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Abstract-WC review methods for the analysis of categorical climcal and epldemiological data. in 
which the observations are sublect to misclassification. Under certain conditions. it is possible to 
estimate error parameters such as sensitlvitl. specificity. relative risk. or predictive value. even 
though no defmltlve classilication (gold standard) is available. The parameter estimates are 
obtained by modelling the data. using maximum likelihood, with or without some constraints. The 
models recognize that the true classification of an individual is unknown. and so are sometimes 
referred to as “latent class” models. 

The latent class approach provides a umlied framework for various methods round in a dispersed 
literature, characterising each by the number of populations or subgroups in the data. and the 
number of observations made on each Individual; the statistical degrees of freedom are implied by 
the sampling design. Data sets with less than three replicate obssrvations per individual necessarily 
require constraints for parameter estimation to be possible. Data sets with three or more replicates 
lead directly to estimates of the misclassification rates. subject to some simple assumptions. 

Some more complex problems are also dlscussed. including d,ita where the response variable has 
more than two levels. sequential and irregular designs and the effects of assumption violations. 

Biostatistlcal methods Misclassification Sensitivity SpecIficit) Relative risk 
Prsvalcnce Error rates Reliability Models Categorical data Contingency tables 

I. INTRODUCTIOll 

Clinicians and epidemiologists often measure or 
classify individuals according to the presence 
or absence of a disease, signs or symptoms, or 
exposure to risk factors. In practice, errors in 
measurement or classification can occur for 
many reasons, including the use of subjective 
clinical judgment. technical imperfections of a 
diagnostic test. memory loss, deliberate mis- 
statement or interpretational errors by inter- 
viewers or patients. and clerical errors. 

Errors of measurement or misclassification in 
exposure variables, outcomes or confounders 
lead to bias in estimated indices of association 
such as the relative risk, and distortion of the 

* Based m part on work done at the Institute for Bio- 
statistics of the South African Medical Research Council. 

p-values of their statistical tests of significance. 
Even modest probabilities of misclassification 
can have a substantial impact [I -51. 

The ideal way of assessing the probability of 
misclassification with a particular method of 
observation is to compare it to a “definitive” or 
“gold standard” method which is error free [6]. 
For diagnostic testing, this is often not possible 
because of cost or risk to the subjects or ethical 
considerations. It has been found that in about 
1,‘3 of medical articles describing diagnostic test 
evaluation, no well-defined gold standard was 
used [7]. Similarly. for epidemiologic risk fac- 
tors, there is often no definitive method of 
measurement available. 

In situations where error-free measures are 
difficult to obtain, reliability (i.e. reproducibility 
or repeatability) is often assessed by comparing 
the classifications of a set of individuals by two 
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or more observers or methods. It is sometimes 
tempting to assume that one of the methods is 
indeed error free, for instance that a senior 
clinician always makes an accurate diagnosis, at 
least relative to junior students! However such 
an assumption clearly biases the estimated error 
rates in the other observations. 

Another strategy might be to analyse the level 
of inter-observer agreement, perhaps compared 
to the majority opinion [8,9]. This method is 
useful if the number of observers is large, when 
the estimation of all the observer-specific error 
rates may be computationally difficult or unsta- 
ble. It is also possible to identify those observers 
who agree least often with the majority. Such 
observers are not necessarily any less accurate, 
but may be using different criteria for their 
classification [9]. 

One difficulty in the interpretation of agree- 
ment analyses is that the commonly-used indices 
of agreement, such as the kappa statistic [lo] 
depend on the true prevalence of the attribute in 
the data [1 l-131. Kappa will tend to be lower in 
populations where the attribute prevalence is 
very high or very low, even if observer error 
rates remain constant. The same difficulty ap- 
plies to other indices of agreement [14], making 
the analysis of agreement an inherently less 
attractive option than direct estimation of 
misclassification rates, if the latter is feasible 
[ill* 

In this paper we review various ways in which 
observer error rates can be estimated in some 
generic clinical and epidemiological settings. 
Unless otherwise stated, we assume that all of 
the measurements are subject to potential error. 
The misclassification probabilities of the observ- 
ers, will be estimated using various models 
which assume the “true” classifications to be 
unknown values. 

In many situations, there is also interest in 
estimating the prevalence of an attribute (e.g. 
disease, symptoms, risk factor exposure), or in 
functions of prevalence such as relative risk. The 
estimability of these parameters depends on the 
number of populations or distinguishable 
groups of individuals sampled, the pattern of 
observations (especially the number of obser- 
vations made on each individual), and how 
many statistical constraints are imposed. It will 
be shown that most of the methods which have 
been suggested for data with one or two observ- 
ers require constraints in order to render a 
subset of parameters estimable. In contrast, 
when there are three or more observers, all the 

relevant parameters can be estimated without 
constraints. 

2. TERMINOLOGY AND NOTATION 

Suppose that in a population, a proportion 6’ 
of persons are actually “positive” for an attri- 
bute of interest; 8 is known as the prevalence. 
For a given observer, the probability that an 
individual who is actually negative will be 
classified positive will be denoted by a, this 
being the false positive rate for that observer; 
1 - c1 is known as the specificity, the probability 
that a truly negative individual is correctly 
classified. The corresponding parameters for 
truly positive individuals are /? (the false- 
negative rate), and the sensitivity 1 -B, (the 
probability of correct classification for truly 
positive individuals). This follows the notation 
of Hui and Walter [I 51. 

We will usually refer to the classifications as 
“observations”; depending on the context, an 
observation might be a diagnostic test, one of 
several alternative data sources (e.g. patient 
interview or hospital records), or a repeat 
classification by the same method on a different 
occasion. For situations where there is more 
than one observer, parameters will be sub- 
scripted accordingly. 

Also of interest are the predictive values. The 
positive predictive value PV + is the probability 
that an individual observed as positive is actu- 
ally a true positive, and PV- is the probability 
that an apparently negative individual is truly 
negative. PV+ and PV- depend on the preva- 
lence 19, and so may vary between populations, 
even though the sensitivity and specificity re- 
main constant [16, 171. PV+ and PV- are 
useful when one is interested in the likelihood of 
a correct classification of individual subjects in 
a specified population. However, sensitivity and 
specificity are more useful as indicators of the 
reliability of the observations as a whole. 

We denote by niik the number of individuals 
in a particular combination of classifications by 
a set of observers, with i, j, k . . . = 1 denoting 
the positive results, and 0 the negative results. 
The total number of individuals will be denoted 
by N. 

As a simple example, Table 1 shows the 
cross-classification of N individuals, according 
to a fallible observer 1, and according to a 
definitive observation 2 made without error. 
The true prevalence of the attribute is 
8 = (n,, + no,)/N, the proportion of individuals 
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Table I. Comparison of a fallible observer (I) with an 
error-free classification method (2) 

Error Free Observation 2 

+ Total 

+ “1 / ‘1111 “II + nIlI 
Observer I 

classified positive by the definitive method. Sim- 
ilarly the false positive and false negative rates 
can be estimated as 5 = n,,,;‘(n,,, + noo) and 
/? = n,,, /(no, + n,, ) respectively; their denomi- 
nators are based on the error-free classification 
according to observation 2. Finally, PV+ and 
PV - may be estimated, using the fallible obser- 
vations I to define appropriate denominators. 
The parameters may be estimated directly in this 
situation. because of the availability of the 
error-free method 2. However in the more typi- 
cal case where all the observations are poten- 
tially misclassified, a more general approach is 
needed. as is described in the following section. 

3. REVIEW OF PROBLEMS INVOLVING 
MISCL4SSIFICATION 

The number of observers (R) and the number 
of populations or sub-populations which are 
sampled (5’) determine the number of cross- 
classifications into which the data are grouped. 
and hence the number of degrees of freedom 
(Q’) which are available for parameter esti- 
mation. We will review estimation methods for 
a variety of typical situations, each character- 
ised primanly by their values of R and S: for 
each problem we will calculate the number of 
independent parameters involved, and the num- 
ber of @implied by the sampling design. If there 
are too many parameters to be estimated from 
the available (I/; constraints must be applied. for 
instance by regarding some oi the parameters as 
known constants. 

We first restrict attention to binary obser- 
v.ations. (Extensions to multilevel responses are 

given in Section 4.2). In the most general case, 
the prevalence and the sensitivity and specificity 
of the observers may vary across the S popu- 
lations. For example, suppose the 
(sub)-populations are defined as women in var- 
ious age groups. and the observations are to 
detect breast cancer using a mammographic 
screening device. Because of changes in breast 
tissue mass and density with age, the error rates 
may depend on age. 

For situations with a single binomial response 
and arbitrary numbers of observers and popu- 
lations (R and S), there are R false positive rate 
parameters. R false negative rate parameters 
and a prevalence parameter associated with 
each population, or S(2R + I) parameters in 
total over all populations. If the observations 
are independent between observers. there are 2’ 
possible combinations of results for each sub- 
ject. Regarding the sample sizes as fixed gives 
2R - 1 dffrom each population. or S(2R - 1) dI’ 
in total. Estimability of all the parameters there- 
fore depends essentially on R, because S is a 
common factor. The number of parameters and 
dffor the first few values of R in one population 
(S = 1) are: 

Number of 
observers R : I 2 3 4 5 

Number of 
parameters 2RtI: 3 5 7 9 II 
Number of<// ZR- I: I 3 7 I5 31 

Thus R = 3 is the minimum number of observ- 
ers for which all parameters may be estimated 
without further assumptions, for any number 01 
populations. 

When all of the observers are imperfect on 
sensitivity and/or specificity. the “true” state of’ 
each person remains unknown. However the log 
likelihood of the data can be expressed as 

Here r,, and fl,, denote the false-positive and 
false-negative rates for observer r in populatiorl 
.F, X(T) denotes the classification of an individual 
by observer I’. and the second summation is over 
all combinations of observations by the set of 
observers; n,(x) is the number of individuals in 
population .Y who receive a given set ol 
classifications x. This likelihood supposes that 



A
ut

ho
r(

s)
 

(R
ef

.) 

Ta
bl

e 
2.

 S
um

m
ar

y 
of

 
m

et
ho

ds
 

fo
r 

es
tim

at
io

n 
of

 
se

ns
iti

vi
ty

, 
sp

ec
ifi

ci
ty

, 
pr

ev
al

en
ce

 
an

d 
re

la
te

d 
pa

ra
m

et
er

s 
(b

in
ar

y 
da

ta
) 

N
o.

 
of

 
N

o.
 

of
 

N
o.

 
of

 
N

o.
 

of
 

Ex
am

pl
es

 
of

 
sa

m
pl

in
g 

ob
se

rv
er

s 
po

p.
 

pa
ra

m
et

er
s 

co
ns

tra
in

ts
 

de
si

gn
 

or
 

ap
pl

ic
at

io
n 

(R
) 

(S
) 

df
 

Pa
ra

m
et

er
s 

(P
) 

C
on

st
ra

in
ts

 
(C

) 
Es

tim
at

ed
 

P-
C 

pa
ra

m
et

er
s 

Q
ua

de
 

et
 a

l. 
[3

] 
La

nd
is 

an
d 

K
oc

h 
[8

,9
] 

W
al

te
r 

(1
21

 
D

aw
id

 
an

d 
Sk

en
e 

[1
8]

 
W

hi
te

 
an

d 
La

nd
is 

[2
0]

 

Q
ua

de
 

et
 a

l. 
[3

] 
R

og
an

 
an

d 
G

la
de

n 
[2

8]
 

G
ar

t 
an

d 
B

uc
k 

[3
2]

 
G

re
en

be
rg

 
an

d 
Je

ke
l 

[3
3]

 
St

aq
ue

t 
et

 a
l. 

[3
4]

 

C
hi

nn
 

an
d 

B
ur

ne
y 

[3
8]

 

G
ol

db
er

g 
an

d 
W

itt
es

 
]2

91
 

B
ar

ro
n 

[3
9]

 

Es
tim

at
io

n 
of

 
se

ns
iti

vi
ty

, 
sp

ec
ifi

ci
ty

 
an

d 
pr

ev
al

en
ce

s;
 

ob
se

rv
er

 
ag

re
em

en
t 

an
al

ys
es

 

>3
 

C
ro

ss
-s

ec
tio

na
l 

su
rv

ey
 

w
ith

 
a 

fa
lli

bl
e 

m
ea

su
re

m
en

t; 
pr

ev
al

en
ce

 
es

tim
at

e 
re

qu
ire

d 

Si
m

ul
ta

ne
ou

s 
us

e 
of

 
tw

o 
di

ag
no

sti
c 

te
st

s;
 

co
m

pa
ris

on
 

of
 a

 n
ew

 
te

st
 

w
ith

 
an

 
es

ta
bl

is
he

d 
te

st
 

Es
tim

at
io

n 
of

 
“a

ve
ra

ge
” 

pr
ob

ab
ili

ty
 

of
 

co
rr

ec
t 

cl
as

si
fic

at
io

n 

2 

Es
tim

at
io

n 
of

 
tru

e 
2 

nu
m

be
r 

of
 

di
se

as
e 

ca
se

s 
fro

m
 

po
pu

la
tio

n 
sc

re
en

in
g 

da
ta

 

Es
tim

at
io

n 
of

 
od

ds
 

2 
ra

tio
 

as
so

ci
at

in
g 

tw
o 

cl
in

ic
al

 
en

tit
ie

s 

S(
2R

 -
 

1)
 

a,
 

IX
 8

 
S(

2R
 

+ 
1)

 
N

on
e 

0 
S(

2R
 

+ 
1)

 
A

ll 

u,
 f

l 
kn

ow
n 

a2
, 

p2
 k

no
w

n 

a,
=a

,=
O

 

aI
, 

a2
, 

/A
. 

I%
 

kn
ow

n 

2 
1 

2 
3 

3 
2 

2 
3 

4 
3 



Misclassified Data 927 

m 

c, m P r- PI cc, 

N PI 

N 



928 S. D. WALTER and L. M. IRWIG 

Table 3. Assessment of pleural thickening by 
three independent radiologists for 1692 males 

Reader* 
Number Frequency 

1 2 3 of men notation 
- - - 1513 *COO 
- - + 21 %I 
- + - 59 “010 
- + + I1 nOll 
+ - - 23 “Km 
+ - + 19 %ll 
+ + - 12 n110 
+ + + 34 “III 

* + denotes “positive” (pleural thickening 
present); - denotes “negative” (pleural 
thickening absent). 

(i) all observers observe all subjects in all popu- 
lations; (ii) the errors of classification are inde- 
pendent between subjects; (iii) the errors of 
classification are independent within subjects 
and between observers, conditional on the true 
state; and (iv) the sample sizes in each popu- 
lation are regarded as fixed. These assumptions 
are required for all methods reviewed, unless 
otherwise indicated. 

The EM algorithm [18,19] has been suggested 
to estimate the parameters of model (1). By 
adopting initial probabilistic estimates of each 
subject’s true (but unknown) state, provisional 
estimates of the misclassification probabilities 
and the prevalence may be obtained directly, as 
a simple generalisation of the situation in Table 
1; these estimates are then used to calculate 
improved estimates of the true status, and the 
process is iterated until convergence occurs. An 
alternative approach is to use the GSK meth- 
odology [8,9,20]. Finally the same model has 
been used in a “latent class analysis” using 
logistic regression [21]. The term “latent class” 
refers to the fact that the true state variable is 
always hidden or unknown, even though proba- 
bilistic estimates can be made for it. 

Increasing the number of observers above 3 
will cause an excess of dJ For instance, with 
four observers there is an excess of 6 #over the 
9 required for the parameters. These additional 
#may be used for a goodness-of-fit x2 test of 
the model (cf. Section 5.1). The amount of 
computation for parameter estimation goes up 
rapidly with the number of observers. Using 
three to five observers seems a reasonable com- 
promise, this being enough to allow complete 
parameter estimability, but not so large as to 
pose computational problems. 

Table 2 gives a synposis of methods of esti- 

mation of misclassification probabilities, disease 
prevalence and related parameters. This is for 
the general case as discussed above and for 
which an example is given below, as well as for 
other situations where there are fewer than 3 
observers, as discussed in Section 3.3. 

3.2. Examples with three or more observations 
per individual (R 2 3) 

Data of this kind can occur in a number of 
ways. First, several diagnosticians may indepen- 
dently classify a set of patients; for example, if 
nurses, radiologists and other physicians carry 
out screening diagnoses for cancer [22]. Simi- 
larly, Dawid and Skene [ 181 studied five anaes- 
thetists who rated the same patients on their 
fitness for surgery. A second possibility is where 
the same diagnostic test may be used several 
times, e.g. the recommended sequence of six 
stool guaiac tests for colon cancer [23]. Third, 
there may be several different diagnostic tests 
for the same disorder, which may be used 
simultaneously or in sequence, e.g. Mantoux, 
tine, imotest, and “monovacc” methods for 
tuberculin sensitivity [24]. 

Consider the numerical example of Table 3. 
Three experienced readers independently evalu- 
ated the chest X-rays of 1692 male employees in 
asbestos mines and mills, taken at each worker’s 
annual examination. Using the IL0 U/C Inter- 
national Classification of Radiographs of Pneu- 
moconioses [25], the readers assessed the 
presence/absence of pleural thickening [26]. 
Hence there are R = 3 observers in S = 1 popu- 
lation, implying 7 parameters in total. Under 
the independence assumption, the probability 
that a true positive individual is classified posi- 
tive by all three readers is (1 - /I,)( 1 - /I*) 
(1 - &), where /I, is the false-negative proba- 
bility for observer r (r = 1,2,3). Similarly, the 
probability that a true negative individual is 
classified in this way is a, a2u,. Using a similar 
argument for each combination of classifi- 
cations, as in the general likelihood equations 
(1) allows the complete likelihood to be com- 
puted. After numerical maximisation, we obtain 
parameter estimates, with an approximate 
variance-covariance matrix derived by standard 
maximum likelihood (ML) methods. 

For these data, the parameters and their 
approximate standard errors are given in the 
first two rows of Table 4. We may note that 
observers 1 and 3 have very similar error proba- 
bilities, and that observer 2 has both higher false 
positive and false negative rates. This is also 
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Table 4. Parameter estimates for the data of Table 3 

929 

Parameter 
. . ^ 
XI 22 21 B, f12 Is, 3 

ML estimate 0.01 I 0.035 0.010 0.235 0.356 0.251 0.054 
Standard error 0.004 0.005 0.003 0.112 0.171 0.1 I9 0.023 

Majority 
agreement estimate 0.014 0.037 0.013 0.145 0.250 0.158 0.045 

reflected in a lower level of chance-corrected 
agreement, as measured by K [IO], in pairs 
involving observer 2. These results show either 
that observer 2 is inherently less accurate, or 
that he is using different diagnostic strategies, 
despite the attempts to standardise observers in 
their operational definitions of “abnormality”. 
The findings are also consistent with correlated 
errors for readers I and 3. 

Numerical iteration is required in the ML 
estimation process, and so it is useful to have 
suitable starting values for each parameter. We 
used initial estimates based on the majority 
opinion among the observers. For instance, the 
proportion of subjects with at least two “posi- 
tive” X-ray assessments was used as the initial 
estimate of prevalence. Similarly the initial false 
positive rate for each observer was taken as the 
proportion of times he rated positive among 
subjects where the other two assessments were 
negative. These estimates (also shown in Table 
4) gave satisfactory ML convergence after three 
iterations, which is typical of our experience 
with other data sets. 

In some small or ill-conditioned data sets, 
convergence may be faster and the solution 
more stable if it can be assumed that the obser- 
vations all have the same sensitivity and 
specificity. An example with 3 similar mea- 
surements is given by Quade et ul. [3], who also 
provide a simple iterative computing algorithm 
for this case. 

3.3. Methods for dutu n?th less thun three ohser - 
rations per indiriduual (R < 3) 

As indicated in Section 3. I. for R < 3 observ- 
ers there are insufficient df’to permit the simul- 
taneous estimation of all the parameters. Never- 
theless there are a number of common situations 
where estimates are required of sensitivity, 
specificity, or prevalence, but without the luxury 
of three separate observations. For instance, 
one may wish to assess the performance of only 
one or two diagnostic tests; and even in studies 
of agreement in subjective diagnosis. there may 

be occasions when only two observers are avail- 
able. For such problems, several methods have 
been suggested to estimate subsets of parame- 
ters after the imposition of certain constraints. 
The form of these constraints varies, but a 
common option is to regard some parameters as 
known, and then to estimate the remainder. If 
the number of parameters is p. and the number 
of constraints is C, then in order to estimate 
those parameters whose values are not directly 
implied by the constraints. we must have that 
the number of &available is at least p + c. The 
methods reviewed below deal with I or 2 obser- 
vations on individuals from 1 or 2 populations. 

3.3.1. One observation per individuul, one pop- 
ulation (R = 1. S = I ). Here subjects from a 
single source are classified by a single obser- 
vation as positive or negative for an attribute. 
Typical frequency data may be summarised 
simply by the total numbers of positives (n, ) and 
negatives (n,). There are 3 parameters-the 
prevalence e of the attribute, and the false- 
positive and false-negative rates (c( and /I). This 
type of data would arise if a diagnostic test is 
used to detect sub-clinical disease, for instance 
abnormally high intra-ocular pressure as an 
indication of glaucoma [27]. Regarding the total 
number of individuals observed (N) as fixed, the 
number of “positives” n, determines the number 
of “negatives” n,, and vice versa, because 
n, + n, = N; thus only I df is available, and so 
two constraints must be applied if parameter 
estimation is intended. 

A common option is to impose the two 
constraints by regarding the sensitivity 1 -/I 
and specificity I - x as known, and then to 
estimate the prevalence H. This would be appro- 
priate if one were evaluating the prevalence in 
various populations. using a well-established 
screening test with known error probabilities. 
Rogan and Gladen [28] give algebraic expres- 
sions for g when a and /J’ are given: H^ can 
occasionally be negative. They also demonstrate 
that the alternative of simply using the propor- 
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tion of positive observations (n, /N) yields a very 
biased estimate of 13; specificity errors are 
usually a more important source of bias in the 
prevalence estimate than are errors of sensitivity 
[31. 
3.3.2. Two observations per individual, one 

population (R = 2, S = 1). This type of data 
arises frequently when two diagnostic tests are 
being compared, or the agreement of two sub- 
jective raters is being assessed. For example, 
mammography and physical examination may 
be used as screens for early breast cancer [29]; 
the stress ECG and arteriography are both tests 
for coronary artery disease; two psychiatrists 
may differ in their diagnostic categorisation of 
a series of patients [30]; and ultrasound and 
venography are both tests for venous occlusion 
[311. 

Typical data may be displayed as in Table 1, 
except that now both observations 1 and 2 are 
regarded as subject to error. Regarding N as 
fixed, there are 3 df for parameter estimation. 
There are five parameters-the test error rates 
a,, CQ, fi, and /12, and the prevalence 8. There- 
fore at least two constraints are required. A 
wide variety of alternative constraints have been 
suggested, as outlined below. 

When the data arise from two different meth- 
ods of observation (as in the comparison of 
diagnostic tests), one possibility is to regard the 
sensitivity and specificity of one (say method 2) 
as known; this is appropriate if a new method 
is to be validated against an established criterion 
with known measurement properties. Assuming 
a, and /I2 known imposes the necessary two 
constraints, and several authors have all given 
identical formulae for oi,, $, and e in this 
situation [32-341. Standard errors of these are 
also available [32,33] and predictive values may 
be estimated [34]. 

A special case of this approach is when a2 and 
/I2 are assumed to be zero, i.e.. that observation 
2 is error-free. This is an expedient assumption 
when a third assessment of status is not possible, 
and when observation 2 is felt to be “definitive”. 
For instance, arteriography is regarded as a 
“gold standard” diagnosis for coronary artery 
disease, against which the less invasive stress 
ECG method may be compared [35]. Other 
examples of this kind include: stool guaiac tests 
for colon cancer vs the barium enema as a “gold 
standard” [23]; thermography results vs tissue 
biopsy in the detection of minimal breast cancer 
[36]; and examination by a school nurse vs a 
specialist for hearing loss [37]. One danger here 

is that if test 2 is assumed to be error free, but 
is actually subject to error, the error rates for 
test 1 will be overestimated. 

Some other approaches have been proposed 
for this type of data. Firstly, both tests being 
compared may be pathognomonic, so that they 
are regarded as having perfect specificity 
(a = 0). Staquet et al. [34] give formulae for fi,, 
b2, 4, and predictive values for this case. Sec- 
ondly, it is possible to obtain approximate 
estimates of a, and a2, without assuming any- 
thing about /I, or /&, if 8 is known to be low or 
assumed so; correspondingly, populations with 
high prevalence yield approximate estimates of 
/I, and /12, without knowledge of a, and a2 [33]. 
Some parameters may be estimated in various 
two-stage sampling designs, where the results of 
one observation are known before the second 
observation is made, on a sample basis [34]; 
again, however, the error rates of one test must 
be assumed known in order to estimate the 
other parameters. Finally, Chinn and Burney 
[38] have proposed another alternative con- 
straint structure for this problem; they assume 
that a, = a2 = /I, = B2, i.e. the probability of 
correct classification is constant. The estimated 
parameters are the prevalence and common 
sensitivity (or specificity), based on the 2 df 
remaining after application of 3 parameter con- 
straints and loss of 1 df because of symmetry in 
the table when the error rates are the same for 
both observers. 

A related problem arises from disease screen- 
ing data. The screening method may misclassify 
persons, either by falsely labelling normals as 
(false) positives, or by missing true cases of 
disease (false negatives). Goldberg and Wittes 
[29] have described the use of capture-recapture 
methodology to estimate the number of true 
positives (the preclinical cases of disease) and 
negatives which exist in the screened sample, 
when two alternative means of diagnosis are 
used simultaneously, for instance in the de- 
tection of preclinical breast cancer using mam- 
mography and physical examination. In general, 
there are four error parameters, and one preva- 
lence, giving 5 parameters in total. Goldberg 
and Wittes assume the false positive rates to be 
zero for both screening modalities: this then 
renders the remaining parameters estimable 
from the 3 df in the 2 x 2 table of screening 
results. 

Related methods have been suggested for 
situations where the two observations are on 
different characteristics of individuals in the 
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same population. Barron [30] investigates the 
effects of misclassification on the odds ratio 
relating two clinical attributes (e.g. two different 
diseases). Individuals are classified on each attri- 
bute into the usual fourfold table with 3 4fI 
There are now 7 parameters: 3 independent 
cell probabilities in the table, and X, , a?, fi, and 
/& as before. Barron shows that if the error 
probabilities are taken as independent and 
known (4 constraints). a corrected odds ratio 
estimate may be derived from the empirical 
data. 

Finally Murphy [40] considers a fourfold 
table generated by classifying individuals cross- 
sectionally according to the presence of a dis- 
ease and/or risk attribute. The available 3 Lff’are 
sufficient to estimate the sensitivity;specificity of 
the attribute interpreted as a marker for the 
disease, and the disease prevalence. Murphy 
also derives a simple relationship between PV + , 

PV - and the relative risk of disease for individ- 
uals attributed positive compared to negative. 
Bennett [31, 411 gives a test of the hypothesis 
that two (or more) diagnostic tests have equal 
predictive values. but does not discuss esti- 
mation. 

Yanagawa and Gladen [42] discuss estimation 
when a single diagnostic test is applied to the 
same individuals at two or more points in time. 
As before, the “test positive” rate is a very 
biased estimate of the prevalence at each time 
point. and one that is more affected by 
specificity errors than sensitivity. If there are 
two times. 5 parameters are involved (the prev- 
alence at the first time point, the incidence and 
remission rates between the two times, and the 
test sensitivity and specificity). but only 3 @are 
available. Two alternative pairs of constraints 
are possible: (i) the sensitivity and specificity are 
known, or (ii) the remission rate is zero and the 
specificity is I. An example of the latter is 
provided. using onchoceriasis data. A similar 
approach is given by Chinn and Burney [38]; 
after assurning that sensitivity and specificity are 
equal for both observations. (3 constraints). 
estimates can be obtained for the prevalence at 
each of the two time points, and the common 
probability of correct classification. 

Yanagawa and Gladen add that if three time 
points are used. there are 7c{f‘ still with 5 
parameters; complete estimation is then possible 
[42.43]. More general models have been devel- 
oped to estimate the error rates of screening 
tests administered on several occasions [44,45]: 
these models also allow one to estimate the 

disease incidence rate and the duration of its 
preclinical interval. 

3.3.3. One observation per individual, two pop- 
ulations (K = 1, S = 2). An example of this 
common design is the casecontrol study, where 
cases and controls are classified on exposure to 
an antecedent risk factor. Misclassification may 
distort the odds ratio relating exposure to dis- 
ease status If the misclassification rates are the 
same for cases and controls. the odds ratio will 
be biased towards the null value; with different 
misclassification rates for the cases and controls. 
bias in either direction can occur [46]. 

Assuming fixed total numbers of subjects in 
each of the two groups, a binary classification 
gives 2 ~/f in total. When sensitivity and 
specificity are assumed constant across popu- 
lations. the four parameters are the common 
false positive rate cx, the common false negative 
rate fi, and the population-specific prevalences 
0,. and Hz. So again two constraints are required 
for estimation purposes. 

As for the problem with R = 2, S = I, a 
common solution is to assume r and p known 
Copeland et rd. [47] then describe how to esti- 
mate the “true” numbers of positives and nega- 
tives in each group. and hence how to re- 
calculate the odds ratio or relative risk, 
“corrected” for the misclassification effect. 
Greenland and Kleinbaum [48] describe a simi- 
lar approach; they point out that a priori esti- 
mates of the misclassification rates are also 
subject to error, so that the corrected or “error- 
free” tables may still indicate incorrect levels of 
association. Greenland [49] has proposed an 
equivalent method for matched pair data with- 
out replication; this requires prior estimates of 
the error rates, and the solution to 4 simulta- 
neous equations. Finally, rather than assuming 
any particular values for the error rates, Blettner 
and Wahrendorf [50] consider the possible 
ranges for the probability of correct 
classification in case-control studies, given the 
empirical misclassified data. Equal reliability is 
assumed for the cases and controls, leading 
to a range of possible values for the relative 
risk. 

3.3.4. l‘~*o ohsermtions per indiaidual. tlzo 
populations (R = 2, S = 2). In this problem. we 
have two 2 x 2 data tables cross-classifying the 
two observations, one from each of the two 
populations. The two groups might be from 
different geographic areas. or be sub-groups 
(e.g. sex, race) of the same population. As an 
example, the Mantoux and tine tests (the two 



932 S. D. WALTER and L. M. IRWIG 

observations) for tuberculosis were both admin- 
istered to individuals in two populations [15]. 

There are now four misclassification proba- 
bilities as before (a,, ctz, /I, and f12), and a 
prevalence in each population (0, and 19,), mak- 
ing 6 parameters in total. There are also 6 df 
(3 df from each population), and so no con- 
straints are required. As before, we have as- 
sumed the sensitivity and specificity for each 
observer to be constant across populations. 
Closed form ML estimates of the 6 parameters 
and their variance+zovariance matrix may be 
obtained [ 151. 

A further example of this type of data occurs 
in case-control studies, if there are two assess- 
ments of exposure in each group. Marshall and 
Graham [51] have proposed that only individu- 
als with concordant assessments be used to 
estimate the exposure-disease odds ratio. How- 
ever this method gives a biased estimate, in 
contrast to the ML method which is asymp- 
totically unbiased and efficient [52]. In their 
discussion of latent class analysis, Kaldor and 
Clayton [21,53] give an example of data where 
replicate measurements are available for some 
or all of the cases and/or controls. They demon- 
strate that obtaining replicate measurements on 
even a modest proportion of subjects leads to 
substantially improved estimation of case-con- 
trol odds ratios. 

4. OTHER DESIGNS 

4.1. Irregular observational designs 
All of the above methods have supposed that 

all of the observers categorise all study subjects, 
but there are several practical situations where 
each observer classifies only a subset of individ- 
uals, leading to a less regular design. The usual 
effect of departing from the regular layout is to 
reduce the available df, thereby imposing fur- 
ther limitations on the number of estimable 
parameters. 

A common example of an irregular design is 
from sequential observations. Here the early 
observations determine whether or not an indi- 
vidual will go on to be observed later in the 
sequence. For instance, a sequence of diagnostic 
tests may be available, typically having in- 
creasing accuracy but at increasing cost or risk 
to the patient; only individuals with early ab- 
normal results progress to the later stages in the 
sequence. An example is the sequence of tests 

recommended for spina bifida: two tests for 
elevated alpha-fetoprotein (AFP), ultrasound, 
amniocentesis, and amniography [54]. Another 
example of this kind is when children are given 
an initial multiple puncture test (e.g. tine) for 
TB which, only if negative, is followed by a 
Mantoux test [55]. 

Sequential designs which introduce a new 
method of observation at each step are generally 
overparameterised. At each stage, 2 new param- 
eters (the sensitivity and specificity of the new 
observation) are introduced, but only 1 df is 
added. Only if a sufficient number of repeat uses 
are made of the same test can all the relevant 
parameters be estimated; under an assumption 
that the error probabilities remain constant on 
repeated uses, the accumulation of an extra 
single df at each stage will eventually produce a 
total df which exceeds the number of parame- 
ters. For example, suppose the same test is 
applied repeatedly only to those positive in the 
previous step. Three parameters are involved: u, 
/I and the population prevalence 8. Each step 
provides 1 df, and so therefore 3 steps are 
required as a minimum for parameter esti- 
mation. 

On the other hand, if the assumption of 
constant error probabilities is not valid, the 
situation is then similar to using a different test 
method at each stage, and again there is a deficit 
of df. Thus although sequential strategies may 
often be desirable for routine clinical practice, 
they are inadequate in general for the initial 
assessment of performance. 

An irregular design was used by Rudd et al. 
[56] to compare several tests for TB sensitivity. 
All study subjects received the Mantoux test, 
but were randomised to receive either the tine 
test or the imotest in addition. The data thus 
consist of two 2 x 2 tables, each having 3 df, 
giving 6 df in total. Subjects whose initial Man- 
toux was negative, and whose other test was 
positive were retested by Mantoux; the retests 
provide an additional 2 df, one from each of the 
tine and imotest groups. The data in total then 
have enough df (8) to estimate all the par- 
ameters (3c(‘s, 3p’s and 20’s). 

A final example of an irregular design is that 
proposed by Green [57] to estimate the relative 
risk of disease in exposed versus unexposed 
individuals. Disease classification is made on the 
basis of a fallible test T, for a sample of 
individuals from each of the two exposure 
groups; this yields 2 d$ In addition, it is sup- 
posed that a correct classification is made only 
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for individuals in the unexposed group who 
have a positive result on T; this yields a further 
1 ulf (giving 3 df in total) and an estimate of 
PV+ for the unexposed. There are 4 parame- 
ters; the r and fi for T. and the true disease 
incidence rates for the exposed and unexposed. 
Green imposes a constraint by supposing the 
disease incidence in unexposed individuals to be 
small, and then shows that a relative risk esti- 
mate. adjusted for misclassification, may be 
obtained as a function of the crude relative risk 
and PV + for the unexposed. Green gives exam- 
ples of this technique in associating coronary 
atherosclerosis with smoking and serum choles- 
terol. 

Green‘s method was extended by Begg [5X]. 
who shows how an unbiased estimate of the 
odds ratio may be obtained by restricting the 
analysis to those individuals with positive re- 
sults on 7‘. and for whom an error-free 
classification is made; this is done without infor- 
mation on sensitivity. specificity. or the inci- 
dence among the unexposed. He also notes that 
the relative risk can be estimated by assuming 
the test specificity to be I. Finally. if the sensi- 
tivity and specificity are assumed known. un- 
biased estimates of the disease incidence among 
exposed and unexposed persons may be derived. 
It has also been shown that an unbiased relative 
risk estimate can be obtained if PV- is I [59]. 
The method used by Green and Begg is similar 
to previous work [60.61] using a two stage 
sampling procedure with an error free 
classification for a random subsample. 

4.2. Responsr rnriuhle wit/z mow thun two cut- 
egories 

Although it is always possible to reduce data 
into a binary form (e.g. normal/abnormal). 
there is often a more detailed classification 
available, usually as a multilevel discrete vari- 
able. A multilevel response may be more mean- 
ingful substantively. but it will necessarily in- 
volve additional statistical parameters. and 
hence a more elaborate design if they are all to 
be estimated. As before. an option is to assume 
some of the parameters to be known. 

An example of a data set with four response 
categories IS discussed by Spiegelhalter and Sto- 
vin [62] where up to three biopsies had been 
taken from a series of cardiac transplant pa- 
tients. Each biopsy was categorised by a single 
pathologist on a four point scale indicating their 
assessment of the likelihood that organ rejection 

had taken place. It was required to estimate the 
probability that rejection had taken place for a 
patient with a given set of biopsy results. 

Assuming the various biopsy classifications to 
have equal reliability, there are 4 x 3 = 12 inde- 
pendent misclassification probabilities, and 3 
independent prevalence parameters. Ignoring 
the order of observations, there are 20 possible 
combinations of results from a set of 3 biopsies 
(4 possibilities where all three results are the 
same, 12 where exactly two different results 
occur among the three, and 4 where 3 different 
results are given). and 10 possible combinations 
in patients who had only 2 biopsies. In the data, 
IS and 8 Icombinations respectively were actu- 
ally observed. After grouping several sets of 
small frequency cells and allowing for 2 con- 
straints implied by the sample sizes, 19 #were 
available for estimation. Arguing that it would 
be impossible to observe a biopsy state which is 

worse than the true rejection state of the patient. 
Speigelhalter and Stovin assumed that 6 of the 
false positive rates were zero. This left 6 false 
negative rates and 3 “prevalences” (describing 
the true distribution across the 4-point scale), 
giving 9 parameters to be estimated in total. A 
goodness of fit test was then possible on the 
remaining 10 Q!f: 

Another example is given by Dawid and 
Skene [ 181, where 5 anaesthetists rated patients’ 
suitability for surgery on a 4 point scale; also, 
one of the 5 anaesthetists made 3 independent 
ratings of each patient. In this problem there are 
3 “prevalence” parameters and 60 misclassifi- 
cation rates (12 for each rater). A very large 
number of elf’ is available, actually 20 x 4’ 
(ignoring the order of the 3 independent repli- 
cates by one rater), so that the data will be 
sparsely distributed across all the possible com- 
binations of ratings. This implies that the esti- 
mated parameters will likely be very unstable, 
except in very large samples. Dawid and Skene 
examined stability by selective removal of ob- 
servers and/or patients from the data. They also 
remark that the usual large sample properties of 
maximum likelihood estimates are unlikely to 
hold good. 

In general, if R observers all rate the same 
individuals on a K point scale, there are 
KK - I ({f available. There are K ~ I “preva- 
lence” parameters, and K(K ~ I) misclassifi- 
cation parameters for each observer, making 
(K - l)(RK + I) in total. The following table 
shows the number of parameters and available 
(If’ for low R and K = 3 and 4: 
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Number of observers (R) 
1 2 3 

K=3 Number of parameters: 8 14 20 
Number of df: 2 8 26 

K=4 Number of parameters: 15 27 39 
Number of df: 3 15 63 

This shows that, as for binary data, 3 observ- 
ers is the minimum number required for full 
parameter estimability. In fact this is true for 
any K. For large K, the number of parameters 
is approximately K2R, and the df KR, so R must 
exceed 2 for full estimability. Note that both the 
number of parameters and the df increase rap- 
idly with K, implying that a larger sample is 
needed for stable estimation when a multi-point 
scale is used. Because of this, it may be prefer- 
able to adopt a continuous measurement ap- 
proach, rather than increasing K unduly. One 
set of constraints which has been suggested [38] 
is that the probability of correct classification is 
constant for all persons, and that each of the 
K - 1 possible misclassifications is equally 
likely. Although these are strong assumptions to 
make, they do have the effect of eliminating all 
but two parameters, which have closed form 
estimators. 

5. DEPARTURES FROM ASSUMPTIONS 

Most of the statistical methods described 
above involve some simplifying assumptions. 
Simplification is, in some ways, a virtue, because 
a simple model may be understood more easily. 
More complex models may be a more accurate 
representation of the real world situation, but 
they are correspondingly more difficult to evalu- 
ate, often because there is insufficient data to 
test all the component parts of the model. Some 
of the literature dealing with the major assump- 
tions is described below. 

5.1. Correlation of errors 

All of the methods described above assume 
implicitly or explicitly that the errors of 
classification are independent between observ- 
ers, conditional on the true state of the individ- 
ual. This is a convenient assumption statisti- 
cally, but one which in practice may be dubious. 
For instance, there may be extreme subgroups 
of patients whose disease status is relatively easy 
to diagnose, and for whom misclassification is 
unlikely in comparison to other patients with 
“borderline” disease. This is especially true if 
the true underlying disease state is actually 
continuous rather than discrete. 

The likelihood method might be generalised 
to incorporate correlated errors, but this will be 
at the expense of introducing more parameters. 
Error correlations, if present, are most likely to 
be positive; for example, clinicians with similar 
training are likely to misclassify the same pa- 
tients in similar ways. The assumption of inde- 
pendent errors is anti-conservative if there are in 
fact positively correlated errors, because there 
will be an empirically higher level of agreement 
among observers than would be expected with 
independence; the misclassification probabilities 
will then be underestimated. An observer 
identified as having larger misclassification rates 
may erroneously be considered less skillful, 
when this result has actually arisen because of 
correlated errors between the other observers. 
An alternative method which uses the relative 
accuracy of observers has been suggested as a 
solution to this problem [63]. 

One can sometimes test the assumption of 
independent errors by using a goodness of fit 
test on the closeness of the observed data to 
their expected frequencies based on the indepen- 
dence assumption. This test is feasible if there 
are excess df remaining after the parameters of 
the independence model have been estimated. 
For instance, such a test may be carried out 
when there are 4 or more observers in a bal- 
anced design in one population [12]. As men- 
tioned earlier, the test may have low power. 
Also a significant lack of fit need not be due to 
an inter-test dependence; other departures from 
the model (e.g. increasing sensitivity of the 
observers over time) might also lead to a lack of 
fit. 

Rindskopf et al. [64] suggest the goodness of 
fit test as a way of validating the model. They 
give an example with 4 diagnostic tests for 
myocardial infarction, and argue that a satis- 
factory fit of the likelihood model to the data 
supports a binary representation of the disease. 
If a poor fit occurs, Rindskopf suggests dividing 
the data into homogeneous subgroups so that 
the within-group error correlation might be 
reduced. This approach is obviously limited by 
the reduced power of the subgroup tests of 
goodness of fit, because of smaller sample sizes 
in each. 

Very little analytic work has been done on the 
effect of error correlations on parameter esti- 
mates. Thibodeau [65] has developed bounds for 
the sensitivity and specificity of a fallible diag- 
nostic test in comparison to a reference test, 
when the errors are correlated. The bounds are 
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determined by the magnitude of the inter-test 
correlation, and on constraints on cells in the 
fourfold table of data. 

Vacek [66] examined the etrect of error cor- 
relations for data with R = 2. S = 2; specifically 
he examined the robustness of the HuiiWalter 
ML estimates (which assume independent er- 
rors) for this situation. under various assump- 
tions about the true error structure. Error co- 
variances were introduced into a modified 
likelihood. Positive error covariances generally 
lead to underestimation of the misclassification 
rates if the unmodified likelihood is used. but 
the bias in the prevalence estimate can be in 
either direction. Interestingly, the true preva- 
lence has no effect on the biases in the 
misclassification estimates. and the prevalence 
in one population has no effect on the bias of the 
other prevalence estimate. 

A second assumption of many of the methods 
discussed here is that the sensitivity/specificity 
values for a given method of observation remain 
constant over various population subgroups, 
and in particular do not vary with changes in 
exposure or disease prevalence. In many situ- 
ations this assumption is reasonable. but in 
others the assumption is probably made only for 
mathematical convenience. 

In one of the few analyses to address this 
problem. Goddard [67] allowed the sensitivity of 
a test for schistosomiasis to depend on preva- 
lence. He felt that higher disease prevalence 
would correspond to a higher intensity of infec- 
tion, hence decreasing the chance of a false 
negative result. (This again represents an issue 
which arises when disease is measured as a 
dichotomized state, when the underlying disease 
is a continuous spectrum.) A negative ex- 
ponential relationship was assumed between the 
false negative rate and the disease prevalence. 
As before. the assumption in question can be 
relaxed by suitable generalisation of the like- 
lihood. incorporating additional paratneters in 
the process. In this case, the number of new 
parameters was minimised by assuming the 
exponential sensitivity function to apply. 

6. ME.ASUREMENT ERROR IR 
CONTINUOUS DATA 

This paper has been restricted to a review of 
misclassification in discrete data. although 
analogous work has been done on random 

measurement error for continuous data. The 
emphasis on discrete aspects of misclassification 
was deliberate because. as Howe [68] notes, 
continuous risk variables are often discretised 
anyway in the analysis of medical data sets: this 
allows the calculation of indices such as relative 
risk for categories or risk. without the necessity 
of assumptions concerning the shape of dose 
response relationships. 

The reader interested in the effects of errors of 
measurement in continuous variables in this 
context is directed to the work of Howe [68], 
Kupper :I]. Walker [5]. and others [69-721. 
These authors conclude that. as for discrete 
data, random measurement error leads to atten- 
uation of estimates of effect, and that a substan- 
tial increase in sample size may be needed to 
maintain power. 

Random measurement error in a confounder 
may seriously bias measures of effect [I]. Meth- 
ods exist for obtaining unbiased estimates of 
effect if data are available on the random mea- 
surement error variance [70. 7 I]. 

7. DISCL~sSION 

We have seen how the various designs for 
investigating the reliability of clinical data may 
be characterised by the number of misclassifi- 
cation and prevalence parameters, and by the 
number of statistical @available for their esti- 
mation. Subsets of parameters can be estimated 
in designs which have too many parameters to 
be estimated simultaneously but only by impos- 
ing constraints. If possible, it is desirable to use 
additional observers, or independent replicates 
of the same observers. Three observers is the 
minimum for which all parameters can be esti- 
mated; with more than 3 observers the number 
of @exceeds the number of parameters. allow- 
ing a goodness-of-fit test of errors. Using a 
response scale with more than 2 points increases 
the #faster than the number of parameters. but 
a larger sample will be needed to permit stable 
estimation of all the parameters. Irregular de- 
signs, where not all observers classify all sample 
subjects, may limit the number of parameters 
which are estimable without constraints. 

dc,k,2o,~/uu~enlc,,1r\ ~-This research was supported 1,~ part b> 
a Canadian National Health Research and Development 
Program through a National Health Scientist Award. The 
authors would hke to acknowledge the assistance of !he 
X-ray readers mentioned in Section 3.2. namely Dr G. K. 
Sluls-Cremer. Dr R. Glyn Thomas. and Professor .4. Solo- 
mon. Dr I>. L. Sackett. Dr C. H. Goldsmith and Dr N J 
Birkett of McMaster Universit) provided qome helpful 
comments on an early draft of the paper. 



S. D. WALTER and L. M. IRWIG 936 

REFERENCES 

1. 

2. 

3. 

Kupper LL. Effects of the use of unreliable surrogate 26. 
variables on the validity of epidemiologic research 
studies Am J Epidemiol 1984; 120: 643648. 
Fung KY, Howe GR. Methodological issues in 27. 
case-control studies III; the effect of joint 
misclassification of risk factors and confounding 
factors upon estimation and power. Int J Epidemiol 28. 
1984; 13: 366370. 
Quade D, Lachenbruch PA, Whaley FS et al. Effects 
of misclassifications of statistical inferences in 29. 
epidemiology. Am J Epidemiol 1980; 111(S): 
503-515. 

Classification of Radiographs of Pneumoconioses 1971. 
Geneva, Switzerland; 1972. 
Invig LM, duToit RSJ, Sluis-Cremer GK er a/. Risk 
of asbestosis in crocidolite and mosite mines in South 
Africa. Annals NY Acad Sci 1979; 330: 3%52. 
Thorner RM, Remein QR. Principles of Screening for 
Disease. Washington, D.C.: Government Printing 
Office; 1961. P.H. Monogr. No. 67, p. 24. 
Rogan WJ, Gladen B. Estimating prevalence from the 
results of a screening test. Am J Epidemiol 1978; 107: 
71-76. 
Goldberg JD, Wittes JT. The estimation of false 
negatives in medical screening. Biometrics 1978; 34: 
77-86. 

4. Gregorio DI, Marshall JR and Zielezny M. Fluctu- 30. 
ations in odds ratios due to variance differences in 
case-control studies. Am J Epidemiol 1985; 121(5): 31. 
767-774. 

5. 

6. 

7. 

8. 

9. 

Walker AM. Misclassified confounders. Am J Epi- 
demiol 1985; 122: 921. 32. 
Sackett DL, Haynes B, Tugwell P. In: Clinical 
Epidemiology. Boston: Little, Brown; 1985. 
Sheps SB, Schechter MT. The assessment of diagnos- 
tic tests. JAMA 1984: 25207): 2418-2422. 
Landis JR, Koch GG: The measure of agreement for 33. 
categorical data. Biometrics 1977; 33: 159-174. 
Landis JR, Koch GG. An application of hierarchial 
kappa-statistics in the assessment of majority agree- 34. 
ment among multiple observers. Biometrics 1977; 33: 
363-374. 

Fleiss JL. Statistical Methods for Rates and Propor- 
tions. New York: Wiley, 1981. 
Bennett BM. On tests for equality of predictive values 
for f diagnostic procedures. Stat Med 1985; 4: 
535-540. 
Gart JJ, Buck AA. Comparison of a screening 
test and a reference test in epidemiologic studies. 
II: A probabilistic model for the comparison of 
diagnostic tests. Am J Epidemiol 1966; 83(3): 
593602. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Cohen J. A coefficient of agreement for nominal 35. 
scales. Educ Psycho1 Meas 1960; 20: 3746. 
Kraemer HC. Ramification of a population model for 
kappa as a coefficient of reliability. Psychometric 
1979; 44: 461472. 
Walter SD. Measuring the reliability of clinical data: 36. 
the case for using three observers. Rev Epidemiol sante 
pubiique 1984; 32: 206211. 
Thompson WD. Design issues in the assessment and 
control of misclassification errors. Paper given at the 37. 
1982 Meeting of the Society Epidemiology Research 
Cincinnati, Ohio. 
Armitage P, Blendis LM, Smyllie HC. The mea- 
surement of observer disagreement in the recording of 38. 
sians. J R Stat Sot A 1966: 129: 98-109. 
Hii SL, Walter SD. Estimating the error rates of 
diagnostic tests. Biometrics 1980; 36: 167-171. 39. 
Feinstein AR. Clinical Biostatistics XxX1. On the 

17. 

specificity, sensitivity and discrimination of diagnostic 
tests. Clin Pharmacol Ther 1975; 17: 104-116. 
Galen RS, Gambino SR. Beyond Normality: the 
Predictive Value and Efficiency of Medical Diagnoses. 
Wiley: New York; 1975. 
Dawid AP, Skene AM. Maximum likelihood esti- 
mation of observer error-rates using the EM algo- 
rithm. Appl Stat 1979; 28: 2G-28. 
Dempster AP, Laird NM, Rubin DB. Maximum 
likelihood from incomplete data via the EM algo- 
rithm. JRSS B 1977; 39: l-38. 
White AA, Landis JR. A general categorical data 
methodology for evaluating medical diagnostic tests. 
Commun Stat 1982; 11: 567605. 
Kaldor J, Clayton D. Latent class analysis in chronic 
disease epidemiology. Stat Med 1985; 4: 327-335. 
Simpson PR, Chamberlain J, Gravelle HSE. Choice 
of screening tests. J Epidemlol Common Hlth 1978; 32: 
166-170. 

Greenberg RA, Jekel JF. Some problems in the 
determination of false negative rates of tuberculin 
tests. Am Rev Resp Dis 1969; 100: 645. 
Staquet M, Rozencweig M, Lee YJ et al. Meth- 
odology for the assessment of new dichotomous 
diagnostic tests. J Chron Dis 1981; 34: 599610. 
Weiner DA. Rvan TJ. McCabe CH er al. Exercise 
stress testing: correlations among history of angina, 
ST-segment response and prevalence of coronary 
artery disease in the coronary artery surgery study 
(CASS). N Engl J Med 1979; 301: 23&235. 
Moskowitz M, Milbrath J, Gartside P ef al. Lack of 
efficacy of thermography as a screening tool for 
minimal and stage I breast cancer. N Engl J Med 
1974; 295: 249-252. 
Bay KS, Flathman D, Nestman L. The worth of a 
screening program: an application of a statistical 
decision model for the benefit evaluation of screening 
projects. Am J Public Hltb 1976; 66: 145-150. 
Chinn S, Burney PGJ. On measuring repeatability of 
data from self-administered questionnaires. Int J 
Epidemiol 1987; 16(l): 121-127. 
Barron BA. The effects of misclassification on the 
estimation of relative risk. Biometrics 1977; 33: 
414418. 

40. 

41. 
18. 

42. 
19. 

Murphy JR. The relationship of relative risk and 
positive predictive value in 2 x 2 tables. Am J 
Epidemiol 1983; 117(l): 8689. 
Bennett BM. On comparisons of sensitivity, specificity 
and predictive value of a number of diagnostic 
procedures. Biometrics 1972; 28: 703-800. 
Yanagawa T, Gladen BC. Estimating disease rates 
from a diagnostic test. Am J Epidemiol 1984; 119: 
1015-1023. 

43. 
20. 

21. 

22. 

44. 

45. 

23. 

24. 

Neuhauser D, Lewicki AM. What do we gain from 
the sixth stool guaiac? N Engl J Med 1975; 293: 
226-228. 
Gutjahr P, Jung H. Detecting tuberculin sensitivity. 
Lancet 1982; 768. 

46. 

Yanagawa T, Kasagi F. Estimating prevalence and 
incidence of disease from a diagnostic test. In: 
Matusita, K. Ed. Stat. Theory and Data Analysis 
Amsterdam: Elsevier; 1985. 
Day NE, Walter SD. Simplified models of screening 
for chronic disease: Estimation procedures for mass 
screening programs. Biometrics 1984; 40: 1-14. 
Walter SD, Day NE. Estimation of the duration of 
a preclinical disease state using screening data. Am J 
Epidemiol 1983; 118(6): 865-886. 
Goldberg JD. The effects of misclassification on the 
bias in the difference between two proportions and the 
relative odds in the fourfold table. J Am Stat Assoc 
1975; 70: 561-567. 

25. International Labour Office. IL0 U/C International 47. Copeland KT, Checkoway H, McMichael AJ er a/. 



Misclassified Data 937 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

Bias due to misclassification in the estimation of 
relative risk. Am J Epidemiol 1977; 105: 488495. 
Greenland S, Kleinbaum DG. Correcting for 
misclassification in two-way tables and matched-pair 
studies. Int J Epidemiol 1983 12(l): 93-97. 
Greenland S. The effect of misclassification in 
matched-pair case<ontrol studies. Am J Epidemiol 
1982; 116: 402406. 
Blettner M, Wahrendorf J. What does an observed 
relative risk convey about possible misclassification? 
Meth Inform Med 1984; 23: 37~40. 
Marshall JR, Graham S. Use of dual responses to 
increase validity of caseecontrol studies. J Chron Dis 
1984; 36: 125. 136. 
Walter SD. Use of dual responses to increase validity 
of case control studies: A commentary. J Chron Dis 
1984; 37(2): 137-139. 
Clayton D. Using test-retest reliability data to im- 
prove estimates of relative risk; an application of 
latent class analysis. Stat Med 1985: 4: 445446. 
Chinchilli VM. Estimates of sensitivity and specificity 
in a multistage screen for medical diagnosis. Biomet- 
rics 1983; 39: 333-340. 
Ackerman-Liebrich U. Tuberculin sensitivity testing 
(letter). Laocet 1982; Oct. 23: 934. 
Rudd RM. Gellert AR, Venning M. Comparison of 
mantoux, tine, and ‘imotest’ tuberculin tests. Laocet 
1982; Sept. 4: 515-518. 
Careen MS. Use of predictive value to adjust relative 
risk estimates biased by misclassification of outcome 
status. Am J Epidemiol 1983; 117(l): 98%105. 
Begg CB. Estimation of risks when verification of 
disease status is obtained in a selected group of 
subjects. Am J Epidemiol 1984; 120: 328-329. 
Lawrence C, Greenwald P. Epidemiologic screening: 
a method to add efficiency to epidemiologic research. 
Am J Epidemiol 1977; 105: 575-581. 
Tenenbein A. A double sampling scheme for esti- 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

mating from misclassified binomial data. J Am Stat 
Assoc 1970; 65: 135&1361. 
Hochberg Y. On the use of double sampling schemes 
in analysing categorical data with misclassification 
errors. J Am Stat Assoc 1977; 72: 914921. 
Speigelhalter DJ, Stovin PGI. An analysis of repeated 
biopsies following cardiac transplantation. Stat Med 
1983; 2: 33-40. 
Irwig LM, Groeneveld HT, Pretorius JPG et al. 
Relative observer accuracy for dichotomized vari.. 
ables. J Chron Dis 1987; 38: 899-906. 
Rindskopf D, Rindskopf W. The value of latent class 
analysis in medical diagnosis. Stat Med 1986; 5 
21-28. 
Thibodeau LA. Evaluating diagnostic tests (Ab- 
stract). Biometrics 1981; 3711): 192. 
Vacek PM. The effect of conditional deoendence on 
the evaluation of diagnostic tests. Biome&n 1985; 41: 
959-968. 
Goddard MJ. On allowing for diagnostic imper.- 
fections in assessing effectiveness of treatment for 
schistosomiasis. Int J Epidemiol 1977; 6(4): 381-389. 
Howe HR. The use of polychotomous dual response 
data to increase power in case-control studies: an 
application to the association between dietary fat and 
breast cancer. J Chron Dis 1985; 38: 663-670. 
Gardner MJ, Heady JA. Some effects of within- 
person variability in epidemiological studies. J Chron 
Dis 1973; 26: 781-795. 
Shepard DS. Reliability of blood pressure mea- 
surements: implications for designing and evaluating 
programs to control hypertension. J Chron Dis 1981; 
34: 191-209. 
Richardson DH, Wu D. Least squares and grouping 
method estimators in the errors in variables model. 
J Am Stat Assoc 1970; 65: 724748. 
Fuller WA, Hidiroglou MA. Regression estimation 
after correcting for attenuation. J Am Stat Assoc 
1978; 73: 99-104 


