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Fig. 1.1. A deterministic model: Ohm’s law.

(such as V' and I) and parameters (such as R) and use Greek letters for
the latter. Thus, if Ohm were a modern statistician he would write his law
as

I=—

p

In this form it is now clear that p, the resistance, is a parameter of a simple
mathematical model which relates current to potential. Alternatively, he
could write the law as

I =~V

where 7 is the conductance (the inverse of the resistance). This is a simple
example of a process called reparametrization — writing the model differ-
ently so that the parameters take on different meanings.

STOCHASTIC MODELS

Unfortunately the phenomena studied by scientists are rarely as predictable
as is implied by Fig. 1.1. In the presence of measurement errors and un-
controlled variability of experimental conditions it might be that real data
look more like Fig. 1.2. In these circumstances we would not be in a po-
sition to predict a future observation with certainty, nor would we be able
to give a definitive estimate of the resistance parameter. It is necessary
to extend the deterministic model so that we can predict a range of more
probable future observations, and indicate the uncertainty in the estimate
of the resistance.

Problems such as this prompted the mathematician Gauss to develop
his theory of errors, based on the Gaussian distribution (often also called
the Normal distribution), which is the most important probability model
for these problems. A very large part of statistical theory is concerned with
this model and most elementary statistical texts reflect this. Epidemiology,
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Fig. 1.2. Experimental/observational errors.

however, is more concerned with the occurrence (or not) of certain events in
the natural history of disease. Since these occurrences cannot be described
purely deterministically, probability models are also necessary here, but
it is the models of Bernoulli and Poisson which are more relevant. The
remainder of this chapter discusses a particularly important type of data
generated by epidemiological studies, and the nature of the models we use
in its analysis.

1.2 Binary data

Many epidemiological studies generate data in which the response mea-
surement for each subject may -take one of only two possible values. Such
a response is called a binary response. Two rather different types of study
generate such data.

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

In a cohort study a group of people are followed through some period of
time in order to study the occurrence (or not) of a certain event of interest.
The simplest case is a study of mortality (from any cause). Clearly, there
are only two possible outcomes for a subject followed, say, for five years —
death or survival. »

More usually, it is only death from a specified cause or causes which
is of interest. Although there are now three possible outcomes for any
subject — death from the cause of interest, death from another cause, or
survival — such data are usually dealt with as binary data. The response is
taken as death from cause of interest as against survival, death from other
causes being treated as premature termination of follow-up. Premature
termination of follow-up is a common feature of epidemiological and clinical
follow-up studies and may occur for many reasons. It is called censoring, a
word which reflects the fact that it is the underlying binary response which
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we would have liked to observe, were it not for the removal of the subject
from observation. _

In incidence studies the event of interest is new occurrence of a spec-
ified disease. Again our interest is in the binary response (whether the
disease occurred or not) although other events may intervene to censor our
observation of it.

For greater generality, we shall use the word failure as a generic term
for the event of interest, whether incidence, mortality, or some other (unde-
sirable) outcome. We shall refer to non-failure as survival. In the simplest
case, we study N subjects, each one being followed for a fixed time in-
terval, such as five years. Over this time we observe D failures, so that
N — D survive. We shall develop methods for dealing with censoring in
later chapters.

CROSS-SECTIONAL PREVALENCE DATA

Prevalence studies have considerable importance in assessing needs for
health services, and may also provide indirect evidence for differences in-in-
cidence. They have the considerable merit of being relatively cheap to carry
out since there is no follow-up of the study group over time. Subjects are
simply categorized as affected or not affected, according to agreed clinical
criteria, at some fixed point in time. In a simple study, we might observe
N subjects and classify D of them as affected. An important example is
serological studies in infectious-disease epidemiology, in which subjects are
classified as being seropositive or seronegative for a specified infection.

1.3 The binary probability model

The obvious analysis of our simple binary data consisting of D failures
out of N subjects observed is to compute the proportion failing, D/N.

However, knowing the proportion of a cohort which develops a disease, or .

dies from a given cause, is of little use unless it can be assumed to have a
wider applicability beyond the cohort. It is in making this passage from
the particular to the general that statistical models come in. One way
of looking at the problem is as an attempt to predict the outcome for a
new subject, similar to the subjects in the cohort, but whose outcome is
unknown. - Since the outcome for this new subject cannot be predicted
with certainty the prediction must take the form of probabilities attached
to the two possible outcomes. This is the binary probability model It
is the simplest of all probability models and, for the present, we need
to know nothing of the properties of probability save that probabilities
are numbers lying in the range 0 to 1, with 0 representing an impossible
outcome and 1 representing a certain outcome, and that the probability
of occurrence of either one of two distinct outcomes is the sum of their
individual probabilities (the additive rule of probability).
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F (Failure)

S (Survival)

_Fig. 1.8. The binary probability model.

THE RISK PARAMETER

The'binary probability model is illustrated in Figure 1.3. The two outcomes
are labelled F (failure) and S (survival). The model has one parameter, 7,
the probability of failure. Because the subject must either fail or survive,
the sum of the probabilities of these two outcomes must be 1, so the proba-
bility of survival is 1 — 7. In the context where 7 represents the probability
of occurrence of an event in a specified time period, it is usually called the
risk.

THE ODDS PARAMETER

An important alternative way of parametrizing the binary probability model
is in terms of the odds of failure versus survival. These are

m:(l—n),

which may also be written as

1—-m

It is convenient to omit the : 1 in the above expression and to measure the

odds by the fraction
T

1—7m"

This explains why, although the word odds is plural, there is often only
one number which measures the odds.

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a)
0.75, (b) 0.50, () 0.25.

In general the relationship between a probability = and the corresponding
odds Q is

gt



4
Consecutive follow-up intervals

In the last chapter we touched on the difficulty of estimating the probability
of failure during a fixed follow-up period when the observation times for
some subjects are censored. A second problem with fixed follow-up periods
is that it may be difficult to compare the results from different studies; a
five-year probability of failure can only be compared with other five-year
probabilities of failure, and so on. Finally, by ignoring when the failures
took place, all information about possible changes in the probability of
failure during follow—u7p is lost.

The way round these difficulties is to break down the total follow-up
period into a number of shorter consecutive intervals of time. We shall refer
to these intervals of time as bands. The experience of the cohort during
each of these bands can then be used to build up the experience over any
desired period of time. This is known as the life table or actuarial method.
Instead of a single binary probability model there is now a sequence of
binary models, one for each band. This sequence can be represented by a
conditional probability tree. ' ‘

4.1 A sequence of binary models

Consider an example in which a three-year follow-up interval has been
divided into three one-year bands. The experience of a subject during
the three years may now be described by a sequence of binary probability
models, one for each year, as shown by the probability tree in Fig.4.1. The
four possible outcomes for this subject, corresponding to the tips of the
tree, are

1. failure during the first year;

2. failure during the second year;

3. failure during the third year;

4. survival for the full three-year period.
The parameter of the first binary model in the sequence is n!, the prob-
ability of failure during the first year; the parameter of the second binary
model is 72, the probability of failure during the second year, given the
subject has not failed before the start of this year, and so on. These are
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Fig. 4.1. A sequence of binary probability models.

all conditional probabilities — conditional on not having failed before the
start of the year in question. The reason the probabilities are written with
superscripts is that we have adopted the convention that a superscript is
used to index time, and a subscript is used to index subjects or groups
of subjects. It is important to distinguish these two situations, and using
subscripts for both can be confusing.*

' Suppose, for illustration, that the probability of failure is 0.3 in the first
year; 0.2 in the second year, given the subject survives the first year without
failure; and 0.1 in the third year, given the subject survives the first two
years without failure. These illustrative values for the three conditional
probabilities are shown on the conditional probability tree in Fig.4.2.

In this tree, the four final outcomes listed above correspond to the
tips of the tree, and their probabilities can be calculated by multiplying
conditional probabilities along the branches of the tree in the usual way.
For example, the probability of the second outcome is made up from the
probability that the subject survives the first year (0.7), multiplied by the
probability that the subject fails during the second year (0.2). Using this
rule, the four possible outcomes for any subject occur with probabilities:

0.3
0.7 x 0.2
0.7x0.8x0.1
0.7x0.8x0.9

*Note that 72 does not refer to w x 7. To avoid confusion we shall always use brackets
when taking powers; for example, the square of 7 will be written (m)2.
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Fig.,4.2. Illustrative values for the conditional probabilities.

These probabilities work out to be 0.3, 0.14, 0.056, and 0.504, and these
add to 1, as they should, since there are no other possible outpomes. The
probability of failing at some stage is

0.3 +0.14 + 0.056 = 0.496.

More conveniently this probability can be found by subtracting from 1 the
probability of surviving the three. years without failing, giving

1~ 0.504 = 0.496.

The probabilities of surviving one, two, and three years without failing
are called the cumulative survival probabilities for the cohort. They are
calculated by mulmhditional probabilities of surviving each
year, and in this case are:

0.7
0.7 x 0.8
0.7 x 0.8 x 0.9.

which work out to be 0.7, 0.56, and 0.504.

Exercise 4.1. In a three-year follow-up study the conditional probabilities of
failure during the first, second, and third years are 0.05, 0.09, and 0.1? respec-
tively. Draw a probability tree for the possible outcomes for a new 51.1}E>_]‘ect, and
label the branches of the tree with the appropriate conditional probabilities. Cal-
culate the probability of each of the outcomes, and the probabilities of surviving

A



Rates

We have shown how, by splitting the follow-up period into small enough
bands, the importance of arbitrary assumptions about when the losses oc-
cur can be minimized. We now follow this argument to its logical conclusion
and divide the follow-up into infinitely small time bands.

5.1 The probability rate

As the bands get shorter, the conditional probability that a subject fails
during any one band gets smaller. When a band shrinks towards a single
moment of time, the conditional probability of failure during the band
shrinks towards zero, but the conditional probability of failure per unit
time converges to a quantity called the probability rate- This quantity is
sometimes called the instantaneous probability rate to emphasize the fact
that it refers to a moment in time. Other names are hazard rate and force
of mortality. :

The probability rate refers to an individual subject. This is counter-
intuitive to many epidemiologists, who think of a rate as an empirical
summary of the frequency of failures in a group observed over time. We
show in the next section that such a summary is, in fact, the most likely
value of the common probability rate for the subjects in the group. It
is general practice in epidemiology to refer to both the probability rate
and its estimated value as the rate, even though this leads to many logical
absurdities. We have tried to keep as close as possible to this tradition,
while avoiding the logical contradictions, by referring to the probability
rate as the rate parameter and its estimated value as the observed rate.

5.2 Estimating the rate parameter

wven though the rate parameter refers to a single individual it is not pos-
sible to estimate its value from the experience of that individual. The
estimate must be based on the experience of a group of subjects assumed
to have the same rate. Similarly, even though the rate parameter refers to
a single moment of time, its estimated value is usually based on a period of
follow-up over which the rate is assumed to be constant. The estimated rate
for this period then refers to the constant value which the rate parameter

o
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Fig. 5.1. The follow-up experience of 7 subjects.

takes at all time points during the period.

The rate parameter over a follow-up period is estimated by dividing the
period into a number of small time bands of equal length and estimating
the common probability of failure for each of the bands. This is divided
by the length of a band to get the rate per unit time. The process is
illustrated using the follow-up experience of 7 subjects shown in Fig. 5.1,
in which the follow-up experience of the subjects is shown as lines which
end when follow-up ends. The lines for those subjects who fail end with a e,
while those whose observation time is censored end with a short bar. The
follow-up period has been divided into 10 short bands and for the present
we shall assume that follow-up always stops at the end of a short band.
From the figure we see that the follow-up of subject 1 stops after 7 bands
due to censoring. For subject 6 the follow-up stops after 5 bands when the
subject fails, and so on.

Exercise 5.1. How many observations of one subject through one time band
are observed? How many of these ended in failure?

Assuming that the rate parameter is constant over the follow-up period, the
conditional probability of failure is the same for all bands and its most likely
value is 2/36. The most likely value of the corresponding rate parameter is
2/36 divided by the length of the bands. Suppose for illustration that each
band has length 0.05 years. The most likely value of the rate parameter is
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then

2

- 111 .
(36 x 0.05) per yeat

Note that 36 x 0.05, which equals 1.8 years, is the total observation time
for the 7 subjects.

Now suppose that five times as many bands are used, so that each is
0.01 years in length. The most likely value of the probability of failure for
these bands is 2/180, but the most likely value of the corresponding rate
stays the same because there are now 180 bands of length 0.01 years and
180x 0.01 is the same as 36 x 0.05, both being equal to the total observation
time, added over subjects. In general, then, as the bands shrink to zero,
the most likely value of the rate parameter is

Total number of failures
- Total observation time °

Note that assumption that events occur at the end of bands is automatically
true when the bands shrink to zero. This mathematical device of dividing
the time scale into shorter and shorter bands is used frequently in this
book, and we have found_it useful to introduce the term clicks to describe
these very short time bands.

Time can be measured in any convenient units, so that a rate of 1.11 per
year is the same as a rate of 11.1 per 10 years, and so on. The total observa-
tion time added over subjects is known in epidemiology as the person-time
of observation and is most commonly expressed as person-years. Because
of the way they are calculated, estimates of rates are often given the units
per person-year or per 1000 person-years.

The use of the general formula for the estimated value of a rate is now
illustrated using data from a computer simulation of 30 subjects who are
liable to only one disease (the failure) and the follow-up is indefinitely long,
so that eventually all subjects develop the disease. The only variable in
the outcome is how long it takes for the disease to develop, and these times
are shown in Table 5.1.

Exercise 5.2. Using the time interval from the start of the study to the moment
when the last subject develops the disease, find the total observation time for the
30 subjects and hence estimate the rate for this interval. Give your answer per
10® person-years as well.

Exercise 5.3. The previous exercise is rather unrealistic. Real follow-up studies
are of limited duration and not all of the subjects will fail during the study period.
Estimate the rate from a study in which the same subjects are observed only for
the first five years.
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Table 5.1. Time until the disease develops, for 30 subjects

Subject Years Subject Years

1 19.6 16 0.6
2 10.8 17 2.1
3 14.1 18 0.8
4 3.5 19 8.9
5 4.8 20 11.6
6 4.6 21 1.3
7 12.2 22 34
8 14.0 23 15.3
9 3.8 24 8.5
10 12.6 25 21.5
11 12.8 26 8.3
12 121 27 0.4
13 4.7 28 36.5
14 ' 3.2 29 11
15 7.3 30 1.5

5.3 The likelihood for a rate -

The argument of the last section, although leading to the most likely value
of the rate parameter, does not allow us to explore the support for other
values. In this section we shall obtain a formula for the likelihood for a
rate parameter.

Consider a more general example in which D failures are observed for
a total of N clicks of time, each of duration h years, where h is very small
and N is very large. The total observation time in yearsis Y = Nh. Let 7
be the conditional probability of failure during a click. Then the likelihood

for 7 is
(mP1—mN-P.

Let the corresponding rate parameter be A, where, because h is small,
A=m/h.
The likelihood for A follows by replacing 7 by Ah, and is
(AR)P(1 = XR)N-D.
The log likelihood for A is therefore

Dlog()) + Dlog(k) + (N — D)log(1 — Ah).
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