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INTRODUCTION

The idea of graphical presentation of statistical data is a relatively recent
development as compared with geometry, algebra, or even probability theory
(18). The techniques of graphical presentation of data are still rapidly de-
veloping, as statistical theory opens new ways of thinking about data, and as
using the capabilities of modern computers increasingly reshapes the body of
-statistical practice—and theory. Before turning to some of the key graphical
methods it is well first to look at a few broad issues.

Remarks About the Nature of Graphs

The usefulness of graphical presentation arises partly from the quantity of
information that can be displayed compactly. After all, it is easy to allow a
pair of numbers to be depicted by a single dot placed suitably on a piece of
graph paper; thus, ten dots may depict ten such number pairs in a fashion that
makes it easy to compare them and study patterns among them. Observe, ten
dots use less ink than even one word; so information can indeed be displayed
compactly by graphical means.

Vividness is another source of the appeal of graphical methods. Interesting
pictures can replace dry numbers. This feature can help in transmitting
information; unfortunately it can also sometimes be harmful. First, distortion
can arise simply from perceptual short-cuts that the mind takes, and second, it
is not unknown for distortion to be deliberately attempted.

The graphical display carries two kinds of information: the data themselves;
and the descriptions of the data, such as labels, scale markers, and the title.
With regard to both kinds of information a balance is needed between too little
and too much. The temptation to pack a great deal of statistical information
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into a single chart arises again and again. There can be good reasons to bring
many facts together in the same picture: relationships, comparisons, contrasts
may be seen easier. But too much information can baffle the eye, boggle the
mind, or both. Similarly, the ink devoted to labels, scales, etc can be
absolutely necessary, or can be redundant, leading to clutter and even confu-
sion.

Graphs, from Three Perspectives

THE READER Reading a graph demands attention; some systematic patterns
of proceeding can be helpful. First, to read the graph, inspect the title, the
source of the data, the scales on the margins of the figure, and the labels of
any symbols that are used. After these steps it is time to look at the data
themselves. If the graph depicts numbers that are listed or tabled in a
convenient place it is usually helpful to check the correspondence between the
two representations, tabular and graphical; the aim is not so much to check for
error as to make certain that one comprehends correctly just how the numer-
ical data are graphically displayed. Second, to interpret the graph, begin with
the author’s interpretation. Do you understand the basis for it? Does the graph
actually support that interpretation? Are there other reasonable in-
terpretations? If the data have large uncertainties, would the writer’s in-
terpretation lose credibility or remain reasonable? If some one particular data
point were in error, would the interpretation be strongly affected, or would it
still be reasonable? All these questions illustrate the more general notion:
Study the graph, but after first studying its labels, scales, sources, and title.

THE AUTHOR In preparing a statistical graph one must keep in mind two
separate concerns: (a) the data, and representing them graphically; (b) the
intended reader’s ease of correctly understanding the resulting graph.

During preparation, the author must choose wisely and explain well the
elements of the graph: title, scales, symbols, source(s). Further, he may need
to balance the simplicity that is to be had in each of many separate charts,
against the gain in fuller understanding that may be available by showing
several related things on a single, more complex chart. Further on in this
article some ideas bearing on such choices are discussed.

Planning the chart may lead to a much better product; such planning can
often gain advantage from some measure of experimenting; thus, alternative
ways of graphing a given data set can be executed and tested on one’s friends
or colleague during the preparation phase.

THE RESEARCHER The researcher may become the author, but before then
there can be much to gain by inquisitively graphing the data—typically in
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several alternative. ways. Perhaps only a few of these graphs will see the light
of day, after serving their purpose of increasing the researcher’s understand-
ing. The tasks here include:

1. Finding suitable levels of aggregation, that is, identifying which subsets of
data can be collapsed and combined, and which cannot.

2. Exploring for the relevance of possible interfering variables: Do the data
from different interviewers look sufficiently similar? Are subjects with a
previous history of disease X different from those without it in our study,
which concerns disease Y?

3. Choosing the scales on which variables are to be expressed: Should we use
travel time? Or its reciprocal, the velocity? Are patterns clearer when log
Y is used or Y itself?

4. Assessing the impact of statistical uncertainty on data interpretation, and
deciding whether and how to depict the uncertainty.

We have pointed to three roles in which a person may approach a statistical
graph: reader, author, and researcher. But in any of these roles, broadly
similar issues, ideas, and problems will be met. We turn now to some of
these, often addressing the researcher-author, but believing that the reader of
graphs can also gain from these considerations.

PRESENTING UNIVARIATE DATA

If each subject of study produces a single measurement, we have univariate
data. Additionally, it is not uncommon to acquire information about several
variables from each subject under observation: Perhaps several laboratory
tests are routinely taken, or perhaps two or three items are reported in the
typical pathology report. Any one of these variables can be the subject of a
univariate display in which information concerning the one variable is to be
graphically depicted, for one or more groups of subjects.

Univariate data can vary continuously, as does weight, or elapsed time; it
may have only a few separate (discrete) possible values, like number of
children born alive to a woman; it may be scaled in terms of ordered
categories, like poor, fair, good, excellent; it may be binary, each observation
having one of only two possible values, as with a serological test that can only
be positive or else negative. Graphical methods appropriate for these cases
vary in some respects, by necessity, as we shall see.

The Dot Diagram

If the number of observations is not very great, say at most a few dozens, then
the dot diagram can be very useful to display the data, for one sample, or for
several. In Figure 1, the top two panels show one-sample dot diagrams for
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25 men's heights « inches

25 students' reported numbers of grandparents still living
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Figure | THREE DOT DIAGRAMS. The first two graphs comrespond to continuous and discrete data,

respectively. The bottom one shows two samples of continuous data plotted for ease of compari-
son.
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continuous data, height, and discrete data, number of living grand parents.
1 The third panel shows two samples plotted in close juxtaposition, for easy
comparison by eye, or by the Wilcoxon-Mann-Whitney test. If there were
more than two samples to compare, then it would be better to show each on a
separate dot diagram, with carefully aligned scales either stacked one above
the other or vertically arrayed side by side.
The dot diagram’s advantages are ease of construction, ease of interpreta-
tion, and precise visualization of the measurements as actually made, because
no grouping is imposed on the observations.

The Histogram and a Close Rélative

The histogram is useful for data that are quite numerous—more than a few
dozens. A system of (usually) equal-length intervals is imposed on the scale,
and the number of observations (frequency) belonging to each interval is
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represented by the height of a bar erected above that interval. In Figure 2, the
data from the upper panel of Figure | appear twice in histogram form. The
left-hand panel shows the histogram that results from using intervals 60* —63,
63" —66, . . . and the right hand panel results from the system of intervals
59" —62, 62*—65, . . . . With larger samples, two such interval systems
ordinarily produce less dissimilar results. Notice, each histogram has two
vertical scales. The one on the left shows frequencies; the heights of the bars,
using that scale, add up to 25, the total number of observations. The right-
hand scale shows decimal fractions, with .20 at the same elevation as 5,
because 5 is .20 of the total sample size; using this scale the sum of the heights
of the bars is 1.00. With respect to the right-hand scale, we speak of the
picture as a relative frequency histogram,

Histograms are natural ways to depict large samples of continuous data.
They are also natural for depicting ordered-category data; responses like
“improved” or “much improved” embody a range of possible degrees of
intensity (like improvement), so letting an interval represent such a category
is reasonable (although the interval widths may seem problematic).

But if the data are discrete, as with number of living grandparents, then it is
more natural to portray the frequencies as spikes at the (only) possible values,
0, 1, 2, 3, 4. Such a figure may be called a “spike diagram.” The upper panel
of Figure 3 shows the grandparent data in this format.

Histograms are not well adapted to comparing two or more samples. If it be
attempted, then let the system of intervals for the two histograms be the same,
and plot them as relative frequency histograms, so that both pictures will have
the same area, facilitating comparison. But two such pictures can be hard to
compare by eye, being separated from one another. And if they are superim-
posed they tend to look tangled unless precautions are taken. Figure 4 offers
several ways of displaying two comparable histograms. The reader might try
an additional method, such as placing one histogram directly beneath the
other.

The superimposed version takes liberties with the data; it represents the
data of group I as distributed over the various intervals (as histograms always
do), but to avoid tangling, it depicts the data from group II as being con-
centrated at the interval midpoints. This is the price paid for what may be the
easiest visual comparison.

Samples of categorical data (like race or blood-type) for which there is no
underlying order to the categories, are sometimes depicted by means of “pie
charts,” in which a disk is partitioned into segments proportioned (angularly)
to the frequencies of the categories. Considerable evidence (4, p. 264)
indicated that this representation is an inferior one; the eye is not clever at
interpreting angles accurately. 1t is preferable to use spikes adding to 1.00 for
the various categories, as in the lower panel of Figure 3, where the relative
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0.40
' I 0.20
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60 63 66 69 72 75 59 62 65 68 71 74 77

Figure 2. TWO HISTOGRAMS OF THE SAME DATA. The two figures use different nets of intervals to
capture the data in the top panel of Figure 1.

L

0 1 2 3 4
Number of living grandparents

panel shows the living grandparent data of

Figure 1 and the lower panel shows the pref- 1 1

erences for four brands as reported by 12 A B C D
respondents. Brand choices of 12 respondents

Figure 3 Two SPIKE DIAGRAMS. The upper I I

frequencies of four categories A, B, C, and D are shown. (The horizontal axis
has no meaning in this picture; it only serves to start each spike form the same
bottom level.)

Cumulative Plots

Histograms plot frequencies, or relative frequencies, belonging to intervals.
The same information can be rendered, without loss of information, in
cumulative form, as in Table 1. '

The table shows the relative frequencies for two samples, as depicted in
Figure 4, and then it shows those frequencies accumulated. Thus, the 92
found in the table tells us that 92% of the observations in sample I had values
of 75 or less. We have offset the cumulative relative frequencies to a level
lower than the corresponding relative frequencies to emphasize that those
numbers relate to different points on the numerical scale. For example, in
sample I the interval 63* —66 shows 15 in the first column, reporting the
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Figure 4 THREE WAYS TO SHOW TWO HISTOGRAMS FOR COMPARING TWO SAMPLES. Not shown is

the direct superposition of one upon the other, which produces tangled confusion. The bottom
panel approximates such superposition.

percentage of all the sample values that occurred, spread out presumably,
through that interval. Also with that interval 25 appears at a lower level, at the
boundary between 63* —66 and the next interval 66* —69. This location fits
well with the meaning of that 25, to wit, that 25% of all of the sample values
were 66 or less. The same idea is captured in the graph, Figure 5, prepared

from the two cumulative columns. Note that the cumulative values are plotted
at the interval boundaries.
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Table 1 HEiGHTS IN TWO sampLES. Note relative frequency is an attribute of an entire
interval, but cumulative relative frequency relates to the maximum possible value for
the interval :

Sample 1 Sample 11
Inches Rel. freq. (%) Cumulative (%) Rel. freq. (%) Cumulative (%)

60+ 63 10

10
63+ —66 15

25

66+ —69 25

50
69+ -~72 22

72
72+ -~75

75+ -78

Cumulative %

100 -

90 4

80
70 4

60

Sample |

Sample 1l

inches

Figure 5 COMPARISON OF TWO SAMPLES USING CUMULATIVE pLOTs. The data of Figure 4 are
rendered here in cumulative form.
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The cumulative plot and the histogram contain exactly the same informa-
tion, for either can be computed from the other. Some advantages attach to the
cumulative representation. First, it often “untangles™ two or more samples in
which the histograms would interweave; this is seen by comparing Figure 5
with. Figure 4. Second, the cumulative representation makes it easy to es-
timate the median (or other percentile) by simply reading off the horizontal
value at which the curve attains height .50 (or other desired percentage). Thus
the two seventy-fifth percentiles are read off as about 72 2 inches in sample I
and 75 Y4 inches in sample II.

Cumulative representation can help also with data obtained in ordered
categories. We illustrate this (and another graphical approach as well) on the
data set (13) found in Table 2, showing the histological grade of 100 tumors
of the prostate, falling in five size classes. We regard histological grade as a
series of ordered categories, indicating progressively greater abnormality of
cells in the tumor. We treat the five size groups as five samples to be
compared; this is somewhat artificial, since in fact one sample of routine
autopsies furnished the data, and they might most naturally be regarded as 100
bivariate observations, each tumor possessing a grade and a.volume; howev-
er, we treat the size groups as samples in both the analyses, and both are
actually sensible ways to display the data; indeed one of them was the form in
which the data were originally published.

The data appear in the left-hand panel of Table 2, where the frequencies by
grade are shown for the 20 observations in each size class (row) and, at the
foot of the table, for the combined samples. The right-hand panel shows
cumulative percentages within the row and also, at the foot of the panel, the
cumulative percentages for the combined sample.

Graphical representations of these two tables appear in Figure 6. The upper
panel depicts the frequencies of the various ordered categories for each size

Table 2 HISTOLOGICAL GRADE OF PROSTATE TUMORS IN FIVE SIZE CLASSES. The
columns correspond to increasing abnormality of tissue. Source: Ref. (13)

Size Frequencies Cumulative percentages
class® Grade Grade

-2 3A 3§ 4 5 -2 3A 3§ 4 5
A 10 2 7 | 50 60 95 100 100
B 3 3 12 2.0 15 30 9 100 100
C 0 5 13 2 0 0 25 90 100 100
D 0 0 12 6 2 0 0 60 9% 100
E 0 0 7 10 3 0 0 35 85 100

13 10 st 21 S 13 23 74 95 100

*The size classes A, B. C, D. E, comrespond to increasing volumes (in cc) with break

points at .054, .171, .464 and 1.42, values chosen to force equal numbers in the five
classes.
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class, using shaded bars and “hanging” them at the boundary between classes
3A and 3S. The lower panel plots the five cumulative distributions for the
ordered categories, with the category markers located on the horizontal scale
in accordance with the combined-data cumulative distribution. Thus the width
of each interval is proportional to the number of cases with that histological
grade in the combined set of data. On the vertical line at each category
division, every cumulative distribution has a plotted point, and in addition the
combined cumulative percentage is indicated by an x on each vertical; these
lie on the diagonal, which, to avoid clutter has not been added to the figure.

To fix ideas, examine the vertical line with foot at 74, the boundary point
on the horizontal axis between 3S and 4. On this vertical line the lowest point,
at 35, belongs to group E; this tells us that of group E only 35% had
histological grade 38 or less; higher up we find at .55 the point belonging to
group D, with the message that 55% of that size group had histological grade
3S or less. The x at .74 attests to the combined sample having 74% of values
at 3S or less. B and C agree in having 90% of their members at 3S or less, and
in group A, with its point at .93, all but 5% of its members scored 38 or less.
This order E, D, C, B, A, seen at this boundary (between 3S and 4) prevails at
the three other boundaries as well. The total message is that no matter where
you might choose to divide the scale of histology into “less severe” and “more
severe,” you would find the percentage of “less severe” cases to be greatest in
size group A, next in B, then C, D, and E in that order. It is much more
difficult to deduce this fact from the upper panel in Figure 6.

Box Plots

The graphical techniques so far discussed portray the entire sample. For some
purposes a much briefer summary will suffice—like simply the sample mean,
or the median. In still other cases, such a statistic may tell too little, and yet
the histogram or spike diagram is unnecessarily detailed. The box plot can
help; it gives a useful idea of the sample distribution without portraying it
fully. There are several closely related types. To fix ideas we point to this one:
Compute the median, the lower quartile, Qy, (the twenty-fifth percentile) and
the upper quartile, Q; (the seventy-fifth percentile.) Show them in a format
like that in Figure 7.

The Figure shows the following: (a) the left-hand sample has a median of
60; the right-hand one a median of 50; () the left-hand sample is more’
compactly distributed around its median than the other; {c) the right-hand
sample is roughly symmetrically distributed, but the other is quite un-
symmetric. In principle we could instead use the sample mean rather than the
median, and could put the limits at one standard deviation (or 1.5) above and
below the mean. Notice that this would not reveal the information about
asymmetry.
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Figure 7 Two BOX PLOTS. These are a rather minimalist version of the box plot approach,
showing only the three quartiles. Other approaches add information concerning the data that lie
above and below the quartiles.

Box plots are often usefully elaborated by adding graphical information
about data outside the two quartiles. We do not follow this up here, but direct
the interested reader elsewhere (5a).

Box plots can quite usefully display the essential features of many samples
in one chart, where histograms and cumulative plots would fail.

Figure 8 depicts certain coal mine accident data for 19 large coal mining
companies, each with several mines, ranging from 4 to 77, a total of 424
mines in all (5). This picture is based on a table with 424 rates of disabling
injuries over the period 1978-1980. The 424 numbers involved are made
quite available to the reader by this depiction.

:
.
3

Means and Standard Errors

The graphical devices presented to this point deal with display of all the data,
as with dot diagrams, histograms, and cumulative plots, and, with some
abridgment, box plots. But sometimes less detail is needed, and then simplic-
ity may commend displaying only sample means (or medians), perhaps
supplemented with an indication of statistical uncertainty. In this section we
begin with the simplest case, move on to rather more complex ones, and
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Figure 8 DISABLING INJURY RATES FOR MINES WITHIN COMPANIES, 1978-1980. The top and
bottom of each box denote the seventy-fifth and twenty-fifth percentiles, and the bar in the
interior denotes the median of disabling injury rates in coal mines of one company. Numbers
above the bars indicate the number of mines in each company. Saurce: Ref. (5).

conclude by pointing to some of the problems—and ideas—that can arise
even when each sample is reduced to a single number like the mean.

THE SIMPLEST MEAN: THE BATTING AVERAGE As every baseball fan
knows, a player’s batting average is a proportion; it tells what proportion of
times at bat resulted in the player’s getting a hit. This homely example
reminds us that a proportion is indeed a {(very simple) sample mean. In Figure
9 we see a graphical representation of these data: in Hospital I, of 24 births 11
were female, and in Hospital II, of 50 births, 28 were female. The chart
shows the percentages, 46% and 56%. If we wished to indicate the statistical
uncertainties, then we would calculate the two standard errors, which are .10
and .07, and show the data as in the lower panel of the Figure.




Hospital 0% 50% 100%

.

Hospital 0% 50% 100%

Figure 9 PERCENTAGE OF FEMALE BIRTHS AT
TWO HOSPITALS. In the lower panel, bars I
reach one SE above and below indicated
rate. 11

It is evident that either style is easily adaptable to displaying more than two
proportions, say 5 or 10 or 20. It is also evident that either chart could be
drawn so that the lines now horizontal would be vertical.

DISPLAYING MANY MEANS In Figure 10, 28 means, with error bars, are
shown; they are arranged in descending order of magnitude; the numbers
across the top provide identification numbers for the 28 samples. A list of the
sample sources, keyed to the identification numbers, would complete the
figure.

The error bars have been drawn to length 1.5 standard errors, on each side
of the mean. This choice (rather than 1.0 or 2.0) makes it convenient to assess
statistical significance, since two means with bars that do not overlap differ at
approximate significance level .05, or less.! Thus sample 4 can be seen to
have a mean significantly exceeding the mean of sample 9, or any one to the
right of it.

"The standard error of ¥, — X; is se = ([se(¥))® + [se(¥;)}*)'? and we say the means differ at
significance level .05 if
I - %) > 2.0 (se). L.

This standard is appropriate if n; and n; are “large.” When they are not, then 2.0 should be
replaced by the two-sided .05 significance point for ¢ with appropriate degrees of freedom, and
1.5 should be muttiplied by one-half of that ¢ value. It can be shown that so long as se(x;) and
se(x;) are not different by a factor exceeding 2.1, then when the 1.5 bars fail to overlap, Eq. 1 is
satisfied and the means differ significantly at .05. Using 1.6 in place of 1.5 would give wider bars
(“more conservative™) but ensures that nén—overlap implies Eg. 1 if se (%;) and se (X)) differ by
larger factors—up to 3.2. With the data in Figure 10 it is apparent that no nearby means have
standard errors differing by so large a factor as 2.1, so we may accept the non-overlap
significance criterion as applicable in the example. :

One might ask whether multiple comparisons issues invalidate this informal significance
testing procedure. Not necessarily. If the entire set of means are significantly different by a .05
level F test, then the suggested procedure is a simple approximation to Fisher’s Least Significant
Difference method, at the .05 level, which is a standard multiple comparisons technique (14).
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Figure [0 . TWENTY-EIGHT LABELED SAMPLE MEANS, ARRANGED IN DESCENDING ORDER OF SIZE,
WITH ERROR BARS.

MANY MEANS WITH “STRUCTURE” Our examples have tacitly assumed a
kind of symmetry among the means, all being thought of as “on an equal
footing.” But often this would be an unrealistic stance. We might have means
from 12 strains of some yeast, all on an equal footing. But, instead, the twelve
groups might correspond to six strains of yeast, each being grown in nutrient
media A and B. Or there might be three yeast strains and four nutrient media;
or three yeast strains, two media, and two temperatures, in all possible
combinations. Perhaps there are two groups, one of five related strains, the
other of seven. In every case there are 12 samples, but they bring forth
different kinds of questions, and call for different kinds of graphical (as well
as numerical) presentation. We see below how such issues of structure bear on
the appropriateness of alternative modes of display.

An example with temporal structure Table 3 shows fatal motor accident
statistics from Colorado (12). In the years 19641968 and again in 1978 and
1979, there was no helmet law. In the years 1970—-1976 there was a helmet
law. Finally, 1969 and 1977 were years in which a helmet law was in effect
for part of the year.

The fatality rates for each year are plotted in Figure I1; in addition, the
simple arithmetic averages of the rates in each of the three periods are shown
as horizontal lines reaching throughout their periods. (Notice 1969 and 1977
are excluded, because they each comprised two parts, one with and one
without a helmet law.) The chart strongly suggests that the fatality rates were
lower when the helmet law was in effect. A more delicate and complete
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Table 3 FATAL MOTORCYCLE ACCIDENTS iN COL-
oraDO. During 1970 through 1976 a helmet law was
in effect, but not in the periods before and after.
Source: Ref. (12)

Motorcycle Fatal Fatal
Year registrations  accidents  accident rate*

1964 16,645 10 6.02
1965 21,479 10 4.65
1966 24,811 14 5.65
1967 26,034 17 6.53
1968 28,594 23 8.04
1969° 34,889 29 8.31
1970 44 851 27 6.01
1971 57,098 21 3.68
1972 68,908 38 5.51
1973 81,871 45 5.59
1974 92,833 39 4.20
1975 95,439 47 4.92
1976 98,051 31 3.16
1977¢ 108,559 57 5.25
1978 110,000 63 5.73
1979 115,000 74 6.43

* Accidents per 10,000 registrations.
®Helmet law effective July 1, 1969.
©Helmet law repealed May 20, 1977.

statistical analysis might employ weighted means of the rates within the three
periods. The rates of later years have smaller sampling variability than the
early ones, and would show vertical error bars (perhaps using the 1.5 conven-
tion) for each of the averages.

As it is, a quick assessment of statistical significance is conveniently made.
Beside each of the 14 points is shown its rank among the 14, with the smallest
rate (in 1976) receiving rank 1, and the largest (1968) receiving rank 14. The
sum of the seven ranks for the years with the helmet law is 34, considerably
smaller than the null expectation for that sum, which is 52.5 (seven times the
average rank, 7.5 which is midway, between 1 and 14). Indeed, that sum, 34,
is significantly smali, at p=.02, two-sided, applying Wilcoxon’s two sample
test. : i

This example has shown how graphical display of 16 years’ rates elucidates
the possible impact of a helmet law in effect during part of the period. The
reader is helped greatly by the use of reference lines: the three horizontal lines
showing subperiod averages, and the vertical lines defining the subperiods.
All information in the graph comes from the table. But the eye and the mind
may perceive the information better from the graph.
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Fatal Accidents per 10,000
Motorcycle Registrations
»
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Figure 11 FATAL MOTORCYCLE ACCIDENTS IN COLORADO WITH AND WITHOUT A HELMET LAW,
Numbers appearing near the data points are ranks (1 is smallest, 14 is largest) of the observations.
Horizontal lines are simple averages of the rates for the period. The ranks justify the conclusion
that the lower rate during the helmet law era is. not likely to be a chance aberration. The data are
the same as in Table 3. Source: Ref. (12).

Factorial structure The previous example was relatively simple, with a
three-era structure. Things are much more complex when the data have a
factorial structure with, say, one mean for each possible combination of two
classifications, one with r classes and the other with k classes. We would have
such structure if five kinds of standard specimens were blindly read at each of
four laboratories. Graphical display of the 20 (structured) averages could be
based on the analysis of variance applied to the data. The 20 means would be
summarized in (a) the five averages for specimen type, (b) the four laboratory
averages, (c) the 20 differences between each observed average and the value
fitted for it by suitably combining the laboratory and specimen-type averages.
Each of (a), (b), and (c) could be graphically depicted by methods we have
already seen. But we will not take up a detailed treatment of factorially
structured means here. Instead we turn, in the next section, to some devices
that become available when one or two of the classifications in the factorial
structure have only two levels.

Two-Way Displays for Univariate Data

We first look at display of data obtained in pairs. We then turn to an
alternative display for means of two samples, and then to several means that
arise from a 2 X 2 X k factorial structure.
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MATCHED SAMPLES; PAIRED DATA Data arrive in pairs in many ways.
They may be before and after values; they may be ipsilateral and contralateral
measurements, or opinions of husband and wife, for example. Whenever data
occur in pairs, we should use methods of display and analysis that take
account of this feature. It is incorrect to use two-dot diagrams, or two
histograms. Correct methods of display fall into two classes. First, one may
construct from each pair a single number, like the difference after-minus-
before, showing change, or a ratio like A as a percentage of B. Or, one may
plot the two values for each pair on a scatter diagram. An interesting data set
(11) provides a natural vehicle for exhibiting both approaches.

The data record the number of episodes of apnea, stoppage of breathing
(exceeding 20 seconds), per hour of sleep, for each of eight premature infants,
under two conditions. Each infant was bedded for two six-hour periods on a
bassinet, and for two (sandwiched) six-hour periods on a waterbed. The two
apnea rates correspond to the two bedding conditions.

The data are given in Table 4. Note that the differences between x and y are
considerably less variable than are the measurements under each condition, as
indicated by the much smaller range for d than for x or for y.

The data of Table 4 are displayed in two separate dot diagrams in the top
panel of Figure 12. See how similar the two diagrams are. This carries a
suggestion of “no difference.” But then observe the lines connecting the two
observations of each infant. All eight such lines slope downward to the right;
all eight attest to reduced apnea on the waterbed. This is a very different—and
correct—conclusion. This example illustrates our earlier statement that with
paired data it is incorrect simply to display the two dot diagrams without
taking precautions; to do so is likely to convey a false impression, as here.
The connecting lines work well here because there are few points; they do not
offer a generally useful way to patch up the dot diagrams. Two better

Table 4 HOURLY RATE OF APNEIC EPISODES IN PREMATURE INFANTS
DURING SLEEP ON TWO KINDS OF BEDs. Each of eight infants was
bedded for 12 hours on a waterbed and on a bassinet, in alternating
six-hour periods. Source: Ref. (11) °

Infant Waterbed (x)  Bassinet (y)  Differenced = x ~ y

0.89 1.36 0.47
0.77 1.66 0.89
0 0.1 0.11
0.65 1.44 0.79
0.88 1.63 0.75
1.36 1.52 0.16
1.22 1.53 0.31
0.30 0.48 0.18
1.36 1.55 0.78
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The dot diagrams, with pairing shown

w
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The dot diagram of difference d
(d = bassinet value minus waterbed valus)
228 (1 2 2 8 2
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The data plotted in two dimensions
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Figure 12 APNEA IN EIGHT PREMATURE INFANTS UNDER TWO SLEtP CONDITIONS. The numerical
values represent number of episodes of apnea (exceeding 20 seconds) per hour of sleep on a
waterbed (W) or bassinet (B). These are the data of Table 4. Source: Ref. (11).

graphical procedures are offered in the middle and lower7pancls. In the middle
panel the differences (bassinet value minus waterbed value) are plotted on a
dot diagram. There are no negative values and the reduced apnea on the
waterbed is clearly revealed by the eight positive differences. The bottom
panel plots the two values for each infant in a scatter diagram, and shows
clearly (a) the superiority of the waterbed, since every point above the
diagonal denotes an infant with bassinet apnea rate larger than waterbed rate;
(b) the correlation between the two rates, which arises from a tendency. for
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some infants to be more or less apneic than others on both beds. This
correlation accounts for the gain in information available from measuring
each infant on both beds, and for the inappropriateness of two separate dot
diagrams. Finally, we remark that the display in the bottom panel contains
more information than does the middle panel; Observe that from the lower one
we could reconstruct the middle one—but not vice versa.

It is conceptually correct to think of this example as really not a univariate
one; each infant has provided two measurements—and the data are bivariate.
But because both measurements are of the same kind, apneic rate during
sleep, they are less obviously bivariate than would be, say, data on apneic rate
and heart beat for each infant. So we have employed some expository license
in using the term “univariate” at all. Now we take a rather opposite twist, by
treating pairs of independent sample means in bivariate coordinates, because
of advantages that will become apparent.

PLOTTING TWO MEANS: REVISITED Let us return to the data for the female
birth fraction at two hospitals (Figure 9). This information is plotted in an
entirely different way in Figure 13.

The two axes show that the plotted point represents the rate .46 for Hospital
1 and .56 for Hospital 1I. A point that fell on the diagonal line would denote
equal rates for the two hospitals. The uncertainties of the two rates again are
shown, and the larger standard error for the rate of Hospital I is visible. The
diagonal arrow, constructed as the diagonal of the rectangle defined by the
horizontal and vertical standard error segments, represents the standard error
of the difference between the two rates. When that arrow is rotated to point
vertically (or horizontally), it crosses the diagonal line of equality; this means
that P—Py; differs from zero by less than one standard error.

EXTENDING THE TWO-MEANS-ONE-POINT PLOT Murray & Bemfield (15)
studied incidence of low and very low birth weight as it related to adequacy of

1.0 q

0.8 -
Figure |3 PERCENTAGE OF FEMALE BIRTHS
AT TWO HOSPITALS, WITH ERROR BARS. The 0.6 1
diagonal arrow shows the standard error of ~ Hospital 1l
the difference between the rates in these two 0.4 1
(independent) samples. Since it is long
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Table § RACE, ADEQUACY OF PRENATAL CARE, AND FREQUENCY OF SMALL
paBies. Low birthweight (LBW) and very low birthweight (VLBW) infants
are more frequent among black mothers than white, and when prenatal care
has been less adequate. Source: Ref. (15)

LBW (<2500 g) VLBW (=1500 g)
Black White Black White
Frequencies
] Prenatal Care
Inadequate 60/400* 100/1800 18/400 18/1800
Intermed. 165/1500 450/9000 36/1500 81/9000
Adequate 100/2000  340/17000 22/2000  85/17000
Percentages: (P)
Prenatal Care
Inadequate 15° 6 45 1
Intermed. 11 5 2.4 9
Adequate b 2 1.1 5
1 + log (P)
Prenatal Care
Inadequate 2,18 [.78 1.65 1.00
Intermediate 2.04 1.70 1.38 .95
Adequate 1.70 1.30 1.04 70

2 This ratio reports that of the 400 black mothers with inadequate prenatal care. 60
bore babies weighing 2500 g or less.

® This is the percentage of inadequate-care black mothers who bore babies weigh-
ing 2500 g or less.

prenatal care and to race of mother. Table 5 is adapted from their data and in
its upper panel displays (approximate) numbers of mothers of the two races
with infants of “low™ birthweight (less than 2500 grams) and of “very low™
birthweight (less than 1500 grams), sorted out by adequacy of prenatal care.
(Observe that the “very low” birthweight infants are a subset of the “low™
birthweight infants. Neither group includes any birth of less than 500 gm, for
which survival is very uncommon.) The data in the top panel of the Table
consist of 24 numbers, twelve fractions each with a numerator and de-
nominator. Reducing the data to percentage of births cuts the number of
entries to 12, displayed in the middle panel.

Now graphical display of these 12 percents is the task at hand. A conventional
display might use 12 bars, as in Figure 14. Alternatives to this mode of
display are offered in the three panels of Figure 15.

In the top panel of Figure 15 we see six line segments, each showing a
black percentage and a white percentage, corresponding to the two races.
Plotting the data in the style using two coordinates, in the middle panel, calls
for only six points and it is easy to see that (a) the fraction of very low
birthweight (VLBW) births is miuch smaller for both races than the fraction
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Figure 14 PERCENTAGE OF ALL BIRTHWEIGHTS THAT WERE LESS THAN 2500 GRaMs (LBW) or LESS
THAN 1500 GraMs (VLBW) 8Y RACE OF MOTHER AND ADEQUACY OF PRENATAL CARE. This is a bar
graph depiction of Table 5. Source: Ref. (15).

low birthweight (LBW) births, since the VLBW points are nearer to the
origin, where both rates would be zero; (b) for both races the incidence of
small babies (LBW and VLBW) is lower among the mothers with better
prenatal care; (c) the rates for blacks are greater than those for whites in all six
weight X care classes, since all six points are below the diagonal of equality.
Indeed the picture suggests that in each weight class there may be a constant
proportion between the black and white rates, since the three points for each
weight class lie near a ray through the origin.

The last observation suggests looking at the rates on a logarithmic scale,
where constant proportions are rendered as constant logarithmic differences.
The bottom panel of Table 4 displays the values of | + log P. (The | is added
to avoid negative numbers, and P denotes percent). When these logarithmic
values are plotted, the bottom panel of Figure 15 is the result, and it gives a
very simple looking representation. The higher rates for blacks now look
roughly constant, since all six points lie close to a line about .4 logarithmic
units below the diagonal of equality, denoting a multiplicative factor of 2.5.
Indeed, the ratios of black to white rates can be seen from the data in panel b
to all be close to 2.5, except for the one case of inadequate care and very low
birthweight, where the ratio of the black to white rate is 4.5. This discrepant
point appears as the white circle in the bottom panel of Figure 15. It is
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statistically the least precise point of all; reference to the top panel of Table 4
shows that both its coordinates are determined by frequencies of 18, and so
both are appreciably affected by sampling error.2

PRESENTING BIVARIATE DATA

If we consider two items of information on each observed unit (person,
laboratory specimen, experimental animal), we are dealing with bivariate
data. Either of the two variables may be continuous, discrete, ordered (like
histological grade or pain relief on a five-point scale), or categorical.

Where one of the two variables (“components™) of each bivariate observa-
tion denotes a category, like gender or blood type, and the other component is
continuous, then graphical display must consist of separate distributions (or
box plots) or means, one for each category. More generally, if one of the two
components is categorical, then the result is separate displays, one for each
category, of the distribution of the other variable, whether it be discrete-
numerical, ordered, or itself categorical.

Preceding parts of this paper presented two devices for displaying bivariate
data. The first is to divide one of the continuous variables up into successive
size intervals, and then give a univariate display of the other variable sepa-
rately for each size group (as with the tumor pathology data, where the
continuous variable, volume, was broken into five classes A, B, C, D, E, and
then the pathology distribution for each volume class was exhibited). The
second device is reduction of the two components of each bivariate observa-
tion to a single function of them, one value for each subject, with a univariate
display of those reduced data. The bassinette/waterbed data exemplified this
idea when the apnea rates per hour of sleep were calculated for the two
conditions, and then the difference, bassinette-minus-waterbed, was taken as
the univaniate observation for each of the eight infants. These two earlier
glimpses leave much still to be said about displaying bivariate data, and we
turn now to a somewhat fuller and more systematic treatment.

The Fundamental Display for Bivariate Data

With continuous data, the dot diagram is the fundamental data display; from it
can be derived histograms, box plots, and so forth. The corresponding
fundamental display for bivariate data is the scatter-diagram.

The logarithmic difference between these two percents (4.5 and 1.0) is .65, and its standard

error is .33; Thus the white circled point is not significantly removed from .40, the value that’

summarizes the other five points; The apparent discrepancy may reasonably be ascribed to
sampling error. i

i s = (et bt
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With univariate displays, there can be a choice whether to plot v, or its
reciprocal, or its logarithm, and with bivariate data these choices also present
themselves, but now for both components of the bivariate observation. One
aspect of the art of graphical presentation is choosing the scales on which data
can best be presented. In the examples below we see several charts with
messages that are clear and crisp, largely because of wise choice of scale
transformation on one or both axes of the scatter diagram.

When there are very large quantities of data, the scatter diagram, especially
if done by computer, can become difficult to read, because multiple data
points are hard to show effectively in the scatter diagram. Helpful ideas for
coping with this problem are to be found in Cleveland’s fine book (4) on
pages 155-62. Another approach, of course, is to construct the analog of the
histogram; the intervals on the x and y axes define a grid, and in each
rectangle (““cell”) of the grid, some number of bivariate observations from the
sample occur (possibly zero in some cells.) To construct the diagram that
extends the histogram to bivariate data, let one case be denoted by a “brick™
that fits exactly on a grid rectangle; then the number, f, of observations
occurring in the cell can be indicated by a stack of f bricks on that cell. The
resulting brick pile, erected on the x,y grid, represents the distribution of the
sample values on the x.y plane in a manner analogous to the histogram’s
representation of the distribution of univariate sample values on the number
line. Drawing the brick pile so that it is clearly interpretable requires tech-
nique that takes account of perspective in drawing three-dimensional figures.
Some computer packages do this well.

Where both bivariate components are discrete, the “natural” representation
is a set of spikes, each recording the number of observations that occurred at a
point in the plane determined by the possible values for the two components.
Such a diagram can be hard to draw well and hard to interpret, depending on
how many spikes there are, how much they differ, and so forth. If there are
very many such spikes then grouping them into grid cells and making a brick
pile might serve well. It may not always prove possible to construct a drawing
of doubly discrete bivariate data that will help the reader or the investigator to
understand better the numerical data rendered in a table.

GRAPHS AND RELATIONS BETWEEN VARIABLES Bivariate data ordinarily
carry with them questions about how the two variables are related. Does lower
incidence of dental caries occur in regions with higher levels of fluoride in the
drinking water? Does the incidence of heart disease rise with increasing levels

—

Figure 15 THREE ALTERNATIVE DISPLAYS OF TABLE S. The first panel replaces 12 bars with 12
poinis, on six lincs. The next two panels show all the data, using six points. The first uses the
natural scale of percentages. the second uses a logarithmic scale.
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of sugar consumption? Is the length of the femur related to the long axis of the
skull? To the diameter of the wrist? Is socioeconomic status related to health
care seeking behavior? :

Often one of the two variables is naturally thought of as (possibly) influenc-
ing the other, as with fluoride in the drinking water, in which case we would
think of caries incidence as possibly responding to fluoride levels. In such
circumstances it can be informative to study how the average value of the
response variable relates to different levels of the input variable (often called
the “independent variable™).

Following common usage, let us name the independent variable x, and the
other, whose average we study, y. Then the curve that describes the average
of y at varying x is called the regression of y on x. We may write this as

Ave (y(x)) = fix).

Only a few values of x can appear in a finite sample; if x, x5, . . ., xy are
observations on some variable, we can see at most N distinct values of x,
perhaps fewer because of repeated observation at some x points. To estimate
ftx) for a continuous range of x requires that we somehow combine informa-
tion from the data in hand, at the observed x’s, to describe f{x) for the
continuous range of x’s that the data relate to. Two approaches to this task are
(a) model-based regression and (b) smoothing. Either approach leads to a
line, or other curve, that can be plotted on the scatter diagram, and that
represents a sort of trend, depicting how the average value of y changes as x
changes. In Figure 16 appears a rather complex example illustrating the idea
(9). The data concern cell species of four types: (a) RNA viruses and single
stranded DNA viruses (solid squares); (b) double-stranded DNA viruses
(solid circles); (c) haploid microorganisms (shaded circles); and (d) diploid
microorganisms (shaded squares). Each of 31 cell species, accompanied by a
numerical identifier, is plotted at a point (x,y) that depicts x, its radiosensitiv-
ity, as measured by the logarithm of the dose needed for 63% inhibition of cell
reproduction, and y, the logarithm of the mass of its nucleotide material.

With the data plotted on these scales, not only is it easy to see that their
sizes and radiosensitivities show family similarities, but also the strong
negative relation between size and cell-killing dose is quite evident. To the
data of each of the four types has been fitted a straight line (an example of a
model-based method) by least squares. The four lines have been fitted subject
to the constraint that they all have a common slope. Inspection of the figure
allows consideration of whether the parallel lines offer a reasonable
characterization of the relationship between radiosensitivity and nucleotide
masses. The original research article offered heuristic interpretations of the
numerical value of the common slope, and the acceptability of a common
slope was essential to that argument.
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Figure 16 RADIOSENSITIVITY AND NUCLEOTIDE MASS OF 31 SMALL ORGANIsMs. The plot is
logarithmic on both axes. The lines have been fitted by least squares, under the constraint of a
common slope. Source: Ref. (9).

Model-based fitting need not be done by least squares (although it very
often is), but it does necessarily produce a prechosen kind of regression
function; in the example only straight lines, and parallel ones at that, were
possible outcomes of the fitting. With smoothing techniques, the method is
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definite enough, but the form of the resulting regression curve is not pre-
ordained, except in a very minor respect to be mentioned below.

In Figure 17 both panels depict the same data set (4, pp. 170, 171). Each
point represents a hamster; the x coordinate records how many days of the
animal’s whole lifetime were spent in hibernation, and the vertical coordinate
records days of the whole lifetime not spent in hibernation. The eye finds a
general pattern of increasing values of y as x increases, and the idea of
estimating how, on the average, y changes with x is a natural one. The
smoothing algorithm that was used is called LOWESS (3a). At each x is
computed a kind of fitted value based on a robust weighted linear regression
using only the observations that have x-values “sufficiently near” x;. At each
x; a separate line is computed to arrive at that observation’s fitted value. The
concept “sufficiently near” is an adjustable parameter of the smoothing
algorithm; the greater it is.chosen, the smoother the curve. The left-hand
panel used a smaller smoothing parameter and seems to be less satisfactory in
this example. The algorithm gives a fitted value at each x;; these are then
joined by straight line segments, and it is in this respect that the result of the
smoothing algorithm is slightly “fore-ordained.”

In both of the examples above it can be asked how the choice of in-
dependent variable was made. In the case of the hamsters it appears that there
was known biological reason to regard hibernation time as influencing
nonhibernation longevity, rather than vice versa; thus, tracking the average
“effect” as it related to the numerical value of the “cause” was chosen as
shown in the hamster data. ) . ‘

In the case of the radiosensitivity and nucleotide mass data, the answer is
rather complicated. The fitting used radiosensitivity as the dependent variable
and nucleotide mass as the independent one. This choice seems intuitively
satisfying, but the real reason for that choice was the technical one that while
both variables are measured subject to error, nucleotide mass has the smaller
uncertainty. Because of conventions in the radiobiology literature the chart
then depicted the dependent variable on the horizontal axis. Generally, to
prevent confusion it is good to take account of the conventions applicable
among the chart’s readership.

Some Devices that Can Be Useful in Bivariate Graphing

TRANSFORMATION OF VARIABLES Generally, a straight line is a simpler
curve to recognize, think about, and characterize numerically, than is a curve.
Thus, it can be advantageous to find some simple way to transform one of the
variables (or both) to replace a curvilinear relation between the original
variables with a straight-line relation between the transformed ones. We have
already met this idea in preceding portions of this article. We have seen the
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logarithmic transformation applied to the radiosensitivity data, and with
ordered category data we have seen the scale of an ordered category variable
constructed to make one of the samples (or the average of all of them) yield a
straight-line plot. Other transformations, of course, apply in suitable cir-
cumstances. The distance y that an object inoves down an inclined plane in
time ¢, in the absence of friction, obeys the relation

y =t

where the constant ¢ depends on the angle of inclination of the plane. Two
transformations are available to turn this into a linear relation. First, we might
replace £ by u, then

y = cu
is a straight line relation, and the slope of the line when plotted would reveal
the value of ¢. Second, we might take logarithms of both sides of our original

equation and obtain

logy = log ¢ + 2 log ¢,

arriving at a linear plot of log y against log ¢, with slope 2; the intercept, log c,
embodies the information about c. Choice between these two with real, noisy,
observed data would be informed by making plots of both kinds and seeing for
which one the straight line plot better fitted its plotted points. It could then be
used to estimate c.

CHOOSING THE SCALES  The ability of the reader to absorb the message of a
bivariate graph can depend on choices like which variable should be plotted
horizontally and which vertically. In some disciplines the variable thought of
as the stimulus or input is given the horizontal coordinate, and the one thought
of as response is given the vertical: most statisticians view data this way. In
other disciplines the contrary convention is usual. It is well to bear in mind,
and use, the convention applicable to the problem under study.

Sometimes it seems more natural to display not y against x but y-x against x.
Indeed the hamster data illustrates this device; originally the bivariate data for
each animal were longevity in days (y) and days spent in hibernation (x); the
figures were made by plotting y-x against x.

A feature of the two scales that affects the general gestalt of the chart is the
relative compression of the data in the vertical and horizontal directions. This
is largely determined by the scale intervals chosen on the two axes. Note in
the hamster data that the scales, both in days, are unequal. This has the result
of exhibiting the points with approximately equal visual spread in both
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directions; it complicates recognizing that the slope of the regression is, for
days of hibernation exceeding 100, about 1.0, a fact that would be reflected in
a 435 line if the two scales were equal. Extreme choices of scales can virtually
eliminate the appearance of variability. If a sequence of closely related charts
is involved, then the same scales for all of them would be a reader’s
unconscious expectation, and it should be transgressed only with good reason
and clear notice to the reader.

THE USE OF REFERENCE LINES The bivariate display can sometimes gain
interpretability from the presence of some lines drawn in for reference.
Examples include: (a) one or more regression lines, (b) the diagonal of
equality, (c) lines parallel to that diagonal, showing lines of constant differ-
ence y-x = ¢, (d) rays through the origin, showing lines of constant ratio y/.x =
c. Other ways to provide reference standards for plotted points might in
special circumstances be a family of concentric circles, or of lines ax+by = ¢,
or yet others. Considerations of avoiding clutter compete here with aiding the
reader to interpret the data. '

An ingenious use of reference lines to meet the problem of data overlap is
offered by Cleveland, and with permission, we reproduce his example here.
Figure 18 depicts brain weight and body weight for many species of animals,
belonging to four broad groups: birds, fish, primates, and nonprimate an-
imals. The scales are logarithmic. The three reference lines all have slope 2/3,
for theoretical reasons. (And the points fit well, supporting the theory.) This
four-fold display is a brilliant substitute for superposing the points on one
chart and relying on the use of different symbols (circles, dots, triangles,
shaded, unshaded) to distinguish points from different groups.

USING COLOR TO DISTINGUISH GROUPS The eye apparently can distin-
guish among small figures more directly in terms of contrasting colors
assigned to them than in terms of different shapes (squares, circles, triangles,
etc) or shadings. The data-analyst-investigator can easily exploit this principle
when graphing a point-swarm by us'ng different colored pens for data points
from different groups. Color can be equally effective in presenting the data,
but costs and facilities often inteivene to make color unavailable. So its
primary use, at least in many sett. igs, will be the private one of studying
one’s own data, where it can be invaluable.

GRAPHING MULTIVARIATE DATA

When each observed unit provides more than two items of information, we
have multivariate data. Such data arise very frequently, because often more
than two numbers are required to describe the important features of the
observed unit, be that a patient, a clinic, an experimental animal, or a research
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Figure 18 BRAIN WEIGHTS AND BODY WEIGHTS IN FOUR GROUPS OF VERTEBRATES. The coordinates
are logarithmic on both axes. The fitted lines have slope 2/3, for theoretical reasons. The lines
facilitate comparisons of the data on the different panels. Source: Ref. (4). Copyright 1985, Bell
Telephone Laboratories, Inc. Reprinted by permission.

article. When the relations among the variables are of direct interest, bivariate
and multivariate exploration and presentation become essential. Thus, a first
source of interest in multivariate graphical methods is for finding and
representing relations among the variables. A second source of interest grows
out of the fact that information about several variables (rather than only one or
two) can be helpful in identifying groups of similar observational units (as in
distinguishing between rather similar diagnostic groups).
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Multivariate data can be hard to deal with, in several ways. The “natural”
graphical representation of k-variate data is as pooints in a space of k
dimensions. For k equal to three, this is already hard to visualize, and for
larger values of & the difficulties are multiplied. A table of the data with &
columns and one row for each observation is another “natural” representation,
but it cries out for effective condensation and surmarization. Some help can
be brought to the problem by using graphical methods, largely through
extension of two methods we have already seen several times: the scatter
diagram, and condensing several data items into a single one.

Relationships Among the Variables

Many studies aim at describing (or establishing) relationships between input
variables like quality of care, intensity of treatment, or social support avail-
able to the patient, and outcome variables like degree of rehabilitation,
functional level, life satisfaction, or health. Each of these named concepts
defies direct measurement, and instead must be approached through collecting
data on many variables that “belong” to the concept; thus, functional level
might be captured through tests of agility, endurance, balance, comprehen-
sion, strength, etc. Multivariate data sets very commonly originate in efforts
to measure some construct, like health, by observing several variables, each
of which taps a part of the concept, and typically with some overlap and
redundancy among them.

Many multivariate data sets comprise not only some variables that are
inputs and some others that are outcomes, but also “interfering variables,”
which influence outcomes without being part of the inputs under study;
examples might include patient’s age, gender, and educational level. Thus,
the study may involve three kinds of variables: input, outcome, and interfer-
ing. Each of these may have several components.

SOME STRATEGIC APPROACHES The tasks of conceptually organizing and
then analyzing a data set with several input variables, several output var-
iables, and several interfering variables are in large part a search for legitimate
condensation and simplification.

Simplification Sometimes simplification can be achieved by finding that a
variable is legitimately ignorable. It may be ignorable because it is redundant,
offering information already supplied by other variables; it may be ignorable
because it is irrelevant, unrelated to any outcome. The scatter diagram is a
tool that may reveal either of these situations.

Simplification can sometimes be achieved by combining several related
variables into a single one. If in a study of endurance and body size our data
included both right arm length and left arm length, we would almost surely,
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with no ado whatever, either average the two or use only one of them, say the
left arm length. Similarly, with many measured lengths—height, span, foot
length, leg length, and arm length—we might “condense” them all to a single
measure of “skeletal length” by constructing an additive combination of all of
them. We could do this by judgment (as with the two arms) or by recourse to
some algorithm, say one producing the additive composite that gives max-
imum correlation with endurance. (That algorithm is simply multiple regres-
sion of endurance on the five length variables.) If a judgment composite is
chosen, then directly averaging the variables is likely to be less satisfactory
than first dividing each by its standard deviation and then averaging them; the
reason is that a variable taking small values, like foot length, would contribute
so little as to be almost ignored in a simple average, while division by the
standard deviation gives each variable parity with the others.>

The algorithmic approach is not necessarily always preferable to the judg-
ment composite. The judgment composite is more easily explained. The task
of explanation with multiple regression can be especially uncomfortable if the
regression gives a counter-intuitive sign to one of the variables in the compos-
ite. But, however the condensation is done, it does reduce a set of several
variable to a single one, and each subject has an observed value for this new
composite variable, a value that can be plotted in a scatter diagram against
other variables, or composites of them.

Identifying variables that are (still) relevant 1f we are interested in predict-
ing y from u we might well draw a scatter diagram in connection with either
the analysis or the presentation. Now, if there is an additional possible
predictor, v, how shall we assess whether it can improve the prediction? We
begin with the case where v is a binary variable. In Figure 19 the upper left
panel shows a rather strong relation between u and y.

The upper right panel is the same diagram, except that 10 of 22 points are
darkened to identify the observations where v is at its high level; the 12 light
points have v at its low level. This panel clearly indicates that y is related to v,
in addition to being related to u, and it points to the possibility of improving
prediction of y by taking v as well as u into account. The lower left panel is the
same as the previous one, except that it shows two lines of common slope
fitted to the dark and light points. The vertical distance between them is
indicated near the right edge as d. One can imagine reducing the y value of
every black point by d (thus taking account of the influence of high v) and

Sometimes a composite is made from variables among which some point in opposite
directions; thus, a clerical skills composite might include a spelling score, typing error rate, and
reading comprehension. Then a reasonable judgement composite would not only divide each
variable by its standard deviation but would also enter typing error rate with a minus sign.
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Figure |9 RELATION BETWEEN TWO VARIABLES. ¥ AND U, AT TWO LEVELS OF A THIRD, v. Black

dots indicate points at high v, and crosses represent them after downward adjustment by the
distance 4.

plotting these adjusted points in place of the original black dots. The lower
right panel has been made in that way; the adjusted block dots are portrayed as
x's among the original light dots. These data now show a much stronger
relation between y and u, after adjustment for v, than do the original data
shown in the first panel. Thus, using v in addition to u has improved the
prediction of y. The value of v as a predictor was directly evident from the
second panel, at the upper right. If those black dots had appeared randomly
among the 22, then the message would have been that v did not hold promise
of improving prediction. '

In Figure 20 we show the same swarm of 22 points again. The upper left
panel shows y plotted against u. The upper right panel repeats the identifica-
tion of ten high points in the swarm as being the ones at the high level of v.

The two lower panels are new. The pattern at the left indicates that v has no
additional information about y because the relation between y and u looks
about the same for the dark points as for the light ones. (We interpret this as,
“v is redundant if u is already being used as a predictor of 4.”) The lower right
panel would tell quite a different story. Among the dark points, at high v,
there is only a weak relation to be seen between y and u. Similarly, among the
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Figure 20 SOME POSSIBLE WAYS THAT THE RELATION BETWEEN TWO VARIABLES MAY BE AFFECTED
BY A THIRD. The original relationship is seen in the upper left panel. The upper right panel shows
that taking v into account will strengthen the relation (see Figure 19). The lower left panel shows
v to be irrelevant, and the lower right panel indicates that the relation may really depend almost
entirely upon v.

light points only a weak relation between y and u is to be seen. Identification
of the high-and-low-v points has indicated that much, or most, of the original
relation can be explained by observing that low-v people (perhaps males) have
smaller values of both y and « than do high-v people (females), and in both
those subgroups no strong relation between y and u exists. Something very
like this would be expected in adults for y = weight lifting ability, « = head
circumference, and v = sex, for in neither sex is head circumference much
related to strength, but males are both stronger and larger-headed than
females.

This device of marking a dichotomous identification on the points of a
scatter diagram is immediately applicable to considering whether to adjust the
data for sex, or race (black, white), or any other binary classification; further,
a continuous variable can be broken into two classes, high and low, and its
relevance can thus be assessed. It is possible to break a continuous variable
into three or more classes, and that might have advantages in some circum-
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stances. (For example, if intermediate values of v increased y above the levels
associated with either high or low v, that fact would be more easy to find with
a three-fold division of v.) If three or more levels are chosen, then a display
like that of the brain mass-body mass example might be helpful.

Exploration of the kind we have been describing helps decide when to
ignore a classification or a variable, with a gain in simplicity, and of course it
can help in strengthening prediction by identifying additional useful variables.
Any of the variables we have spoken of, y, u, or v, may be a composite
variable. Thus, if y is a dependent variable and u« is a regression-based
composite, then the method could indicate whether adding a new variable v to
the multiple regression would be important.

Groups of Multivariate Observations

CLASSIFICATION In a celebrated paper (6), Sir Ronald Fisher introduced the
linear discriminant function. He developed the method to employ the four
variables, petal length, petal width, sepal length, and sepal width, for
classifying an iris blossom as belonging to the correct one of three species.
The data set contained 50 blossoms from each of the three species; the data
thus comprised three sets of 50 four-variable observations. He proposed an
algebraic-numeric way of using those data to produce a composite of the four
variables; it proved to be an effective univariate score for deciding the species
of a new specimen. In Figure 21 are shown the petal widths and lengths for a
portion of that data set, for ten members of each species (the ones in rows 1,
6, 11, . . . 46 of Fisher's data set in his Table 1.) The sepal data are not
shown, because (a) two dimensions use up our ability to plot points, and (b)
inspection of the tabular data indicates that the petal dimensions have less
overlap among the species than do the sepal dimensions and so should help
more in discrimination among species.

Two lines with the same slope have been drawn in by eye. They can be
used for classifying a new specimen. One would measure its petal width and
length and plot the point; the species classification would be determined by
the point’s position relative to lines one and two. Equivalently, a score
(corresponding to the slope of the lines) could be computed by the formula:

score = 2.5 width + length.

If that score is less than 4.5, the blossom is classified [ris setosa; if gréater the
9.5, it is classified as /. virginica; and if between those limits as /. versicolor.
The correspondence between the geometrical recipe (plot the point) and the

numerical one originates in the fact that the two lines are defined by the
equations
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2.5 width + length = 4.5 and
2.5 width + length = 9.5

for lines one and two, respectively. Points to the right of line two all have
scores greater than 9.5, and those to the left of line one all have scores less
than 4.5.

The idea in this example is that class membership may be identifiable by
observing that different regions of the multivariate space tend to have data
points belonging to different classes.

CLUSTERING A similar plotting notion can be applied to a quite different

problem: Without knowing what underlying groups may exist, see whether

7.0+

Iris  Virginica

Iris Versicolor

Petal Length

Iris Setosa ine 1

Petal Width

Figure 21 A SUBSET OF FISHER'S IRIs DATA. Fisher used four variables and 50 observations. This
subset of the data uses only two of the variables and shows how the bivariate plot allows confident
scparation of the groups. in terms of a score that corresponds to the stope of the separating lines.
Source: Ref. (6).
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there appear to be clusters of data points in separated regions; such clusters
offer themselves as possibly representing underlying groups. In this task the
multivariate character of the data may be tapped by reducing the many
variables to only two composite variables, and then displaying each observed
unit as a point with those two coordinates.

DISPLAY OF MANY MULTIVARIATE ITEMS Slovic et al (17) used compos-
ites in explicating people’s attitudes toward several dozen hazards of modern
living, like motorcycles, nuclear reactors, oral contraceptives, handguns,
DDT, etc. The hundreds of respondents scored, on seven-point scales, their
feelings about each hazard with regard to a battery of 16 issues, such as: Is the
hazard uncontroliable or controllable? Is the effect immediate or delayed? Is
exposure to it voluntary or involuntary?

Evidently the data are very highly multivariate. Each of many hazards is
scored for each of many attributes. Figure 22 shows the display that the
investigators produced for exhibiting the summary information. First they
applied factor analysis to the data set. Factor analysis algorithms produce one
or more “factors,” which are composites of the original variables; here the
composites were made up of the scores associated with the 16 issues. The first
two factors are the ones that most fully summarize the issue responses. The
numerical value of each of the two composites was computed for each hazard.
Then a point was plotted for each hazard, using as coordinates these two
factor scores. Interpretation of the picture comes largely from the
characterization of the factors, which appears at the bottom of the figure.
Issues that receive large weight in a composite are listed, showing the
direction in which the issue affects the composite’s numerical value.

This ingenious display of such a large complex data set allows one to think
of attitudes about hazards as depending very largely on judged severity of the
hazard and on how unfamiliar it is (here we are over-condensing the factor
descriptions to one-word labels) and further to see how the respondents assess
each of the many hazards with regard to these two dimensions.

An entirely different approach to displaying many multivariate items is to
construct a small diagram for each unit, with one diagrammatic attribute
reserved for each multivariate component. A pioneer in this area was Edgar
Anderson (1), who proposed “glyphs” for multivariate display. He repre-
sented each unit by a small circle, and then he assigned a position on the
circumference to each variable; at such a position, a “whisker” would show by
its length the magnitude of the variable for that unit. Several later de-
velopments are similar in spirit. “Chernoff Faces™ (3) assign a feature of a
cartoon face to each variable; its numerical value determines the size of the
feature. This results in one *face” for each unit, with variations among faces
displaying the multivariate numerical information. Other devices include trees
and castles (10) and “stars.” These last can be thought of a modified Anderson
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glyphs, with the whiskers equally spaced around the small disk, each whisker
serving as the apex of a triangle (reaching back to the disk.) All these devices
show the full numerical information for each unit (which is not true, for
example, with the display of Figure 22). It is not clear, however, how
effectively the mind copes with the information so presented. The writer's
experience is that a large set of stars does not help him much to see patterns,
but it is very convenient for quick access to the information in detailed
scrutiny of the data. An informative, well-illustrated comparative treatment of
stars and trees is given by Chambers et al (2).

It would have been possible to display the hazard data as several dozen
stars, each with 16 points (or fewer, if some attributes were ignored). This
alternative mode of display would provide greater detail of information but
would leave the reader to search for patterns; the display offered by Slovic et
al supplies a pattern or framework for perception by summarizing much of the
information and ignoring the remainder.

PLANNING THE GRAPH

In this closing section we offer some suggestions that may help the maker of a
graphical display. The most important single notion is that data often can be
graphed in many ways. and a reflective choice among those will usually lead
to better results than adopting the first way that comes to mind. We also
present a handful of additional ideas:

1. Decide on the primary message of the graph.

2. Be mindful of the tradeoff between quantity of information and the

probability of its being read correctly, or read at ali.

Be mindful of the intended viewers’ preparation, skills, and expectations.

4. Since some tasks of visual perception are more accurately done than
others, design the graph to call upon the more accurate functions.

5. Be exploratory about the design, sometimes trying more than one
approach, sometimes testing early drafts on friends and associates.

w

Deciding on the Primary Message

Suppose that we had data on the percentage of impurities found in several
specimens, and that all these percentages were small, ranging from 1% down
to 1/20 of 1%. How should the data for these specimens be depicted? It

Figure 22 TwO FACTOR DISPLAY OF HAZARDS OF MODERN LIVING. Sixteen attributes of each
hazard were rated by hundreds of respondents. Those 16 variables were reduced by factor
analysis to three factors: the two most important are the coordinates in this chart. This one picture
(partially) summarizes information that in tabular form would involve more than 1000 averages.
Source: Ref. (17).
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depends on the meaning of the data. If the impurities were dangerous or
highly toxic, then the difference between 1% and 0.5% might be exceedingly
important. Plotting the data as a percentage or log percentage impurity would
accent the difference among the specimens. If the impurity were instead the
percentage of infertile seed among strains of alfalfa, then all of the samples
would be substantially equal, consisting of nearly 100% fertile seeds. That
would be the main message, and it would be best conveyed by bars of nearly
all the same length, nearly all 100%, rather than by bars showing impurity
fractions. Formally, both 100p% and 100(1-p)% contain equivalent informa-
tion, but the wrong one is likely to mislead the reader’s attention.
Sometimes, to ensure that the main message gets through clearly, it may be
wise to hold back supplemental information, or present it in a second related
graph. For example, this choice forced itself on the writer in preparing Figure
11, which presented the helmet law data. It was attractive to add to the figure
vertical ecrror bars for each year and for each of the three multi-year periods.
But both the discussion and the figure would have become considerably more
complicated, at the expense of the main message for that figure, which was,
“Suitable use of reference lines can help provide a structure for understanding
a graphically presented data set.” So, error bars and the attendant discussion
were foregone in that chart.

THE TRADE-OFF BETWEEN INFORMATION AND EASE
OF UNDERSTANDING

One chart can be loaded with enormous amounts of information, but the
reader’s task of making sense of the chart grows as the amount of information
does. A rule that one investigator imposes upon himself in a closely related
context, the preparation of a 2 X 2 lantern slide, is informative. Dr. Stephen
Pauker holds a slide at arms length; if he cannot figure out its message by
reading it in that way he rejects the slide as unsatisfactory and redesigns it
(16).

Often a good alternative to packing too much detail onto one chart is to
tolerate some redundancy (repetition of information) in replacing one chart by
several. Figure 18 does this with the brain mass-body mass data. All four
charts display the same three lines, but the reader gains enormously by that;
“saving” redundancy by plotting all the data on one figure would effectively
hide much that can be seen from the four-chart mode. With the radiosensitiv-
ity data (9), a different choice was made; four groups and four lines appear on
a single chart. The two data sets differed sharply as to the overlap between
groups, and so different graphical strategies were natural.

As remarked above, reference lines can be very helpful. But every element
added to a chart can be thought of as clutter, unless it is definitely functional.

Y
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The appropriate balance should be sought. Imagine a chart that depicts
exponential growth at several different rates. The purpose of that chart really
determines the appropriate level of detail for reference lines upon it. If the
chart is intended to allow the user to compute from it, then both horizontal and
vertical rulings will need to be much denser than if the chart’s purpose is to
show that “small” differences between growth rates, like .03 per year versus
.01 per year, can exert profound differences over 70 years, when the one rate
has produced an eight-fold growth and the other a two-fold growth. The
second purpose is well enough served with very little in the way of reference
lines; scales on the axes might be sufficient, without any reference lines at all.

The Skills and Expectations of Intended Readers

If the intended readers are expert in the subject matter of a graphical display,
some things are easter for the author: Technical terms can be used with less
explanation; more complexity in the chart is likely to be tolerable. Less
flexibility for the author may also result from an expert audience: Convention
may almost require that certain transformations be used, or not used, or that
certain ordered category boundaries be imposed on data originally acquired on
a continuous scale.

Of course it is often true that a readership of both experts and nonexperts is
contemplated. In that case technical terms that are routine for many readers
may nevertheless require careful definition and explanation for the bencfit of
other intended readers. Examples that come to mind include “hazard func-
tion,” “probit,” “correlation coefficient.” :

If most readers are expected not to be expert then even more care should be
taken to avoid misperception. Thus, comment may be given about the use of
broken scales, or the fact that the origin is not part of the figure, or that on one
axis the variable is plotted logarithmically, etc. ‘

LLITS

Take Account of the Relative Accuracy of Various Perceptual
Skills

A quantity can be graphically represented in many different ways, for ex-
ample as a length, area, volume, or intensity of color. An angle can be
represented by two lines intersecting at that angle, or in some way that states
its numerical value, say a length, area, or volume. Some of these depictions
are more accurately perceived than others. Cleveland studied the matter
systematically and offered these conclusions (4, p. 254). Accuracy declines as
we move downward in this list of perceptual judgments:

1. position along a common scale
2. position along identical, nonaligned scales
3. length

|
|
!
i
§
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angle—slope

area

volume

color hue—color saturation—density

NV A

Referring to this list we must conclude, for example, that comparing two
years' budgets (of different total size) by means of “pie charts” (with different
total areas) is an inferior way to go. Neither angle nor area is as easy to
perceive accurately as length; reference to the list encourages us to seek a
better way of portraying the two budgets—one using position on aligned
scales, for example. In general, the higher up we can go in the list the more
accurately the message may be perceived.

Experiment with Different Representations

The biggest step of all is to consider more than one possibility. There are
abundant reasons to do this, with so many dimensions of choice at hand: size, i
scales, style, transformations of variables, information density, etc. The
thought-experiment may sometimes give a satisfying answer. At other times a
person may wish to sketch out two or more alternative charts, and decide on
the basis of those. If the intended readers may be naive it can be wise to
prepare rather finished versions and expose them to naive(!) readers for
comment and elicitation of preference.

Pretesting a questionnaire is a well established Good Idea, so is circulating
a draft of a manuscript for comment. The message here is that pretesting
alternative forms of an important chart can also be a Good Idea.

ADDITIONAL LITERATURE

This chapter begins with the observation that graphical methods are in a state
of rapid development. The treatment here is necessarily eclectic and in-
complete. The interested reader might pursue (@) historical developments
{among other topics) in a recent review article (19), (b) graphical display in
Tufte’s book (18), (¢) data analytic approaches in three recent books (2, 4, 7).
All of these cite much additional literature.

ACKNOWLEDGMENT

The writer is grateful to Michael Shing for many useful comments and for
producing the graphics in this article, and to Jomarie Ochoa for typing it.
Comments on earlier drafts from Byron William Brown, Jr. and Frederick
Mosteller helped improve this article.




mple, that comparing two
“pie charts™ (with different
3le nor area is as easy to
t encourages us to seek a
using position on aligned
Zan go in the list the more

s

e possibility. There are
ns of choice at hand: size,
mation density, etc. The
2 a~-wer. At other times a
N irts, and decide on
* muve it can be wise to
1 to naive(!) readers for

yod Idea, so is circulating
2¢ here is that pretesting
e a Good Idea.

cal methods are in a state
essarily eclectic and in-
historical developments
- (b) graphical display in
ee recent books (2, 4, 7).

seful comments and for
rie Ochoa for typing it.
rown, Jr. and Frederick

Literature Cited

. Anderson, E. 1960. A semi-graphical
method for the analysis of complex
problems. Technometrics 2:387-92

2. Chambers, J. M., Cleveland, W. s,,
Kleiner, B., Tukey, P. A. 1983,
Graphical Methods Jor Data Analysis.
Belmont, Calif.: Wadsworth

3. Chemnoff, H. 1973. The use of faces to
represent points in k-dimensional space
graphically. J. Am. Srais. Assoc.
68:361-68

3a. Cleveland, W. S, 1979, Robust locally
weighted regression and smoothing scat-
ter plots. J. Am. Statist. Assoc, 74:829-
36

4. Cleveland, W. S. (985, The Elements of
Graphing  Data. Monterey,  Calif ;
Wadsworth -

5. Commission on Engineering and Tech-
nical Systems, National Research Coun-
cil. 1982, Toward Safer Underground
Coal Mines, p. 112, Washington DC:
Natl. Acad. Press

5a. Emerson, J. D., Strenio, J. 1982. Box-
plots and batch comparisons of chapt, 3.
In Undersianding Robust and Explora-
tory Data Analysis, e.d., D. Hoaglin, F.
Mostcller, J. 'w. Tukey, pp. 58-93.
New York: Wiley

6. Fisher, R. A. 1936. The use of multiple
Measurements in taxonomic problems.
Ann. Eugenics 8:179-88

7. Gnanadesikan, R. 1977, Methods for
Statistical Data Analysis of Multivariate
Observations. New York: Wiley

8. Deleted in proof

9. Kaplan, H. S, Moses, L. E. 1964.
Biological complexity and radiosensitiv-
ity. Science 145:21-25

10. Kleiner, B., Hartigan, J. A. |98;.

Representing points in many dimensions
by trees and castles. J. Am. Statist.
Assoc. 76:260-76

GRAPHICAL METHODS 353

. Komer, A. F., Guilleminault, C., Van

den Hoed, J., Baldwin, R. B. 1978.
Reduction of sleep apnea and bradycar-
dia in preterm infants on oscillating
water beds: A controlled polygraphic
study. Pediatrics 61:528-33

. Krane, S. 98], Motorcycle crashes,

helmet use and injury severity: Before
and after helmet law repeal in Colorado.
Symp. on Traffic Safety Effectiveness
(Impact) Evaluation Projects, May 29-
31, 1981, Chicago, 1981:330 (Table 1).
(Conducted by National Safety Council
under contract no. DTNH22-80-C-
01564)

. McNeal, J. E., Bostwick, D.'G., Kin-

drachuk, R. A., Redwine, E. A,
Freiha, F. S, et. al. 1986, Pattens of
progression in prostate cancer. Lancet
Jan. 11, pp.

- Miller, R. G. Jr. 1980. Simultaneous

Statistical Inference New York. Sprin-
ger-Verlag. pp. 26-7, 90-94. 2nd ed.

- Murray, 1., Bemfield, M. 1986. The

differential impact of pre-natal care on
incidence of low birth weight among
blacks and whites in a prepaid health
care plan. N. Engl. J. Med. Submitted

. Pauker, S. 198]. Presented in lecture

before Health Services Consortium,
Stanford Univ., 17 July 1981

. Slovic, P, Fischoff, B., Lichtenstein,

S. 198s. Characterizing perceived risk
in Perilous Progress: Technology as
Hazard, ed. R, Ww. Kates, C.
Hohenemser, J. Kasperson. Boulder,
Colo.: Westview

- Tufte, E. R. 1983. The Visual Display of

Quantitative  Information. Cheshire,
Conn.: Graphics Press

- Wainer, H., Thissen, D. 1981. Graphic-

al data analysis. Ann. Rey, Psychol.
32:191-24]






