CHAPTER §

MAXIMUM SUPPORT: THE METHOD
OF MAXIMUM LIKELIHOOD

§.1. INTRODUCTION

In the past four chapters we have seen how to assess rival hypotheses
by the Method of Support ; how this entails asimple calculation in the
case of two discrete hypotheses, and the drawing of a support curve
in the case of a family of hypotheses specified by a parameter which
may takeany value in a particular range. With discrete hypotheses we
can hope for no simpler treatment than the calculation of a single
value of relative support, but with continua of hypotheses specified
by one or more parameters, the quotation of the complete support
function, or the drawing of its graph, is usually an unnecessary, and
sometimes an impossible, labour. For the support function itself
is not directly interpretable, and the drawing of its graph will be im-
possible with more than two parameters. It is therefore natural to
seek ways of conveying mostof the information in simpler numerical
form, and to elaborate methods for obtaining and handling these
numbers. In view of our dedication to the Method of Support, we
shall pay particular attention to the parameter values which jointly
(if there is more than one parameter) maximize the support.

In this chapter and the next we shall assume (unless otherwise
indicated) that the support function is sufficiently regular for the
suggested methods to be valid. In particular it will be assumed to
be free of points of infinite support, to be unimodal, and to possess
derivatives of all necessary orders. Situations leading to irregular
support functions will be treated in chapter 8.

DEFINITION

The best-supported value of a parameter (that value for which,
on the data, the support is a maximum) is called the evaluate.
In the case of two or more parameters, the evaluates are those for
which the support is a maximum over all parameters jointly.

The corresponding word in standard statistical theory is esti-
mate; 1 shall introduce the words evaluator and evaluation as the
substitutes for estimator and estimation.
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With the emphasis placed on the evaluate, three questions call
for attention: first, by what means shall we describe the shape of
the support curve in the vicinity of the maximum; secondly, how
shall we combine evaluates from different sets of data; and thirdly,
how shall we locate the maximum when drawing the curve is
impossible?

Before treating these questions, we must momentarily digress
to consider sufficient evaluates. Sometimes (given the model and
the sample size) the whole support function is uniquely deter-
mined by the position of its maximum, in which case the evaluate
is itself a sufficient statistic and may be referred to as a sufficient
evaluate. Indeed, it must be minimally sufficient in the sense of
section 2.3. In the case of k parameters we may find jointly sufficient
evaluates: k evaluates, one for each parameter, which jointly
specify the support function. In general the individual evaluates
will not be severally sufficient for the corresponding parameters.

The phenomenon of sufficient evaluates means that our aim of
specifying the entire support function by a single number, given
the sample size and the model, has already been achieved in those
few but important situations where sufficiency occurs. Unfortu-
nately the proviso ‘given the model’ is an important one, for with-
out the model we do not know the functional form of the support.
When the question of interpretation arises, therefore, the occur-
rence of sufficiency is not a great help, for with or without it we
still have a support curve whose shape near the maximum we wish
to communicate. In most of what follows, sufficiency will only be
of marginal interest.

5.2. INDICES FOR THE SHAPE OF THE SUPPORT CURVE

In example 3.4.3 I suggested that the support curve for the bi-
nomial probability p given a sample of 33 successes and 47
failures (figure 2) could be summarized by quoting the evaluate,
or best-supported value, of p and the two values for which the

A

support is 2 units below the maximum, thus: $ = 0.4125 (0.3066,
0.5241).

DEFINITION

The m-unit support limits for a parameter are the two parameter
values astride the evaluate at which the support is 7 units less than




The Method of Maximum Likelihood

the maximum. The m-unit support region for a number of para-
meters is that region in the parameter space bounded by the curve
on which the support is m units less than the maximum.

Support limits are perhaps the most natural way of numerically
communicating information about a parameter, but they have
disadvantages when one wishes to combine the results of different
experiments, and they do not readily generalize to the multi-
parameter case: a support region is better in theory than in
practice. An alternative method, which readily generalizes to the
case of many parameters, is to obtain the Taylor’s series approxi-
mation to the support curve in the region of the maximum, and
thus to use the second partial-differential coefficients.

In the case of a single parameter 0, suppose the support function
be S(6). Then the evaluate of 6 is, in well-behaved situations, the
solution of

DEFINITION

The first derivative of the support function is known as the
score; taken at the evaluate, the score is zero.

Writing the evaluate §, the support at any other value of 6 is
approximately given by the Taylor expansion

dS 5428
S(6) = SO) + 0 — 0 +30 — 0P g5+ - o
where the differential coefficients are evaluated at 6 = 6. But at
... dS. .
this point 3p 1S Zero, 80 that approximately we have
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5(6) = S6) + 46 — 67 - (5.:2.1)

DEFINITION

Minus the second derivative of the support function is known
as the information; when taken at the evaluate, it is known as the
observed information.

The complete justification for the use of the word ‘information’
in this context will be postponed until chapter 7; at this stage we
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may simply observe that the usage is intuitively satisfactory, for
the difference in support between § and some other value 6,
which we may expect to be a measure of the informativeness of
the data about , is proportional to the observed information in
the region near 6 (equation 5.2.1).

We note that the observed information may be interpreted
geometrically as the spherical curvature of the support curve at
its maximum, and hence that its reciprocal is the radius of curva-
ture. This is precisely the kind of index that we need for communi-
cating the form of the curve near the maximum, and it is useful
to give it a special name:

DEFINITION!

The radius of curvature of the support curve at its maximum,
being the reciprocal of the observed information, is called the
observed formation. The word formation alone may be used for the
reciprocal of the information at points other than the maximum.

EXAMPLE §.2.1
We have seen that the likelihood for p, the parameter of a binomial
distribution, is proportional to
Qnﬁu - @vvg
given a successes and b failures. The support function is thus
S@p)=alnp+bln(x —p),

which is maximized for p at

dS a b
I"Ill'll-MO-
d p» @ —p
whence
. a
@Inﬁl_l@»

the proportion of successes in the sample. We have already noticed this
solution for the evaluate in earlier numerical examples.

d?S a b

dp®  p?
is the information, and writing @ = np and b = n(x — p), where n =
a + b is the sample size, the observed information is

ol + ! - "
5 1—p] Pa—p)
Hence the observed formation is p(x — p)/n.

Lade]
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Readers who are familiar with standard statistical parlance will
recognize the observed formation in the above example as equal
to the variance of the proportion of successes observed in a
sample of # when the probability of success is known to be p. We
must wait until the theorems of chapter 7 before we can see why,
but now is an opportune moment to reflect on the inadequacy of
statements of the form ‘the estimate of p is p = afn, and the
standard error of the estimate is 4/{#(1 — p)/n}’. This is objec-
tionable first because it is not true, the standard error of $ in fact
being v/{p*(x — p*)/n}, where p* is the unknown ‘true’ value of p,
the result therefore being only asymptotically correct as p — p*;
and secondly because, even in the possession of the complete form
of the distribution of p given p*, the Likelihood Axiom indicates
that only the Method of Support allows us to make comparative
statements about p* given $, and they will involve the observed
formation, and not a variance. Nevertheless, it is encouraging to
find the conventional methods so closely shadowed by the Method
of Support, for in spite of their logical frailty experience has shown
them not to be misleading in well-behaved situations.

It will not always be possible, as it was in the above example, to
quote the observed formation in terms of the evaluate alone. For
this to be done, it will be necessary for the support function to be
expressible in terms of the evaluate, in which case it is then a
sufficient evaluate, as defined in section 5.1.

The radius of curvature suffers one disadvantage as a measure
of the shape of a curve near its maximum, for it is not a linear
measure of the width of the curve some specified distance below
the peak: in fact it is proportional to the square of such a width.
A measure of the width, which is perhaps the most meaningful
index intuitively, is thus afforded by the square-root of the radius
of curvature.

DEFINITION

The square-root of the observed formation is called the span,
and is a measure of the width of the support curve near the
maximum,

In geometrical terms, a Taylor’s series approximation cor-
responds to the replacement of the true support curve by a
parabola passing though the maximum, with axis vertical and

i
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5-2]
having the same radius of curvature as the true curve at the
maximum. An example is given in figure 11. If we denote the span
by w, where

dzs

de?

taken at the maximum, the equation of the approximating para-
bola is

w2 = —1

S(8) = S(@) — (0 — 6)*/2w?. (5.2.2)

For any particular value of S(6) this is a quadratic equation in 6,
with roots symmetrically placed about 6, and if the roots are chosen
s0 that the distance between them, 2(68 — 0), is equal to the span

o T T T T
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Figure 11. The support curve for the binomial parameter p for
a sample of 4 successes and 10 failures (curve (a) of figure 2),
together with its approximating parabola (dotted curve).
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w, the support at the roots will be less than that at the maximum
by an amount equal to (6 — 6)2/8(6 — 6)?, or }. Hence the span
is the width of the approximating parabola to the support curve
at } of a unit of support below the maximum. Similarly, we see
that it is the semi-width half a unit below the maximum. At one
unit the width is 24/2 times the span, and at m units 2+/(2m)
times the span. Since the half-width is therefore 1/(2m) times the
span, the m-unit support limits on the true curve are approxi-
mately given by the parameter values 4/(2m) from the evaluate
on either side of it. In particular, the 2-unit support limits are at
+2w. Since the span corresponds to the square-root of the vari-
ance, it is the analogue of the standard deviation.

EXAMPLE §.2.2
The span of the support curve for a binomial parameter is

V{p(x — p)n}.

The 2-unit support limits are thus approximately 2+/{f(x — p)/n} on
either side of the evaluate. In example 3.4.3, n was 8o and § o.4125.
The limits are therefore approximately 0.4125 % o.r101, or f = 0.412§
(0.3024, 0.5226). It may be recalled that the exact limits were § = o0.4125
(0.3066, 0.5241).

EXAMPLE §.2.3

We may note the curious fact, given by Todhunter,? that the two
points of inflection of the binomial likelihood curve

(1 —p)
are equidistant from the maximum § = a/n, where n = a + b. Further-

more the square of the distance % of each from the maximum is simply
P — p)/(n — 1). Thus k is given by

The extent to which the span is an accurate reflection of the
width of the true support curve near the maximum is, of course,
dependent on the goodness-of-fit of the approximating parabola
and the excellence of the Taylor’s series approximation. If the
support curve is symmetrical about the evaluate, the approxima-
tion should be satisfactory, for then all the odd-order derivatives
are zero at the maximum. It may, in some cases, be worthwhile
to transform to a new variable for which the support curve is

5.2} 1 e Snape uj e Suppurs v ve

more nearly symmetrical, but one may lose in ease of interpreta-
tion what one gains in accuracy. Examples involving transforma-
tions are given in later sections of this chapter.

It is interesting to note that if the support curve takes the

parabolic form
S(6) = S(f) — (6 — 0)*/20?

the likelihood must have the form
eSO — k aATSuBsu.

that is, the form of a Normal curve with mean § and mﬁnawa
deviation equal to the span w. There is, ro€n<9...m=.9_m corre-
spondence, no implication of a Normal probability distribution. .Hw._n
distribution of evaluates will be a matter for consideration in
chapter 7. N

There is a theorem to the effect that, under suitable conditions,
the likelihood becomes more and more Normal in form as the
sample size increases, but it is a rather weak and useless theorem.
For if, as it asserts, the likelihood on 6 and the likelihood on ¢
both tend to the Normal form, where ¢ is a one-to-one transforma-
tion of 6, it is really only saying that with a large-enough sample
the range of interest around the maximum is so small Ewa a.ua
transformation in this range is practically linear, and that within
the range the support function is well-approximated by a Taylor
expansion up to the quadratic term.

It would only be surprising were it not true that as the sample
size increases the support becomes more and more concentrated
at the true value of the parameter, a result proved in the next

section.

5.3. GENERAL FORMS FOR THE SCORE AND INFORMATION

The general form for the support function in the case of a multi-
nomial sample was given (equation (3.4-4)) as

S(6) = Mm: In p(9). (5:3.1)
i=
The score may therefore be written
dS _ 5 aidp
do Sy py do’

(5-3-2)
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and the information

L3 _ gfa ()7 ady
de*  Slpi\do by %wv.

It is generally easier to work from first principles than to remember
these forms, but they will be used to derive the expected score
and the expected information in section 7.2.

For a continuous distribution we had (equation (3.4.5))

(5-3-3)

5(0) = FMHF\?. 9), (5:3-4)
whence
ds »oadf
W AFdb (5.3-5)
and
23S &1 (df 1 d%f

2
~@-ilple) Fwh 9
where f stands for f(x,, 9).

The forms for discrete and continuous distributions are, of
course, quite equivalent, but it is more convenient to sum over
classes with the former and over individual observations with the
latter.

Suppose 6* is the ‘true’ value of 0 in a multinomial situation.
As the sample size increases, the observed class frequencies a,

will approach their expectations np(6*), and the score will
approach

n

; APQJ @@.v
S \p0) do /)
At 0 = 0* this reduces to

5 (), (50 =

i=1

showing that as the sample size increases indefinitely, the true value
of the parameter is approached by a turning point of the support
curve. The information is then easily seen to be positive, indicating
that the turning point is a maximum. But at any value of 6 other
than 0* the score will increase proportionately with n, the sample

5.3] Score and information

size, and since the score represents the gradient of the support
curve, it is evident that as the sample size increases, the support
other than at the true value of the parameter decreases, by com-
parison, indefinitely. A similar argument may be applied to the
continuous case.

This property of evaluates, that they approach the true value of
the parameter (where such a concept is meaningful) as the sample
size increases, is called consistency, and evaluates are said to be
consistent. It is obviously then a desirable property. There has
been some discussion of the proper definition of consistency, and
of the behaviour of evaluates in irregular situations; the reader is
referred to Rao® for an introduction to the subject.

5.4 TRANSFORMATION AND COMBINATION OF EVALUATES

In section 2.5 we noted that the likelihood function referred to a
new parameter ¢, where 0 = f(¢), 0 being the old parameter and
f a one-to-one transformation, is found by the direct substitution
of f(¢) for 6; and hence that the maximizing values of § and ¢,
fand §, are related by the equation § = f($). In chapter 3 we saw
how this conformed to our requirements for a measure of support.
The analytic demonstration of the transformation property of
evaluates is immediate, for at the evaluate we have

THEOREM §5.4.1
The observed informations are related by the formula

de*’
where d0/d¢ is taken at the evaluate.

Proof.
d2s d% dS A%/‘u d2S

P s 6w

but at the evaluate d.S/d6 is zero, and the theorem follows immedi-
ately.
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If w, and w, are the spans of ¢ and 6 respectively, then they are
related by the equation

/(4

It must of course be remembered that any non-linear transforma-
tion of the parameter will render the support curve either more or
less parabolic at its maximum, so that its representation by the
evaluate and the span is rendered either more or less accurate,
Support limits directly transformed will not correspond to the
support limits found from the new span. As I have mentioned, we
may sometimes take advantage of a transformation to improve the
approximation of the support curve by a parabola. The support
limits for the new parameter may then be directly transformed into
limits for the old parameter, and any asymmetry about the evaluate
which they then exhibit is an indication of the asymmetry of the
support curve. An example (5.6.2) is given below in connection
with Newton—Raphson iteration.,

An appropriate transformation will be one which renders the
third derivative of the support function, with respect to the new
parameter, zero at the evaluate. We already have

d2S d% dS 6 /d6\2d2S
dg* " dg* o @ a5
whence, on differentiating again and setting d.S/df = o,
d3S df(d3S/d6\?  d3S d%
i e I
taken at the evaluate. It follows that if the third derivative with
respect to ¢ is to be zero,

(5.4-2)

A dzs
@ =
d?e =~ ~ &S
dg? d6°

EXAMPLE 5.4.1%

In a Poisson distribution, the probability that the variate takes the
valuer (r =o0,1,2,...)is
e~ Aqr

r!

o

1ransformarion ana Convisuiure

[ 54]
In a sample of n, let the observed frequency in class r be a,. Then the
support function may be taken as

SA) = maklm +7rlnd)

r=0

=nF1nd — 2),

showing that F is a sufficient statistic for 4.

as_ (0,
dar \4 ’
from which we see that 7 is the evaluator of 4.
Furthermore,
dzs _  nr,
@ -
the observed formation of the evaluate is therefore /n.
Proceeding to the third derivative we find

d3S _ 2nF

da? FE

which is not zero at = F. .
We thus require a new parameter, say ¢ = $(2), for which

da\2
Ammv 34
a2z
dé?
i 1 is differential equation is ¢ = 113, which is
Mﬂwmwﬁvwmﬁ:ﬁ“ﬂﬂo.M_.Mmmnm_%:suao? The support ?:o.moa for A when
n = 10 and 7 = 0.8 is shown in figure 12, and for A1 in figure 13.

One of our requirements for a measure of support was that it
should be additive over independent sets of data, and we r.wsu
seen how support, as here defined, E.E hence a support function,
satisfies this requirement. It immediately follows that the score
and the information are additive over independent sets. e

Since we may wish to work in terms of evaluates .uEM M eir
spans, the question arises as to how these may be 8:.&50 3“
independent sets of data, given that the support functions Bﬂwﬁr
added. In the presence of sufficient evaluates, the addition M. the
support functions will correspond to some io:-mo@mmvooa M..wmwm
operation on the evaluates, and an exact solution will be possib'€,

Thus we have already seen that the combination of binomial
samples corresponds to the summing of the number of successes

o_
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and of the number of failures; in terms of the sufficient evaluate
afn and the sample size n, the procedure amounts to finding the
weighted sufficient evaluate, the weights being given by the sample
sizes. In general, however, we will work with evaluates and their
informations, and may anticipate that any such combination of
values will be an approximate procedure, dependent on the
excellence of the Taylor’s series approximations.

THEOREM §.4.2

Evaluates may be combined approximately by forming their
weighted average, the weights being equal to their observed

o]

Figure 12. The support curve for the Poisson parameter 4 for a
sample of 10 with mean 0.8.

5.4] 1 TANSJUTTIULIVN Wiks LUmmusisaveyrs

informations. The combined observed information is approxi-
mately equal to the sum of the individual observed informations.

We prove the theorem for the combination of two values, the
extension to any number being immediate.

Proof. Let the two evaluates be 6, and 0,, derived from support
functions S;(0) and S4(6), and let them have observed formations
w? and w]. Then, to a quadratic approximation,

S54(0) = Sy(6y) — (6 — 0,)%/2wf
and

Sq(6) = Sy(bs) — (0 — 02)/2u3.

i 1 | 1 1 | 1 1 | 1 1
mo.m 10 1 m

¢

Figure 13. The support curve of figure 12 as a ».::nmoz. of
é = 1113, demonstrating the efficacy of this transformation
in rendering the peak more symmetrical.

Qa
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For a combined quadratic support function we have, therefore,
S3(6) = S.(6) + S:(6)
@ —6.)  (6—0,

= 8,06 Sy(6,) —
HA Hv l_l wA Nv N&em Ngw ’
which is maximized for variation in 8 at
dS; 1 1 6, 6,
w=atm) tat o

of which the solution is

6, 6 11
-8t
Differentiating again we find that the formation of the combined
evaluate is given by
1 d2S; 1 1

=A@ —w + o (5-4-4)

In practice it should be remembered that, even with many
parameters, there will rarely be any excuse for not summing the
true support functions rather than their Taylor’s series approxima-
tions. The above theorem is really a last resort when only evaluates
and their spans are quoted. If accurate support limits are given,
but the form of the support function is unknown, the correct
procedure would be to reconstruct the support curve by fitting the
approximating cubic.

EXAMPLE 5.4.2
In section 2.3 we had two binomial samples, one with 4 successes

and 10 failures, and another with 29 successes and 37 failures. The
evaluates were p; = 0.2857 and fz = 0.4394. Application of the formula
for the observed information (example 5.2.1) gives 1/w? = 68.60 and
1/wi = u.oq.of whence 1/w3 = 336.54 by addition. The combined
evaluate is found from (5.4.3) to be f; = 0.4081. The correct value, it
may be recalled, was 0.4125; the correct observed information is 330.11.

. In probability theory there is a theorem that if 6; and 0 are
independent random variables with means E(6,), E(8;) and
variances V(6,), V(0,), then 6; 4 6, has mean

E(6, + 0,) = E(6,) + E(0,)

V(6 + 02) = V(6,) + V(6y).

n

and variance

™ 5.4] 1 7ansJOrmation ana curmwinuwre

In most conventional schemes of statistical inference this theorem
enables us to find the ‘error’ of the sum of two unknowns, given
their separate ‘errors’. Thus if we have made independent esti-
mates of the lengths of two sticks, we may apparently find an
estimate of the total length of the two. In denying the validity of
the standard approach (though not, of course, of the above theorem
in probability) are we preventing ourselves from taking such a step?

Let the support for 6, be

S,(6,) = 81(6,) — (6, — 0,)%23
and independently for 6, be
Sy(82) = Sa(62) — (62 — 02)%2w3.

Now S, is what the support for the mean 6, of a Normal distribu-
tion of known variance w? would be, given a single observation 6.
S, may be similarly interpreted. If 6, is N(0,, w?) and 0, is
N(f, w2) then (by the above theorem, in fact) 6, 4+ 6, is
N(6, + 6, w? + w3), and the support for 6, + 0, must be
8, + 05) — (6, + 62))
540, + 09 = ity + 0 - LA 2)
having added the quantity Sy(6, + 6) simply to make the support
zero at the evaluate. We have now obtained the following theorem:

THEOREM 5.4.3

If the evaluate of 6, is §, with formation %%, and, independently,
of 0, is 0, with formation w3, and if the support functions are
quadratic, the evaluate of 6; + 63 is 6, + 0, with formation
w? + wi.

The derivation of this theorem relies on the fact that the sum of
two Normal variates is also a Normal variate. It is not valid unless
the support surfaces are quadratic, though it may be a valuable
aid to interpretation when they are approximately so. It may, of
course, be extended to any number of parameters. The extension
to non-independent parameters is given in the next chapter
(theorem 6.2.2).

§.5. ANALYTIC MAXIMIZATION: THE METHOD OF
MAXIMUM LIKELIHOOD

Our third task was to find the evaluate when graphical methods
are impossible. As in the last section, we shall deal with one

Qe
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parameter only, in order to establish the principles, even though in
this case the support curve may always be drawn. The generaliza-
tion to many parameters comes later.

Given the support function S(6), it is open to us to find the
evaluator of the parameter 0 analytically by solving the equation
dS/d6 = o. We did this in example 5.2.1 for a binomial para-
meter. Maximization of the support or likelihood function was
placed on a sound footing as a method of estémation by Fisher in
1922, under the name of the Method of Maximum Likelihood. The
Method of Support renders the concept of statistical estimation
in scientific inference obsolete, but it is our good fortune that
Fisher’s maximume-likelihood method achieved widespread popu-
larity because of its properties in the theory of estimation (which
need not now concern us), so that its mathematical basis has been
extensively studied. The present mathematical development is,
therefore, standard, though its logical application is not. It would,
however, be churlish to speak of the ‘Method of Maximum
Support’ in our usage, particularly as Fisher was also largely
responsible for the elaboration of likelihood as a measure in its
own right. He writes “The Method of Maximum Likelihood is
indeed much used and widely appreciated in the statistical litera-
ture, without, I fancy, so much appreciation of the significance
of the system of likelihood values at other possible values of the
parameter.’® I shall continue to write of ‘Maximum Likelihood’,
and we may recall that the method has its origins in the work which
Daniel Bernoulli® published in 1777.

DEFINITION

The equation obtained by setting the score equal to zero is the
support equation. When an explicit solution for the evaluate of
the parameter is possible it is, in its algebraic form, known as
the evaluator of the parameter.

EXAMPLE §.5.1
Continuing the binomial example, the support equation is

and the evaluator of p thus a/(a + b).

oL

"
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Frequently in practice it will not be possible to solve the support
equation explicitly, and it will therefore be necessary to treat each
individual case numerically.

BEXAMPLE §.5.2

The gamma-distribution provides a case in which there exists a mini-
mal-sufficient statistic which is a single number, but it is not the observed
arithmetic mean, nor can the evaluate be expressed explicitly in terms of
it. In example 2.3.2 we saw that the geometric mean of the observations
was sufficient for the parameter u, itself the arithmetic mean of the dis-
tribution. Continuing with the same notation, the score is

ds d d
— =] x —n — ) 5.
an Inj] x - :mt In(u — 1) (5.5.1)

=1
and hence the evaluate is the solution of

L@ —nl=m3
du

where x is the geometric mean of the sample. The function of # on the
left is the digamma function, of which tables exist. The reader who is
alert enough to ask ‘What happens if any member of the sample is zero?’
should (until chapter 8) console himself with the thought that the
probability of this occurrence is infinitesimal.

The numerical solution of a support equation may be conveni-
ently handled by Newton—Raphson iteration in most cases. Some-
times other methods will be more suitable, but since the problem
of the numerical solution of an equation, or, what amounts to the
same thing, the location of the maximum of a function, is exten-
sively treated in numerous texts, I will limit detailed discussion to
the Newton-Raphson method, indicating its limitations.

5.6. NEWTON—-RAPHSON ITERATION

In passing, we note that a solution to §'(§) = o may be obtained
graphically by plotting the score dS/d@ against @ and observing
where the curve intersects the 0-axis. This simple method, how-
ever, does not generalize to many parameters.

Suppose, rather, that we make an initial guess 6’ at the evaluate.
Let T(6) = d.S/d be the score at 6. Then, by Taylor’s theorem,

Evuonﬁqv+al3%.+. -
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where dT/d0 = d2S/d6? is minus the information at 6’. Solving
this equation involving only the first two terms of the Taylor
series, we obtain an approximate value for 6, say 6":
v o . dr . dS [d*S

6" =6 lﬁs\alelglmm s (5.6.1)
where the differentials are taken at 6 = 6'. In words, a corrected
value is obtained by adding to the first value the score divided by
the information, both taken at the first value. Iterating according
to this formula will lead, under suitable conditions, to the evaluate
6. The correction may also be thought of as the score multiplied
by the formation, taken at the trial value.

The Newton—Raphson method has a direct geometrical inter-
pretation. It amounts to fitting a parabola to the support curve at
the trial value, with axis vertical and having the same gradient
and curvature as the curve at that point, and then proceeding to
the value of the parameter for which the parabola has its maxi-
mum. It follows that the closer the support curve is to a parabolic
shape, the faster will be the rate of convergence of the Newton-
Raphson process; and if the curve is a true parabola, the first
iterate is exactly the evaluate. In that event, of course, analytic
maximization would be possible, but it is of interest to note that
the method is at its best when the use of evaluates is most justified.
The method may also be viewed on the graph of the score against
the parameter (see example 5.6.2 and figure 15), where each iterate
is the point at which the tangent to the curve at the preceding
iterate intersects the axis. If the support curve is a true parabola,
then of course the score curve is a straight line, and convergence
to the evaluate is immediate.

Most of the common single-parameter distributions, both
continuous and discrete, have support equations which are easily
solved. For a wide class of distributions, solution of the support
equation is equivalent to equating the observed and expected
means, the observed mean being a sufficient statistic. This is not
true of all distributions (the gamma-distribution is an exception —
example 5.5.2), and when it is true an explicit solution does not
necessarily follow (see example 5.6.2 on Fisher’s Logarithmic
Series distribution). As an elementary example of Newton-
Raphson iteration I shall therefore use the binomial distribution,
even though it admits an explicit solution.
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EXAMPLE §.6.1 e
We have seen (example 5.2. 1) that the score for the binomial distribution

is
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p p (- 23

o

and that the information is

_ &S5 _a b
a? o (-7

Suppose, as before, a = 33 and b = 47, and that our s..mw— value for
p i8 0.5000. At this value, the score is —28, the information 320, and

hence the correction to p is —3 8 = —o.0875 exactly. The revised <n_:.o
is thus 0.4125, which is, as we have seen, the actual n<w_=3.n. In this
instance Newton—Raphson iteration has led to the exact solution of .nro
support equation in one step. This is most unusual, and always arnses

in connection with the binomial if the trial value for p is }, as may be
verified algebraically. 1f, instead, we take 0.2500 as the :.m&. value, nr.n
score is 2328 and the information 5804 whence the correction to pis

= 0.1134. The corrected value for p is thus 0.3634. :. this <Ecn.¢<€nr
is not very close to what we know to be the evaluate, 18 ﬁmnm. to prime
a further iteration, a new value p = 0.4098 is obtained. The third iterate
is 0.4125, which is satisfactory.

Provided the support function is everywhere twice-differenti-
able, the major source of upsets to the Zmeﬁoslw»ﬁvmos Hoﬁrom
is the proximity of points of inflection. At a point of inflection the
information is zero, and the correction therefore infinite. Near a
point of inflection the information may be so small, and the correc-
tion so large, that the ‘improved’ value for the parameter may be
wildly out — even outside the permitted range. Beyond points of
inflection (that is, in regions of positive curvature), the meﬁST
Raphson method will in fact lead away from the maximum
towards a minimum of the support curve. These possibilities are
lustrated in example 5.6.2, and figure 15.

I have already suggested that, in order to calculate support
limits, it may be worthwhile to transform to a new parameter on
which the support curve is more nearly parabolic. It may w_ww be
advisable, and possibly necessary, to do this in maﬂ. to »or:.wé
convergence of the Newton—Raphson process, as inl the following
example.
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where d7/d§ = d2S/d6? is minus the information at 6". Solving
this equation involving only the first two terms of the Taylor
series, we obtain an approximate value for 6, say 6”:

2
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where the differentials are taken at 6 = 6’. In words, a corrected
value is obtained by adding to the first value the score divided by
the information, both taken at the first value. Iterating according
to this formula will lead, under suitable conditions, to the evaluate
6. The correction may also be thought of as the score multiplied
by the formation, taken at the trial value.

The Newton—Raphson method has a direct geometrical inter-
pretation. It amounts to fitting a parabola to the support curve at
the trial value, with axis vertical and having the same gradient
and curvature as the curve at that point, and then proceeding to
the value of the parameter for which the parabola has its maxi-
mum. It follows that the closer the support curve is to a parabolic
shape, the faster will be the rate of convergence of the Newton-
Raphson process; and if the curve is a true parabola, the first
iterate is exactly the evaluate. In that event, of course, analytic
maximization would be possible, but it is of interest to note that
the method is at its best when the use of evaluates is most justified.
The method may also be viewed on the graph of the score against
the parameter (see example §.6.2 and figure 15), where each iterate
is the point at which the tangent to the curve at the preceding
iterate intersects the axis. If the support curve is a true parabola,
then of course the score curve is a straight line, and convergence
to the evaluate is immediate.

Most of the common single-parameter distributions, both
continuous and discrete, have support equations which are easily
solved. For a wide class of distributions, solution of the support
equation is equivalent to equating the observed and expected
means, the observed mean being a sufficient statistic. This is not
true of all distributions (the gamma-distribution is an exception —
example 5.5.2), and when it is true an explicit solution does not
necessarily follow (see example 5.6.2 on Fisher’s Logarithmic
Series distribution). As an elementary example of Newton-
Raphson iteration I shall therefore use the binomial distribution,
even though it admits an explicit solution.

-
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EXAMPLE §.6.1 . T
We have seen (example §5.2. 1) that the score for the binomial distribution

is

b
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and that the information is
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as before, a = 33 and b = 47, and that our n—..mm_ value for
w.ﬂwb%mmwoo At nEm value, the score 18 —28, the information 320, and
hence the correction to p is —&f = —o.0875 exactly. The revised <w_=.n
is thus o.4125, which is, as we have seen, the actual evaluate. uamnr_m
instance Newton-Raphson iteration *._wm led to the exact solution o .z.—n
support equation in one step. This is most unusual, w:.& always wn_mnw
in connection with the binomial if the trial value for p is .w. as may be
verified algebraically. If, instead, we take 0.2500 as the nn-w_. value, :—.n
score is 232 and the information humpb.. whence the correction to £ ﬁ
&% = o.1134. The corrected value for p is thus 0.3634. :.. auue.»_:o.ir_n
is not very close to what we know to be Q._o o<w_.=wnn. is Ewo&. to prime
a further iteration, a new value p = 0.4098 is obtained. The third iterate
is 0.4125, which is satisfactory.

Provided the support function is everywhere twice-differenti-
able, the major source of upsets to the Zoﬁon.uiw%vwo: Jﬁﬁro&
is the proximity of points of inflection. At a point of Swoosos the
information is zero, and the correction therefore infinite. Near a
point of inflection the information may be so small, and the correc-
tion so large, that the ‘improved’ §.—¢m for the parameter may be
wildly out — even outside the wnna.;.nma range. Beyond points of
inflection (that is, in regions of positive curvature), the 22.2051
Raphson method will in fact lead away from the maximum
towards a minimum of the support curve. These possibilities are
Jlustrated in example 5.6.2, and figure 15.

I have already suggested that, in order to calculate support
limits, it may be worthwhile to transform to a new parameter on
which the support curve is more nearly wpnwd.wro. It may u_mm be
advisable, and possibly necessary, to do this in w&ﬁ. to »or:.%o
convergence of the Newton-Raphson process, as in the following

example.
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EXAMPLE 5.6.2
Fisher’s Logarithmic Series distribution is a discrete distribution for a
random variable 7 (1 < r <C o0) with probability density function

o
P(r) = ey (o< 6 <).
The mean of the distribution is 8/{—(1 — 6) In (1 — 6)}. Let a, be the
observed frequency in the rth class, and 7 the observed mean. Z will
signify summation over » = 1, 2, . . .; Za, = n. The support function is

Qﬂ
S0 = M$ In Alw In (1 — sv

= Yafrin6 —Inr — In {—In (x — O)}]. (5.6.2)
The support equation is
dS Zra, Xa, _
B- 0 Ta—oHma=0_° (5.6.3)
and may be written
] Zra, .
—G—0nGt -0 Za (5:64)

indicating that the evaluate for the parameter 6 is to be found by equating
the observed and expected means. 7 is a sufficient statistic; suppose that
in a particular case it had the value §.940, the sample size being n = s0.
The support equation does not admit an explicit solution, so that itera-
tion must be used. The information is readily found, by differentiating
the score and changing the sign, but Newton—Raphson iteration fails,
unless one is extremely lucky in the choice of a trial value for 0, because
the corrected value is very likely to fall outside the permitted range for 0.
That this must be so is obvious on an examination of the support curve
(figure 14). A transformation is called for which will stretch out thesteeply-
turning part of the curve near 6 = 1, and the following suggests itself:
¢ = o s 0= ¢
-0 (rt +4)
The tip of the support curve for $, within five units of support of the
maximum, is shown in figure 15. The transformation has evidently
succeeded rather too well in its object.
The support equation for ¢ is found to be

4 -
.mm - =A . ! v =o, (5.6.5)

(06 < ¢ < )

1t G+HnG+4)
which, as an equation, may be written
¢=7Fln( + ¢).

It is interesting to note that in this form the equation is ripe for immediate
iteration, a trial value of ¢ being inserted in the right-hand side to give

~e
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a corrected value. It is always worthwhile keeping an eye open for m.cnr
possibilities, but for the purpose of the present example we may continue
in the standard way:

s _ (. G+29) _1+InG + 4

- "\"RE TP T [+ PG+ P
Starting with a trial value ¢ = 10, the successive iterates, together imn.r
their scores and informations, are given in table 2. The mo_c.mon is
¢ = 17.2511, correct to four places of decimals, at irmmr point the
formation is 27.1118. The approximate 2-unit support limits are a..o_..n-
fore 6.8373 and 27.6649, but from figure 15 we sce that the actual limits
are nearer 10.0 and 34.0, the difference being accounted for by the
poorness of the quadratic approximation. The evaluate and the actual

support limits may be transformed back into values of 6, giving § =
0.9452 (0.909, 0.971).

N T T T T T T T <

v. (5.6.6)

o o5 10
0

Figure 14. The support curve for the parameter 0 of Fisher’s

logarithmic series distribution (example 5.6.2). Note that the

scale of support is from o to —10c00 rather than from o to —5
as in other figures.
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Figure 15. (@) Part of the support curve of figure 14 near the
maximum, following the parameter transformation ¢ = 6/(x — 6).
(b) The score curve for ¢. The numbers indicate regions
of convergence and divergence under Newton—Raphson itera-
tion: (1) region of monotonic convergence to the maximum;
(2) from this region the succeeding iterate is in (1); (3) from
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TABLE 2. Iterates, scores and informations for the
logarithmic distribution with n = 50 and 7 = 5.94.

Iteration Parameter ¢ Score Information
—_ 10.0000 0.804 398 0.271 261
1 12.9654 0.282 353 o.109 851
2 15.5357 0.078 329 0.055 921
3 16.9364 0.012 050 0.039 749
4 17.2396 0.000 425 0.036 985
5 17.2511 0,000 001 0.036 884
6 17.2511 — —

As well as giving the support curve for ¢, figure 15 gives the score
curve and indicates the zone of convergence under Newton-Raphson
iteration, illustrating how, from some starting values, the first iterate
may be further still from the maximum, or outside the permitted range
altogether. The zone of convergence is o < ¢ < 25.5910, or, in terms of
0,0 < 0 < 0.9624; the transformation has evidently been very successful.

5.7. GENERAL COMMENTS ON ITERATIVE METHODS

Since nowadays most iterative solutions to support equations are
carried out on a computer, the rate of convergence to the evaluate
is not normally an important matter. The most general programs in
existence rely on numerical differentiation for the calculation of
the score and information, thus obviating the need for the user to
differentiate analytically. They are therefore slower than pro-
grams tailor-made for specific problems, which incorporate the
algebraic forms for the score and information. A useful compromise
is a general program into which the algebraic forms for a particular
case can be inserted as subroutines.

The standard Newton-Raphson method described in the last
section has two important variants. In one, known as the fixed-
derivative method, the information evaluated at the first trial
parameter value is used also in the remaining iterations, thus
obviating its fresh calculation each time. This has little to com-
mend it, and may even lead to cycling round the maximum.” The
other variant, known as Fisher’s scoring for parameters method,?
replaces the observed information at each parameter value by

no
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what the expected information would be if that value were the
true one (section 7.2). The motives for such a substitution are,
first, that with discrete distributions it leads to a particularly
simple way of performing the iterative calculations manually, and,
secondly, that under the standard theory the new quantity is used to
derive the approximate sampling variance of the maximum-
likelihood estimate, But with the use of computers and the adop-
tion of the Method of Support, these justifications are no longer
relevant, and in some cases the method is less reliable than the
standard method.

It is possible to invent further variants of the Newton—Raphson
approach, which might be better for particular applications. The
standard method involves solving for the three coefficients of a
second-degree curve by equating its ordinate, gradient, and
curvature, to the actual values for the support curve at the trial
parameter value. But the same procedure could be applied to any
approximating curve with three coefficients, and not merely to a
second-degree polynomial.

EXAMPLE §.7.1

Suppose it is felt that a circle would provide a better approximation
than a parabola. Let the inclination of the support curve at the trial value
0’ be «, and the radius of curvature p. Then we have

ds

tana = —

de

Ly [y 4 (4S\)E S
P=V T e d6?’
where the score and information are taken at 6 = 6’. The adjusted value,

6”, is found by adding to 0’ the correction p sin a (figure 16). Substituting
for « and p, the correction becomes

and

" , ds dS\?2) /d3S
0 — 0 = — aﬁn + Aav “ 365 (5.7.1)
which differs from the usual Newton—Raphson correction by the factor
ds\?
1+ Agv .

It is likely, however, that similar improvements can be obtained
more easily by a parameter transformation which renders the

na
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Figure 16. Approximating a curve by the osculating circle at a
trial value 6’ of the parameter 0.

support curve more nearly parabolic, as was done in example
6.2

’ Amongst other iterative methods which are sometimes used is
the method of false position, which approximates the score curve
by a straight line joining two points, and finds the point at which
the line crosses the axis 7 = o. Naturally, it is at its best if the
initial two points straddle the axis. A further method has already
been indicated in example 5.6.2, and relies on throwing the
support equation into the form 6 = f(6). Finally, by means of an
example, we shall illustrate the counting method,® which is appli-
cable in any discrete case where an exact solution would be possible
except for the fact that some of the classes are indistinguishable
and therefore grouped together. It has been shown to lead to the
maximum of the likelihood, and is of particular use in genetics.
Unfortunately it was unknown in the early days of genetics, when
much effort was expended on devising approximate solutions to
likelihood equations, and now that computers are available the
need for it is not so great.

ne
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EXAMPLE 5.7.2

Out of 100 families with three children, 48 have more girls than boys,
and 52 more boys than girls. On a binomial model, what is the evaluate of
?, the probability of a birth being male?

The expected proportion of families with more girls than boys is
(1 — 9)® + 3p(x — p)?, and with more boys than girls is p°® + 3p3(1 — p).
With only one degree of freedom and a single parameter, an exact fit is
possible, the evaluate of p being the solution in the interval o <p <1
of the equation

2® + 3p%(x — p) = o.52.

In order to solve this, we may use the counting method, as follows.
Taking p’ as a trial value, we divide the observed classes into their
components according to the expected ratios, the class ‘more girls than
boys’ being divided into families with no boys and families with one
boy in the ratio (1 — »")? : 3p’(x — »")%, or 1 — p’ : 3p’, and the class
‘more boys than girls’ being divided into families with three boys and
families with two boys in the ratio p’ : 3(r — p’). If we take p' =}
initially, the divisions will both be 1 : 3, leading to the pseudo-observa-
tions

o boys 12 families

I 36

2 39

3 13
Were these actual observations from a binomial distribution the evaluate
of p would be given by the proportion of boys in the sample, 484, and we
use this as an improved value for p : p” = 0.51. The process may now be

repeated. The new divisions are 0.49 : 1.53 and o0.51 : 1.47, giving for
the second round of pseudo-observations

o boys 11.64 families

I 36.36

2 38.61

3 13.39
The resulting approximation to the evaluate is 0.5125, and succeeding
iterates are 0.5131 and 0.5133, which is correct to four places of decimals.

mm INTEGER SOLUTIONS AND SOLUTION BY m.:,\::krdmoz

It may sometimes happen that the parameter under estimation
may only take discrete values. The situation is then formally
identical to having a number of discrete hypotheses under consi-
deration, but it may be simpler to think in terms of a continuous
parameter in the first instance. As an example, let us consider the
determination of the frequency of the Rh— blood-group gene in

nh
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the population of Cambridge AGSBE« 3.4.4). As mentioned in
chapter 1, the gene frequency, g, is in principle a discrete variable.
If there are 100 ooo people in Cambridge, there are 200 000 genes
at this locus in the population, and the proportion that is Rh—
must take one of the 200 oo1 possible discrete values. In this case,
a continuous approximation will find wide acceptance. But suppose
we were to ask the question: How many Rh— genes are there in
the sample? If the sample consists of r Rh— individuals out of #,
the number of Rh— genes must be one of the numbers 27, 27 4 1,
2r+2,...2r + (n —7r), depending on whether the (n —7)
Rh+ phenotypes include none, 1,2,. .. or (# — r) heterozy-
gotes. If 7 and n are small, the continuous approximation may be
regarded as unacceptable. Each one of the possibilities will have a
likelihood, calculable by considering the probability of the arrange-
ment. It may be necessary, depending on the model adopted, to
treat the genes of maternal and paternal origin separately.

Such questions are becoming common in modern genetics
because it is frequently possible to ‘sample’ an entire small popu-
lation. The only meaningful question then involves the numbers of
genes of each kind in the sample.

On occasion it may prove impossible to write down the likeli-
hood owing to the complexity of the model. If it is practicable to
simulate results in such a situation, having adopted a trial value for
the parameter, such results may be compared with the actual data,
and the parameter adjusted until the simulated and actual results
are as close as possible. This proposal raises a number of interest-
ing questions, such as how to formulate rules for determining
when to stop a particular simulation and start another with a
different parameter value. However, it seems unlikely to be
required in single-parameter situations.

Inieger SoLuLions

5.9. HISTORICAL NOTE ON POINT ESTIMATION

In section 3.1 I quoted Daniel Bernoulli as being the first person
to use likelihood as a criterion for choosing the ‘best’ value of a
parameter. I agree with Hackingl® that the interpretation to be
put on Bernoulli’s writing is that he was simply choosing the
‘best-supported’ value, rather than that he was using the method
because he thought it would provide the ‘best’ estimate in some
other sense.

The circumstance that the Method of Maximum Likelihood is
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analytically identical to the method of inverse probability if a
uniform prior distribution is adopted has obscured the origins of
the former as a method of point estimation in its own right. Gauss
originally developed his theory of least squares using inverse
probability and a uniform prior, but later preferred a ‘loss func-
tion’ approach, arguing that a quadratic loss function, though
arbitrary, was the simplest sensible one.!' Laplace, of course,
maximized the posterior probability. Haldane!? claimed some
priority for Karl Pearson in the matter, but in fact Pearson seems
to have been doing no more than Laplace. In a paragraph headed
‘On the best value of the correlation coefficient’*® he wrote ‘Thus,
it appears that the observed result is the most probable, when 7 is
given the value S(xy)/(noy05). This value presents no practical
difficulty in calculation, and therefore we shall adopt it No
other justification is offered, but it is quite clear from the following
paragraph, in which Pearson uses inverse probability to obtain
the distribution of the parameter given the sample, that he is
simply following Laplace’s procedure. The same may be said of
the subsequent work of Pearson and Filon,'* in which the second
differentials of the posterior probability are used to obtain,
approximately, the variances and covariances of estimates, a
procedure which analytically, though not logically, closely fore-
shadows the maximum-likelihood approach. Haldane also quotes
Edgeworth as being one of the forerunners of Fisher in the use of
maximum likelihood, but here there can be no argument: Edge-
worth1® was quite explicitly using inverse probability: ‘I submit
that very generally we are justified in assuming an equal distribu-
tion of a priori probabilities over that tract of the measurable with
which we are concerned.’” He quotes Gauss and Laplace.

The vital break with inverse probability seems to have been
Fisher’s alone. He advocated what he later called the Method of
Maximum Likelihood in his very first paper,!® as a means of point
estimation. The break, though clear in retrospect, was not quite
clean: having not yet adopted the word ‘likelihood’, he wrote of
‘inverse probability’, a fact he regretted in his 1922 paper. But
he was clear that these ‘probabilities’ were only relative, and he
specifically stated that it was ‘illegitimate’ to integrate them with
respect to a parameter. He noted the inconsistency that would
follow from parameter transformation if the differential elements
were included in the likelihood, and wrote

[}
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We have now obtained an absolute criterion for finding the relative
probabilities of different sets of values for the elements of a probability
system of known form. It would now seem natural to obtain an expression
for the probability that the true values of the elements should lie within
any given range. Unfortunately we cannot do so . . . P is a relative proba-
bility only, suitable to compare point with point, but incapable of being
interpreted as a probability distribution, or of giving any estimate of
absolute probability.

In this first paper Fisher does not justify his ‘absolute criterion’;
he may have simply felt that it was intuitively reasonable. Sub-
sequently he espoused likelihood as a measure of relative belief
and advocated maximum likelihood as a means of point estimation
justified by the repeated-sampling properties of the estimators,
At first sight there may seem to be some inconsistency here: did
he, or did he not, believe in the relevance of repeated-sampling
characteristics?

I think the answer is to be found in the historical development
of the non-Bayesian theory of estimation. Until Fisher's 1922
paper'? the problem had never been clearly put. The method of
least squares had, at least in astronomy, satisfied the demand for
some criterion (albeit arbitrary) by which to choose estimators,
and the method of moments had likewise offered a practical
procedure.

Fisher’s first great contribution to estimation was a careful
specification of the problem, and his second was the development
of criteria ‘without reference to extraneous or ulterior considera-
tions’1® by which to judge estimators. The first point is so obvious
to us that we tend to forget what an important advance it was at
the time; and we seem to have forgotten about the second point
altogether. For the subsequent development of estimation theory
has been in terms of externally-imposed criteria, such as minimum-
variance unbiassedness or optimum confidence sets, which are at
best arbitrary and at worst comic in their effects. By contrast,
Fisher’s theory proceeds from the most general considerations;
he observes that we require consistent estimators, that in large
samples estimates will be Normally distributed, and thus that only
their variance presents itself as a criterion. He shows how this
variance cannot be less than a certain quantity, whose reciprocal
he calls the information, and how of all the methods of estimation
based on linear functions of the observations, the Method of
Maximum Likelihood provides estimators which achieve this
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lower limit. Then, observing that the information is also defined
for small samples, and that it has precisely those qualities we might
expect a measure of information to possess, he finds that in some
cases estimators are sufficient, preserving all the information, and
that the Method of Maximum Likelihood leads to them where
they exist. Where they do not exist, he then shows that the residual
information not conveyed by the maximum of the likelihood is
contained in other aspects of the likelihood curve.

Fisher has given us a descriptive account of these developments?®
which concludes: ‘Thus, basing our theory entirely on considera-
tions independent of the possible relevance of mathematical likeli-
hood to inductive inferences in problems of estimation, we seem
inevitably led to recognize in this quantity the medium by which
all such information as we possess may be appropriately con-
veyed.’ Basing his researches on the concept of repeated sampling,
he is led inexorably to the likelihood function, that very function
which ‘supplies a natural order of preference among the possibili-
ties under consideration’.2° Having thus so strongly reinforced his
intuition, in later writing he is inclined to let estimation theory
play second fiddle in the arguments for the use of likelihood.2

I think it may fairly be said, therefore, that the inconsistency in
Fisher’s two approaches is more apparent than real, for in his
hands the repeated-sampling approach led to precisely the same
conclusion as the more intuitive direct likelihood approach. The
gulf between the two came later, when others tried to impose
external criteria on estimators, and judged maximum-likelihood
estimators by such criteria, an exercise which is proving one of
the largest red herrings in modern mathematics.

There is a very revealing comment by Fisher?? to a paper of
Jeffreys, published in 1938:

Dr Jeffreys says that I am entitled to use maximum likelihood as a primi-
tive postulate. In this I believe he is right. A worker with more intuitive
insight than I might perhaps have recognized that likelihood must play in
inductive reasoning a part analogous to that of probability in deductive
problems. My own procedure has been more pedestrian.

Here is Fisher, at a time when his theory of estimation was at its
zenith, wistfully suggesting that it might be better to regard
likelihood as the more primitive concept, a position towards which
he later moved.

5.9] H1ST0TICAL NOTE 0N POINT ESLIMALN

Even today, thirty-five years after Fisher drew attention to the
importance of the whole likelihood function in estimation, it is
difficult to convey to a statistical audience the vital distinction
between likelihood regarded as a basis for a theory of inference,
and likelihood regarded as a commodity to be maximized in a
method of point estimation. At one recent international conference
at which I laboured for three-quarters of an hour to make clear
the advantages of likelihood inference, the chairman thanked me
for my lecture on the Method of Maximum Likelihood. The
phrase ‘Method of Support’ has, indeed, been coined in order to
emphasize the distinction.

Following Fisher, Barnard?® has been almost the sole custodian
of the likelihood function amongst statisticians, but one suspects
that it has been flourishing independently in other fields. Thus:
‘In radar problems, fortunately, it is generally possible to present
2(») [the likelihood function of x] for all values of x and the
question of point estimation need not arise.’?*

I conclude this chapter with an extract from Fisher's 1935
paper,?® in which he tells us quite clearly what to do next:

To those who wish to explore for themselves how far the ideas so far
developed on this subject will carry us, two types of problem may be
suggested. First, how to utilize the whole of the information available in
the likelihood function. Only two classes of cases have yet been solved.
(@) Sufficient statistics, where the whole course of the function is deter-
mined by the value which maximizes it, and where consequently all the
available information is contained in the maximum likelihood estimate,
without the need of ancillary statistics. (5) In a second case, also of com-
mon occurrence, where there is no sufficient estimate, the whole of the
ancillary information may be recognized in a set of simple relationships
among the sample values, which I have called the configuration of the
sample. With these two special cases as guides the treatment of the general
problem might be judged, as far as one can judge these things, to be ripe
for solution.

Problems of the second class concern simultaneous estimation, and seem
to me to turn on how we should classify and recognize the various special
relationships which may exist among parameters estimated simul-
taneously.

In the Method of Support we solve the first problem by looking
at the log-likelihood function itself, only resorting to evaluates
in regular situations; the second problem we consider in the next
chapter.




The Method of Maximum Likelthood

5.10. SUMMARY

The Method of Maximum Likelihood is introduced from the
point of view of support. For the case of a single parameter,
methods are given for summarizing the support curve near its
maximum in terms of the evaluate and its span, for combining
such values from different sets of data, and for finding approxima-
tions to the evaluate when an iterative solution is necessary. The
Newton-Raphson method of iteration is discussed in detail, and
examples are given both of its use and of cases in which it is in-
applicable, or applicable only with modification. Formulae are
given for the span of the evaluate following parameter transforma-
tion. The problems of integer solutions, and solution by simula-
tion, are touched upon. In conclusion, an outline is given of the
reasons which led Fisher to recognize the importance of the likeli-
hood function from a repeated-sampling point of view.

CHAPTER 6

THE METHOD OF SUPPORT FOR
SEVERAL PARAMETERS

6.1. INTRODUCTION

In chapter 5 several analytical methods for dealing with a single
parameter were considered, but since in that case the support
curve may always be drawn, they only become essential when
there is more than one parameter. In this chapter, therefore, the
methods of chapter 5 will be extended to the case of several para-
meters, and I shall then consider some of the short-cuts that can
be employed, and difficulties that may be encountered. Many of
the comments of the last chapter are also apposite to the multi-
parameter case, by analogy. Where the extension is obvious, they
will not be repeated.

The fact that we are unable to appreciate a multiparameter
support surface directly means that we will have to rely heavily
on the Method of Maximum Likelihood. It follows that support
surfaces which are not even approximately quadratic will be
peculiarly difficult to handle; some cases will be presented in
chapter 8. This difficulty is, of course, a reflection on the techniques
which are available to us for the interpretation of multidimensional
surfaces, rather than on the Method of Support itself. We will
have to do the best we can.

6.2. INTERPRETATION OF EVALUATES

In dealing with more than one parameter it is important to be
clear, at the outset, about the interpretation of evaluates. As
defined in the previous chapter, the evaluates of the parameters of
a model are those for which the support is a maximum over all the
parameters jointly. It will generally be an over-simplification,
taking for example two parameters 6, and 0y to speak of the
evaluate §; and the evaluate §, as though each had an independent
existence. Rather, we must speak of the pair (0,, 65). Only in
special circumstances, treated below, may we make separate
statements, the most important one being where the support
function is quadratic.
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