant [16,17]. PV+ and PV— are
useful when one is interested in the likelihood of
a correct classification of individual subjects in
a specified population. However, sensitivity and
specificity are more useful as indicators of the
reliability of the observations as a whole.

We denote by 7;; the number of individuals
in a particular combination of classifications by
a set of observers, with I, j, k... =1 denoting
the positive results, and 0 the negative results.
The total number of individuals will be denoted
by N.

As a simple example, Table 1 shows the
cross-classification of N individuals, according
to a fallible observer 1, and according to a
definitive observation 2 made without error.
The true prevalence of the attribute is
0 = (n,, + ny )/ N, the proportion of individuals
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Table 1. Comparison of a fallible observer (1) with an
error-free classification method (2)

Error Free Observation 2

+ — Total
+ 1y nyy Ayt iy
Observer |
- My My gy + Hoy
Ay Ny + Ry N

Prevalence: ¢/ = (n), + ng ' N

False positive rate = & = n,:(n,, + fy)

False negative rate = § = ny, (1), + 1))

Positive predictive value: PV 4+ =, /(1) + n,)
Negative predictive value: PV — = n, /(ny, + ny,)

classified positive by the definitive method. Sim-
ilarly the false positive and false negative rates
can be estimated as % =n,,/(n,+ ny) and
B = ng [(ny, + n,,) respectively; their denomi-
nators are based on the error-free classification
according to observation 2. Finally, PV + and
PV — may be estimated, using the fallible obser-
vations | to define appropriate denominators.
The parameters may be estimated directly in this
situation, because of the availability of the
error-free method 2. However in the more typi-
cal case where all the observations are poten-
tially misclassified, a more general approach is
needed. as is described in the following section.

3. REVIEW OF PROBLEMS INVOLVING
MISCLASSIFICATION

The number of observers (R} and the number
of populations or sub-populations which are
sampled (S) determine the number of cross-
classifications into which the data are grouped.
and hence the number of degrees of freedom
(df') which are available for parameter esti-
mation. We will review estimation methods for
a variety of typical situations, each character-
ised primarily by their values of R and S: for
each problem we will calculate the number of
independent parameters involved, and the num-
ber of df implied by the sampling design. If there
are 100 many parameters to be estimated from
the available df. constraints must be applied, for
instance by regarding some of the parameters as
known constants.

3.1. General problem: R observations

individual; S populations

per

We first restrict attention to binary obser-
vations. (Extensions to multilevel responses are
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given in Section 4.2). In the most general case,
the prevalence and the sensitivity and specificity
of the observers may vary across the S popu-
lations. For example, suppose the
(sub)-populations are defined as women in var-
ious age groups. and the observations are to
detect breast cancer using a mammographic
screening device. Because of changes in breast
tissue mass and density with age, the error rates
may depend on age.

For situations with a single binomial response
and arbitrary numbers of observers and popu-
lations (R and §), there are R false positive rate
parameters. R false negative rate parameters
and a prevalence parameter associated with
each population, or S(2R + |) parameters in
total over all populations. If the observations
are independent between observers, there are 2%
possible combinations of results for each sub-
ject. Regarding the sample sizes as fixed gives
2R —1 df from each population, or SQ% — 1) df
in total. Estimability of all the parameters there-
fore depends essentially on R, because S is a
common factor. The number of parameters and
df for the first few values of R in one population
(S =1) are:

Number of

observers R : 1 2 3 4 S
Number of

parameters 2R+ I: 3 5 7 S 11 ...
Number of df  2f - 1: 1 3 7015 31 ...

Thus R = 3 is the minimum number of observ-
ers for which all parameters may be estimated
without further assumptions, for any number of
populations.

When all of the observers are imperfect on
sensitivity and/or specificity, the “true” state of
each person remains unknown. However the log
likelihood of the data can be expressed as

5 R
L=Y Zm.(x)ln[({ [T8, - g

s=1 x r=1

R
(1 =0) ] 20 - %) J (1)
r=1

Here 2, and f,, denote the false-positive and
false-negative rates for observer r in population
s, x(r) denotes the classification of an individual
by observer r, and the second summation is over
all combinations of observations by the set of
observers; n,(x) is the number of individuals in
population s who receive a given set of
classifications x. This likelihood supposes that
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Table 3. Assessment of pleural thickening by
" three independent radiologists for 1692 males

Reader*
Number Frequency
1 2 3 of men notation
- — - 1513 Pooo
- - + 21 oot
- + - 59 Ryjo
- + + 1! ny,
+ - - 23 Rigo
+ - + 19 Mot
+ + — 12 R
+ + + 34 oy
* + denotes “positive” (pleural thickening
present); —denotes ‘“negative” (pleural

thickening absent).

(i) all observers observe all subjects in all popu-
lations; (ii) the errors of classification are inde-
pendent between subjects; (iii) the errors of
classification are independent within subjects
and between observers, conditional on the true
state; and (iv) the sample sizes in each popu-
lation are regarded as fixed. These assumptions
are required for all methods reviewed, unless
otherwise indicated.

The EM algorithm [18, 19] has been suggested
to estimate the parameters of model (1). By
adopting initial probabilistic estimates of each
subject’s true (but unknown) state, provisional
estimates of the misclassification probabilities
and the prevalence may be obtained directly, as
a simple generalisation of the situation in Table
1; these estimates are then used to calculate
improved estimates of the true status, and the
process is iterated until convergence occurs. An
alternative approach is to use the GSK meth-
odology [8,9, 20]. Finally the same model has
been used in a ‘“latent class analysis” using
logistic regression [21]. The term “latent class”
refers to the fact that the true state variable is
always hidden or unknown, even though proba-
bilistic estimates can be made for it.

Increasing the number of observers above 3
will cause an excess of df. For instance, with
four observers there is an excess of 6 df over the
9 required for the parameters. These additional
df may be used for a goodness-of-fit x? test of
the model (cf. Section 5.1). The amount of
computation for parameter estimation goes up
rapidly with the number of observers. Using
three to five observers seems a reasonable com-
promise, this being enough to allow complete
parameter estimability, but not so large as to
pose computational problems.

Table 2 gives a synposis of methods of esti-
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mation of misclassification probabilities, disease
prevalence and related parameters. This is for
the general case as discussed above and for
which an example is given below, as well as for
other situations where there are fewer than 3
observers, as discussed in Section 3.3.

3.2. Examples with three or more observations
per individual (R = 3)

Data of this kind can occur in a number of
ways. First, several diagnosticians may indepen-
dently classify a set of patients; for example, if
nurses, radiologists and other physicians carry
out screening diagnoses for cancer [22]. Simi-
larly, Dawid and Skene [18] studied five anaes-
thetists who rated the same patients on their
fitness for surgery. A second possibility is where
the same diagnostic test may be used several
times, e.g. the recommended sequence of six
stool guaiac tests for colon cancer [23]. Third,
there may be several different diagnostic tests
for the same disorder, which may be used
simultaneously or in sequence, e.g. Mantoux,
tine, imotest, and ‘“monovacc” methods for
tuberculin sensitivity [24].

Consider the numerical example of Table 3.
Three experienced readers independently evalu-
ated the chest X-rays of 1692 male employees in
asbestos mines and mills, taken at each worker’s
annual examination. Using the ILO U/C Inter-
national Classification of Radiographs of Pneu-
moconioses [25], the readers assessed the
presence/absence of pleural thickening [26).
Hence there are R = 3 observers in § = 1 popu-
lation, implying 7 parameters in total. Under
the independence assumption, the probability
that a true positive individual is classified posi-
tive by all three readers is (1 — f,)(1 —§,)
(1 — B,), where §, is the false-negative proba-
bility for observer r (r = 1,2, 3). Similarly, the
probability that a true negative individual is
classified in this way is o, a,a,;. Using a similar
argument for each combination of classifi-
cations, as in the general likelihood equations
(1), allows the complete likelihood to be com-
puted. After numerical maximisation, we obtain
parameter estimates, with an approximate
variance-covariance matrix derived by standard
maximum likelihood (ML) methods.

For these data, the parameters and their
approximate standard errors are given in the
first two rows of Table 4. We may note that
observers | and 3 have very similar error proba-
bilities, and that observer 2 has both higher false
positive and false negative rates. This is also
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Table 4. Parameter estimates for the data of Table 3

Parameter
R
ML estimate 0.011 0.035 0.010 0.235 0.356 0.251 0.054
Standard error 0.004 0.005 0.003 0.112 0.171 0.119 0.023

Majority
agreement estimate

0.014 0.037 0.013 0.145 0.250 0.158 0.045

reflected in a lower level of chance-corrected
agreement, as measured by x [10], in pairs
involving observer 2. These results show either
that observer 2 is inherently less accurate, or
that he is using different diagnostic strategies,
despite the attempts to standardise observers in
their operational definitions of “abnormality™.
The findings are also consistent with correlated
errors for readers | and 3.

Numerical iteration is required in the ML
estimation process, and so it is useful to have
suitable starting values for each parameter. We
used initial estimates based on the majority
opinion among the observers. For instance, the
proportion of subjects with at least two “posi-
tive” X-ray assessments was used as the initial
estimate of prevalence. Similarly the initial false
positive rate for each observer was taken as the
proportion of times he rated positive among
subjects where the other two assessments were
negative. These estimates (also shown in Table
4) gave satisfactory ML convergence after three
iterations, which is typical of our experience
with other data sets.

In some small or ill-conditioned data sets,
convergence may be faster and the solution
more stable if it can be assumed that the obser-
vations all have the same sensitivity and
specificity. An example with 3 similar mea-
surements is given by Quade et «l. [3], who also
provide a simple iterative computing algorithm
for this case.

3.3. Methods for data with less than three obser -
vations per individual (R < 3)

As indicated in Section 3.1, for R < 3 observ-
ers there are insufficient df to permit the simul-
taneous estimation of all the parameters. Never-
theless there are a number of common situations
where estimates are required of sensitivity,
specificity, or prevalence, but without the luxury
of three separate observations. For instance,
one may wish to assess the performance of only
one or two diagnostic tests; and even in studies
of agreement in subjective diagnosis, there may

CrH a1y H

be occasions when only two observers are avail-
able. For such problems, several methods have
been suggested to estimate subsets of parame-
ters after the imposition of certain constraints.
The form of these constraints varies, but a
common option is to regard some parameters as
known, and then to estimate the remainder. If
the number of parameters is p, and the number
of constraints is ¢, then in order to estimate
those parameters whose values are not directly
implhed by the constraints, we must have that
the number of df available is at least p + ¢. The
methods reviewed below deal with 1 or 2 obser-
vations on individuals from | or 2 populations.

3.3.1. One observation per individual, one pop-
ulation (R =1, S = 1). Here subjects from a
single source are classified by a single obser-
vation as positive or negative for an attribute.
Typical frequency data may be summarised
simply by the total numbers of positives (r, ) and
negatives (n,). There are 3 parameters—the
prevalence 6 of the attribute, and the false-
positive and false-negative rates (a and ). This
type of data would arise if a diagnostic test is
used to detect sub-clinical disease, for instance
abnormally high intra-ocular pressure as an
indication of glaucoma [27]. Regarding the total
number of individuals observed (N) as fixed, the
number of “positives” 1, determines the number
of *‘negatives” n,, and vice versa, because
n, +n, = N; thus only | df is available, and so
two constraints must be applied if parameter
estimation is intended.

A common option is to impose the two
constraints by regarding the sensitivity 1 — 8
and specificity 1 —x as known, and then to
estimate the prevalence 6. This would be appro-
priate if one were evaluating the prevalence in
various populations, using a well-established
screening test with known error probabilities.
Rogan and Gladen [28] give algebraic expres-
sions for § when « and f are given: 0 can
occasionally be negative. They also demonstrate
that the alternative of simply using the propor-
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tion of positive observations (n,/N) yields a very
biased estimate of 0; specificity errors are
usually a more important source of bias in the
prevalence estimate than are errors of sensitivity
[3].

3.3.2. Two observations per individual, one
population (R =2,8 =1). This type of data
arises frequently when two diagnostic tests are
being compared, or the agreement of two sub-
jective raters is being assessed. For example,
mammography and physical examination may
be used as screens for early breast cancer [29];
the stress ECG and arteriography are both tests
for coronary artery disease; two psychiatrists
may differ in their diagnostic categorisation of
a series of patients [30]; and ultrasound and
venography are both tests for venous occlusion
[31].

Typical data may be displayed as in Table 1,
except that now both observations 1 and 2 are
regarded as subject to error. Regarding N as
fixed, there are 3 df for parameter estimation.
There are five parameters—the test error rates
o, a,, f, and f,, and the prevalence 6. There-
fore at least two constraints are required. A
wide variety of alternative constraints have been
suggested, as outlined below.

When the data arise from two different meth-
ods of observation (as in the comparison of
diagnostic tests), one possibility is to regard the
sensitivity and specificity of one (say method 2)
as known; this is appropriate if a new method
is to be validated against an established criterion
with known measurement properties. Assuming
o, and B, known imposes the necessary two
constraints, and several authors have all given
identical formulae for &, B, and § in this
situation [32-34]. Standard errors of these are
also available [32, 33] and predictive values may
be estimated [34].

A special case of this approach is when «, and
B, are assumed to be zero, i.e..that observation
2 is error-free. This is an expedient assumption
when a third assessment of status is not possible,
and when observation 2 is felt to be “definitive”.
For instance, arteriography is regarded as a
‘“gold standard” diagnosis for coronary artery
disease, against which the less invasive stress
ECG method may be compared [35]. Other
examples of this kind include: stool guaiac tests
for colon cancer vs the barium enema as a “‘gold
standard” [23); thermography results vs tissue
biopsy in the detection of minimal breast cancer
[36]; and examination by a school nurse vs a
specialist for hearing loss [37]. One danger here
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is that if test 2 is assumed to be error free, but
is actually subject to error, the error rates for
test 1 will be overestimated.

Some other approaches have been proposed
for this type of data. Firstly, both tests being
compared may be pathognomonic, so that they
are regarded as having perfect specificity
(« = 0). Staquet et al. [34] give formulae for §,,
B,, 6, and predictive values for this case. Sec-
ondly, it is possible to obtain approximate
estimates of «; and «,, without assuming any-
thing about f, or f5,, if 6 is known to be low or
assumed so; correspondingly, populations with
high prevalence yield approximate estimates of
B, and B,, without knowledge of «, and «, [33].
Some parameters may be estimated in various
two-stage sampling designs, where the results of
one observation are known before the second
observation is made, on a sample basis [34];
again, however, the error rates of one test must
be assumed known in order to estimate the
other parameters. Finally, Chinn and Burney
[38] have proposed another alternative con-
straint structure for this problem; they assume
that o, =oa, =, =f,, i.e. the probability of
correct classification is constant. The estimated
parameters are the prevalence and common
sensitivity (or specificity), based on the 2df
remaining after application of 3 parameter con-
straints and loss of 1 df because of symmetry in
the table when the error rates are the same for
both observers.

A related problem arises from disease screen-
ing data. The screening method may misclassify
persons, either by falsely labelling normals as
(false) positives, or by missing true cases of
disease (false negatives). Goldberg and Wittes
[29] have described the use of capture—recapture
methodology to estimate the number of true
positives (the preclinical cases of disease) and
negatives which exist in the screened sample,
when two alternative means of diagnosis are
used simultaneously, for instance in the de-
tection of preclinical breast cancer using mam-
mography and physical examination. In general,
there are four error parameters, and one preva-
lence, giving 5 parameters in total. Goldberg
and Wittes assume the false positive rates to be
zero for both screening modalities: this then
renders the remaining parameters estimable
from the 34df in the 2 x 2 table of screening
results.

Related methods have been suggested for
situations where the two observations are on
different characteristics of individuals in the
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same population. Barron [30] investigates the
effects of misclassification on the odds ratio
relating two clinical attributes (e.g. two different
diseases). Individuals are classified on each attri-
bute into the usual fourfold table with 3df.
There are now 7 parameters: 3 independent
cell probabilities in the table, and «,, o,, f§, and
B, as before. Barron shows that if the error
probabilities are taken as independent and
known (4 constraints), a corrected odds ratio
estimate may be derived from the empirical
data.

Finally Murphy [40} considers a fourfold
table generated by classifying individuals cross-
sectionally according to the presence of a dis-
ease and/or risk attribute. The available 3 df are
sufficient to estimate the sensitivity/specificity of
the attribute interpreted as a marker for the
disease, and the disease prevalence. Murphy
also derives a simple relationship between PV +,
PV — and the relative risk of disease for individ-
uals attributed positive compared to negative.
Bennett [31, 41] gives a test of the hypothesis
that two (or more) diagnostic tests have equal
predictive values. but does not discuss esti-
mation.

Yanagawa and Gladen [42] discuss estimation
when a single diagnostic test is applied to the
same individuals at two or more points in time.
As before, the “test positive’” rate 1s a very
biased estimate of the prevalence at each time
point, and one that is more affected by
specificity errors than sensitivity. If there are
two times, 5 parameters are involved (the prev-
alence at the first time point, the incidence and
remission rates between the two times, and the
test sensitivity and specificity), but only 3 df are
available. Two alternative pairs of constraints
are possible: (1) the sensitivity and specificity are
known, or (i1} the remission rate is zero and the
specificity is 1. An example of the latter is
provided, using onchoceriasis data. A similar
approach is given by Chinn and Burney [38]:
after assuming that sensitivity and specificity are
equal for both observations. (3 constraints),
estimates can be obtained for the prevalence at
each of the two time points, and the common
probability of correct classification.

Yanagawa and Gladen add that if three time
points are used, there are 7df still with 5
parameters; complete estimation is then possible
{42, 43]. More general models have been devel-
oped to estimate the error rates of screening
tests administered on several occasions [44, 45];
these models also allow one to estimate the
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disease incidence rate and the duration of its
preclinical interval.

3.3.3. One observation per individual, two pop-
ulations (R=1 S =2). An example of this
common design is the case—control study, where
cases and controls are classified on exposure to
an antecedent risk factor. Misclassification may
distort the odds ratio relating exposure to dis-
ease status. If the misclassification rates are the
same for cases and controls. the odds ratio will
be biased towards the null value; with different
misclassification rates for the cases and controls,
bias in either direction can occur [46].

Assuming fixed total numbers of subjects in
each of the two groups, a binary classification
gives 2df in total. When sensitivity and
specificity are assumed constant across popu-
lations, the four parameters are the common
false positive rate «, the common false negative
rate f§, and the population-specific prevalences
6,.and 6,. So again two constraints are required
for estimation purposes.

As for the problem with R=2, S=1, a
common solution is to assume 2« and § known:
Copeland et al. [47] then describe how to esti-
mate the ““true” numbers of positives and nega-
tives in each group, and hence how to re-
calculate the odds ratio or relative risk,
“corrected” for the misclassification effect.
Greenland and Kleinbaum [48] describe a simi-
lar approach; they point out that a priori esti-
mates of the misclassification rates are also
subject to error, so that the corrected or “error-
free” tables may still indicate incorrect levels of
association. Greenland [49] has proposed an
equivalent method for matched pair data with-
out replication; this requires prior estimates of
the error rates, and the solution to 4 simulta-
neous equations. Finally, rather than assuming
any particular values for the error rates, Blettner
and Wahrendorf [50] consider the possible
ranges for the probability of correct
classification in case—control studies, given the
empirical misclassified data. Equal reliability is
assumed for the cases and controls, leading
to a range of possible values for the relative
risk.

3.3.4. Two observations per individual, two
populations (R = 2, S = 2). In this problem, we
have two 2 x 2 data tables cross-classifying the
two observations, one from each of the two
populations. The two groups might be from
different geographic areas, or be sub-groups
(e.g. sex, race) of the same population. As an
example, the Mantoux and tine tests (the two
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observations) for tuberculosis were both admin-
istered to individuals in two populations [15].

There are now four misclassification proba-
bilities as before («;, %, f, and f,), and a
prevalence in each population (6, and 0,), mak-
ing 6 parameters in total. There are also 6 df
(3 df from each population), and so no con-
straints are required. As before, we have as-
sumed the sensitivity and specificity for each
observer to be constant across populations.
Closed form ML estimates of the 6 parameters
and their variance—covariance matrix may be
obtained [15].

A further example of this type of data occurs
in case—control studies, if there are two assess-
ments of exposure in each group. Marshall and
Graham [51] have proposed that only individu-
als with concordant assessments be used to
estimate the exposure—disease odds ratio. How-
ever this method gives a biased estimate, in
contrast to the ML method which is asymp-
totically unbiased and efficient [52]. In their
discussion of latent class analysis, Kaldor and
Clayton [21, 53] give an example of data where
replicate measurements are available for some
or all of the cases and/or controls. They demon-
strate that obtaining replicate measurements on
even a modest proportion of subjects leads to
substantially improved estimation of case-con-
trol odds ratios.

4. OTHER DESIGNS

4.1. Irregular observational designs

All of the above methods have supposed that
all of the observers categorise all study subjects,
but there are several practical situations where
each observer classifies only a subset of individ-
uals, leading to a less regular design. The usual
effect of departing from the regular layout is to
reduce the available df, thereby imposing fur-
ther limitations on the number of estimable
parameters.

A common example of an irregular design is
from sequential observations. Here the early
observations determine whether or not an indi-
vidual will go on to be observed later in the
sequence. For instance, a sequence of diagnostic
tests may be available, typically having in-
creasing accuracy but at increasing cost or risk
to the patient; only individuals with early ab-
normal results progress to the later stages in the
sequence. An example is the sequence of tests
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recommended for spina bifida: two tests for
elevated alpha-fetoprotein (AFP), ultrasound,
amniocentesis, and amniography [54]. Another
example of this kind is when children are given
an initial multiple puncture test (e.g. tine) for
TB which, only if negative, is followed by a
Mantoux test [55].

Sequential designs which introduce a new
method of observation at each step are generally
overparameterised. At each stage, 2 new param-
eters (the sensitivity and specificity of the new
observation) are introduced, but only 1df is
added. Only if a sufficient number of repeat uses
are made of the same test can all the relevant
parameters be estimated; under an assumption
that the error probabilities remain constant on
repeated uses, the accumulation of an extra
single df at each stage will eventually produce a
total df which exceeds the number of parame-
ters. For example, suppose the same test is
applied repeatedly only to those positive in the
previous step. Three parameters are involved: o,
f and the population prevalence 0. Each step
provides 1df, and so therefore 3 steps are
required as a minimum for parameter esti-
mation.

On the other hand, if the assumption of
constant error probabilities is not valid, the
situation is then similar to using a different test
method at each stage, and again there is a deficit
of df. Thus although sequential strategies may
often be desirable for routine clinical practice,
they are inadequate in general for the initial
assessment of performance.

An irregular design was used by Rudd et al.
[56] to compare several tests for TB sensitivity.
All study subjects received the Mantoux test,
but were randomised to receive either the tine
test or the imotest in addition. The data thus
consist of two 2 x 2 tables, each having 3 df,
giving 6 df in total. Subjects whose initial Man-
toux was negative, and whose other test was
positive were retested by Mantoux; the retests
provide an additional 2 df, one from each of the
tine and imotest groups. The data in total then
have enough df (8) to estimate all the par-
ameters (3a’s, 38’s and 20°s).

A final example of an irregular design is that
proposed by Green [57] to estimate the relative
risk of disease in exposed versus unexposed
individuals. Disease classification is made on the
basis of a fallible test 7, for a sample of
individuals from each of the two exposure
groups; this yields 2 df. In addition, it is sup-
posed that a correct classification is made only



Misclassified Data 933

for individuals in the unexposed group who
have a positive result on T this yields a further
1 df (giving 3df in total) and an estimate of
PV + for the unexposed. There are 4 parame-
ters; the » and f for T, and the true disease
incidence rates for the exposed and unexposed.
Green imposes a constraint by supposing the
disease incidence in unexposed individuals to be
small, and then shows that a relative risk esti-
mate, adjusted for misclassification, may be
obtained as a function of the crude relative risk
and PV + for the unexposed. Green gives exam-
ples of this technique in associating coronary
atherosclerosis with smoking and serum choles-
terol.

Green’s method was extended by Begg [58].
who shows how an unbiased estimate of the
odds ratio may be obtained by restricting the
analysis to those individuals with positive re-
sults on 7. and for whom an error-free
classification is made; this is done without infor-
mation on sensitivity, specificity, or the inci-
dence among the unexposed. He also notes that
the relative risk can be estimated by assuming
the test specificity to be 1. Finally. if the sensi-
tivity and specificity are assumed known, un-
biased estimates of the disease incidence among
exposed and unexposed persons may be derived.
It has also been shown that an unbiased relative
risk estimate can be obtained if PV — is [ [59].
The method used by Green and Begg is similar
to previous work [60.61] using a two stage
sampling procedure with an error free
classification for a random subsample.

4.2. Response variable with more than two cat-
egories

Although it 1s always possible to reduce data
into a binary form (e.g. normal/abnormal).
there is often a more detailed classification
available, usually as a multilevel discrete vari-
able. A multilevel response may be more mean-
ingful substantively. but it will necessarily in-
volve additional statistical parameters. and
hence a more elaborate design if they are all to
be estimated. As before, an option is to assume
some of the parameters to be known.

An example of a data set with four response
categories 1s discussed by Spiegelhalter and Sto-
vin [62] where up to three biopsies had been
taken from a series of cardiac transplant pa-
tients. Each biopsy was categorised by a single
pathologist on a four point scale indicating their
assessment of the likelihood that organ rejection

had taken place. It was required to estimate the
probability that rejection had taken place for a
patient with a given set of biopsy results.

Assuming the various biopsy classifications to
have equal reliability, there are 4 x 3 = 12 inde-
pendent misclassification probabilities, and 3
independent prevalence parameters. Ignoring
the order of observations, there are 20 possible
combinations of results from a set of 3 biopsies
(4 possibilities where all three results are the
same, 12 where exactly two different results
occur ameng the three, and 4 where 3 different
results are given), and 10 possible combinations
in patients who had only 2 biopsies. In the data,
15 and 8 combinations respectively were actu-
ally observed. After grouping several sets of
small frequency cells and allowing for 2 con-
straints implied by the sample sizes, 19 df were
available for estimation. Arguing that it would
be impossible to observe a biopsy state which is
worse than the true rejection state of the patient.
Speigelhalter and Stovin assumed that 6 of the
false positive rates were zero. This left 6 false
negative rates and 3 “‘prevalences™ (describing
the true distribution across the 4-point scale),
giving 9 parameters to be estimated in total. A
goodness of fit test was then possible on the
remaining 10 df.

Another example is given by Dawid and
Skene [18], where S anaesthetists rated patients’
suitability for surgery on a 4 point scale; also,
one of the 5 anaesthetists made 3 independent
ratings of each patient. In this problem there are
3 “prevalence” parameters and 60 misclassifi-
cation rates (12 for each rater). A very large
number of df is available, actually 20 x 4*
(ignoring the order of the 3 independent repli-
cates by one rater), so that the data will be
sparsely distributed across all the possible com-
binations of ratings. This implies that the esti-
mated parameters will likely be very unstable,
except in very large samples. Dawid and Skene
examined stability by selective removal of ob-
servers and/or patients from the data. They also
remark that the usual large sample properties of
maximum likelihood estimates are unlikely to
hold good.

In general, if R observers all rate the same
individuals on a K point scale, there are
K® — 1 df available. There are K — 1 “preva-
lence”™ parameters, and K(K — 1) misclassifi-
cation parameters for each observer, making
(K — D)(RK + 1) in total. The following table
shows the number of parameters and available
df for low R and K =3 and 4:
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Number of observers (R)
1 2 3
=3 Number of parameters: 8 14 20
Number of df: 2 8 26
=4  Number of parameters: 15 27 39
Number of 4f: 3 15 63

This shows that, as for binary data, 3 observ-
ers is the minimum number required for full
parameter estimability. In fact this is true for
any K. For large K, the number of parameters
is approximately K’R, and the df K*, so R must
exceed 2 for full estimability. Note that both the
number of parameters and the df increase rap-
idly with K, implying that a larger sample is
needed for stable estimation when a multi-point
scale is used. Because of this, it may be prefer-
able to adopt a continuous measurement ap-
proach, rather than increasing K unduly. One
set of constraints which has been suggested [38]
is that the probability of correct classification is
constant for all persons, and that each of the
K —1 possible misclassifications is equally
likely. Although these are strong assumptions to
make, they do have the effect of eliminating all
but two parameters, which have closed form
estimators.

5. DEPARTURES FROM ASSUMPTIONS

Most of the statistical methods described
above involve some simplifying assumptions.
Simplification is, in some ways, a virtue, because
a simple model may be understood more easily.
More complex models may be a more accurate
representation of the real world situation, but
they are correspondingly more difficult to evalu-
ate, often because there is insufficient data to
test all the component parts of the model. Some
of the literature dealing with the major assump-
tions is described below.

5.1. Correlation of errors

All of the methods described above assume
implicitly or explicitly that the errors of
classification are independent between observ-
ers, conditional on the true state of the individ-
ual. This is a convenient assumption statisti-
cally, but one which in practice may be dubious.
For instance, there may be extreme subgroups
of patients whose disease status is relatively easy
to diagnose, and for whom misclassification is
unlikely in comparison to other patients with
“borderline” disease. This is especially true if
the true underlying disease state is actually
continuous rather than discrete.
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The likelihood method might be generalised
to incorporate correlated errors, but this will be
at the expense of introducing more parameters.
Error correlations, if present, are most likely to
be positive; for example, clinicians with similar
training are likely to misclassify the same pa-
tients in similar ways. The assumption of inde-
pendent errors is anti-conservative if there are in
fact positively correlated errors, because there
will be an empirically higher level of agreement
among observers than would be expected with
independence; the misclassification probabilities
will then be underestimated. An observer
identified as having larger misclassification rates
may erroneously be considered less skillful,
when this result has actually arisen because of
correlated errors between the other observers.
An alternative method which uses the relative
accuracy of observers has been suggested as a
solution to this problem [63].

One can sometimes test the assumption of
independent errors by using a goodness of fit
test on the closeness of the observed data to
their expected frequencies based on the indepen-
dence assumption. This test is feasible if there
are excess df remaining after the parameters of
the independence model have been estimated.
For instance, such a test may be carried out
when there are 4 or more observers in a bal-
anced design in one population [12]. As men-
tioned earlier, the test may have low power.
Also a significant lack of fit need not be due to
an inter-test dependence; other departures from
the model (e.g. increasing sensitivity of the
observers over time) might also lead to a lack of
fit.

Rindskopf et al. [64] suggest the goodness of
fit test as a way of validating the model. They
give an example with 4 diagnostic tests for
myocardial infarction, and argue that a satis-
factory fit of the likelihood model to the data
supports a binary representation of the disease.
If a poor fit occurs, Rindskopf suggests dividing
the data into homogeneous subgroups so that
the within-group error correlation might be
reduced. This approach is obviously limited by
the reduced power of the subgroup tests of
goodness of fit, because of smaller sample sizes
in each.

Very little analytic work has been done on the
effect of error correlations on parameter esti-
mates. Thibodeau [65] has developed bounds for
the sensitivity and specificity of a fallible diag-
nostic test in comparison to a reference test,
when the errors are correlated. The bounds are
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determined by the magnitude of the inter-test
correlation, and on constraints on cells in the
fourfold table of data.

Vacek [66] examined the effect of error cor-
relations for data with R = 2. § = 2; specifically
he examined the robustness of the Hui-Walter
ML estimates (which assume independent er-
rors) for this situation. under various assump-
tions about the true error structure. Error co-
variances were introduced into a modified
likelihood. Positive error covariances generally
lead to underestimation of the misclassification
rates if the unmodified likelihood is used. but
the bias in the prevalence estimate can be in
either direction. Interestingly, the true preva-
lence has no effect on the biases in the
misclassification estimates. and the prevalence
in one population has no effect on the bias of the
other prevalence estimate.

5.2, Assumption of constant sensitivity 'specificity

A second assumption of many of the methods
discussed here is that the sensitivity/specificity
values for a given method of observation remain
constant over various population subgroups,
and in particular do not vary with changes in
exposure or disease prevalence. In many situ-
ations this assumption is reasonable, but in
others the assumption is probably made only for
mathematical convenience.

In one of the few analyses to address this
problem. Goddard [67] allowed the sensitivity of
a test for schistosomiasis to depend on preva-
lence. He felt that higher disease prevalence
would correspond to a higher intensity of infec-
tion, hence decreasing the chance of a false
negative result. (This again represents an issue
which arises when disease is measured as a
dichotomized state, when the underlying disease
is a continuous spectrum.) A negative ex-
ponential relationship was assumed between the
false negative rate and the disease prevalence.
As before. the assumption in question can be
relaxed by suitable generalisation of the like-
lihood, incorporating additional parameters in
the process. In this case. the number of new
parameters was minimised by assuming the
exponential sensitivity function to apply.

6. MEASUREMENT ERROR IN
CONTINUOUS DATA

This paper has been restricted to a review of
misclassification 1n discrete data, although
analogous work has been done on random
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measurement error for continuous data. The
emphasis on discrete aspects of misclassification
was deliberate because, as Howe [68] notes,
continuous risk variables are often discretised
anyway in the analysis of medical data sets: this
allows the calculation of indices such as relative
risk for categories or risk, without the necessity
of assumptions concerning the shape of dose

response relationships.

The reader interested in the effects of errors of
measurement in continuous variables in this
context is directed to the work of Howe [68],
Kupper 1], Walker [5]. and others [69-72].
These authors conciude that. as for discrete
data, random measurement error leads to atten-
uation of estimates of effect, and that a substan-
tial increase in sample size may be needed to
maintain power.

Random measurement error in a confounder
may seriously bias measures of effect [1]. Meth-
ods exist for obtaining unbiased estimates of
effect if data are available on the random mea-

7. DISCUSSION

We have seen how the various designs for
investigating the reliability of clinical data may
be characterised by the number of misclassifi-
cation and prevalence parameters, and by the
number of statistical df available for their esti-
mation. Subsets of parameters can be estimated
in designs which have too many parameters to
be estimated simultaneously but only by impos-
ing constraints. If possible, it is desirable to use
additional observers, or independent replicates
of the same observers. Three observers is the
minimum for which all parameters can be esti-
mated; with more than 3 observers the number
of df exceeds the number of parameters, allow-
ing a goodness-of-fit test of errors. Using a
response scale with more than 2 points increases
the df faster than the number of parameters, but
a larger sample will be needed to permit stable
estimation of all the parameters. Irregular de-
signs, where not all observers classify all sample
subjects, may limit the number of parameters
which are estimable without constraints.
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