
MISCELLANEA.

(i) Fiducial Limit* fbr the Polaon Distribution.

BY F. GARWOOD, PH.D.

1. The Method of Fiducial or Confidence Limits.

A situation of very common occurrence in statistics arises when a random sample is drawn
from a population which is not completely specified, and it is desired to draw some inference
about the population on the basis of the sample. I t is usual to assume, from independent
evidence, a mathematical form for the ohance distribution of the variate, so that it will be
completely specified if the value of one or more parameters is known. Thus past experience may
tell us that the population of heights of men belonging to a homogeneous race group is represented
by the familiar normal distribution, of which the parameters necessary to specify it are the mean
and standard deviation. Any inference which cau be made about tho parameters on the basis of
the sample is of course subject to error, since two different populations can give rise to the same
sample. It is the fundamental property of the method of fiducial limits*, however, that the risk
of making incorrect inferences by this method can be controlled. The value of the method is
therefore that if a large number of situations arise in which the rules of the method, are applied,
one can have confidence that, in the long run, the proportion of inferences which are false does
not exceed appreciably a pre-determined ratio, say 5 % , or, if more stringency be required,
IV. or -01'/..

2. Application of the Method to the Poisson Distribution+.

The Poisson limit to the binomial defines a hypothetical population containing all the
positive integers, including zero, and the proportion of times the integer x occurs is

.(1),

where m is the mean, the only parameter necessary to define the distribution.

Suppose we are confronted by a physical phenomenon which is known to give rise to a Poiason
distribution, such as the occurrence of random and independent events in time or space, and we
wish to infer something about the mean on the data of one observation, which is un integer.
Suppose further that we do not wish the risk of error to riso above a probability of O6, and that
we are only interested in inferring a lower limit above which the mean lies. Tho rule to be
followed is that we look up the entry in the 5°/o "lower limit" column of the Table of fiducial
limits, given below, corresponding to the sample integer observed (or interpolate into the table if
necessary), and make the statement that the mean lies alx>ve this. As stated above, this rule,
which may be applied in sampling from a series of different distributions, will lead to false
statements being made on a proportion of occasions which is never much more than once in 20
in the long run, though of course one cannot tell on which particular occasions the rule has failed.

* B. A. Fisher, PTOC. Camb. Phil. Soe. xxvi. (1930), p. 628; Proc. Roy. Soc. A, cxixn. (1988),
p. 843. See also J. Neyman, Joxtrn. R. Statistical Soc. xcvu. (1984), p. 689. Neyman uses the term
"confidence limit."

+ The reader is referred to a paper entitled "Statistical principles of routine work in testing clover
seeds for dodder" by J. Przyborowski and H. Wilenski, Biometrika, xxvn. (1935), pp. 278—292, dealing
with somewhat the same problem. [Dr Garwood's paper was part of his thesis for the Ph.D. degree of
London University completed in June 1934. Its publication has unfortunately been delayed overlong.
ED.]
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438 Miscellanea

Similar results hold for the 1' / . lower limit, for the upper limit, and for the upper and lower
limits combined; in the laat cases, the probabilities of error are, respectively, not greater than
•10 and -02.

This is an eiample of the application of the method of fiducial limits to a distribution iu
which the variate can only assume discrete values; it is important to note that in such cases
the table of fiducial limits can only be calculated so that the probability of error will not exceed
certain values, whereas in the case of continuous distributions it can be fixed exactly at a desired
set of values. The consideration of the actual value of the probability of error is returned to
later.

a Theory of the Method.
From equation (1) it follows that the probability of the occurrence of either 0, 1, 2, or *

as one random sample from the Poisson distribution with mean x is

By differentiating this with respect to m, it is seen that

Corresponding to values of * from 0 to 60 we have calculated the values of m for which

P{x-\ |m} = -99 and -95 (5),

and P{*|m} = -06and-01 (6).

These are the fiducial limits for m corresponding to x, which we have denoted by m w (x), m-u, (x),
m^^x), and mm (x) respectively, and they are given in Table I*. The lower limits corresponding
to x—0 are defined as zero.

To demonstrate the fundamental property of the fiducial limits, consider a Poisson distribution
with mean m — 15, say, and the upper 1*/. limit for m corresponding to samples drawn from i t
There is an integer s such that

fltt>i(«)S«»-13<»>H>i(« + l ) (7),

and from the column for nvi (x) we see that *—6. If now the statements "m<mm (*)" are made
according as the various values of x arise in random sampling, a fake statement will be made
when s is either 0, 1, 2, 3, 4, 6 or 6 (•=«), since the statement will then be one of the following:
"»»<4-61," "m<6-64,M " T O < 1 4 6 7 , " all of which are fulse in this case. The probability of
one of these events occurring is, by definition,

P {«| m)-P {6116};

this function decreases with increasing m, and since mj in , , («), we must have

P{6\lb}-P{s\m}&P{t\mxn(,)} = -01 (8),

by definition of m-n {»), (see equation (6)). I t follows that if the above rule is observed in sampling
from any Poisson distribution, i.e. if the statement

nKm-oi^x) (9)

is made according to whatever integer x arises, then the probability of a false statement is

P{s\m}mP(m) (10),

* The upper limits correspond to those given by Pnjborowski and Wilenski in their Table V (loc. cit.
p. 388). These authors, however, only give (he limit to 1 place of decimals and have not tabled any lower
limits.
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where i is given by

and this probability does not exceed "01. Clearly, if the populations sampled have means less
than 461, the statement (9) will never be falsa

TABLE I.

Fiducial Limits for Mean of Poisson Distribution.

Observed
Number x

0
1
2
3
4
6
6
7
8
9

10
11
12
13
14
16
16
17
18
19
20

26
30
36
40
46
60

Lower Limits

m.u(x)

0-0000
0-0101
0-149
0-436
0-823
1-28
1-79
2-33
2-91
3-61
4 1 3
4-77
6-43
6-10
6-78
7-48
8-18
8-89
9-62

10-35
11-08
14-86
18-74
22-72
26-77
30-88
3503

o-oooo
0-0613
0-365
0-818
1-37
1-97
2-61
3-29
3-98
4-70
5-43
6-17
6-92
7-69
8-46
9-25

10-04
10-83
11-63
12-44
13-26
17-38
21-59
25-87
30-20
34-56
38-96

Upper Limits

"••06 (*)

3 0 0
4-74
6-30
7-75
9-15

10-61
11-84
13-16
14-43
16-71
16-96
18-21
19-44
20-67
21-89
2310
24-30
25-50
26-69
27-88
29-06
34-92
40-69
46-40
52-07
57-69
63-29

"»-oi (*)

4-61
6-64
8-41

10-06
11-60
13-11
14-67
1600
17-40
18-78
20-14
21-49
22-82
24-14
26-46
26-74
28-03
29-31
30-68
31-85
3310
39-31
45-40
51-41
67-36
63-23
69-07

Similar reasoning applies to the lower 1 •/„ limit, and it can be shown that if one follows the
rule of making the statement

6 m^m-uix) (12)
about the mean according to whatever value of x may arise in sampling, then the probability of
a false statement is

P'W (13),
which does not exceed -01. By combining the two limits the risk of error involved in making the
Rtatement

mw(jr)S»»<i»t)i(*) (14)

is P"(m)ar(m) + P'(m) (15),
which does not exceed O2.

If the 5% limits are used, the range in which m may bo predicted to lie is narrowed, but at
the expense of increasing the possible risk of error from O2 to -10.
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440 Miscellanea

The values of the functions P (m), P' (m), and of their sum P" (m), are.shown in Figs. 1 and 2
for two ranges of m. P (TO) and P' (m) are discontinuous at those values of m which are respoctivoly
upper and lower 1 */„ fiducial limits (i.e. the values of m given under m-o, (x) and m w (x) of Table I),
and the functiona reach up to -01 at thesn points. P" (m) is discontinuous at both these sets of
points, but, over the rango investigated, it is always less than -02. Up to m = 461, P(m) is zero,
and hence P" {m)^P' (m). Fig. 1 gives the graph of P'(m) for a small range of m, starting from
zero, and shown tho first three branches of tho function. Tn Fig. 2 the three function* are plotted
from m = ii) to 106 on a lurgor horizontal scivle.

"VALUES OF P\m) FOR
•010

,P'(m)-P"(m).

2 0 30
SCALE OF m .

Fig. 1.

VALUES OF P(jn), P(m) & P"(m) FOE m-4<0 TO 10-6.

*-o s-o 6-0 7-0 S-0
SCALE OV m

Fig. 2.

10-0

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/28/3-4/437/220104 by M
cG

ill U
niversity Library user on 06 O

ctober 2018
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In the application of the fiducial method, the values of m are never known, so that the values
recorded in the figure cannot be used exactly. If an a priori distribution of means could be
assumed, then by integration of P (m), P' (m) and P" (m) one could calculate the absolute risk of
error in the fiducial statements, and the result would be less than "01, O2, -06, "10, as the case
may be. This situation rarely arises in practice, but Fig. 2 shows that the limits given to the
probability of error are very conservative ones and the true probability may often be considerably
less.

4. Method of Calculation of Table I.

For values of * up to 14, the lower limits were calculated from Fisher's ^ Table* by means
of the transformations:

* = ^ , ™-i*J> (P='99and-95) (16).

For values of x up to 16, the upper limits were calculated from the same table with

*=\, »» = 4x1, OP-™ and -06) (17).

This can be done because the distribution of ^, with n degrees of freedom, has a probability
integral, given in the table, equal to

which reduces to (3) after the necessary transformations have been applied.

For the remainder of the table, inverse interpolation was made into the Tablet of the
Incomplete T-Function+, whioh is a table of the function

.(19).

6. Approximate Formulae for Large Samples.

The r-Function Table stops at j> = 60, so that approximations must be used to calculate the
fiducial limits for m corresponding to values of * greater than 60. At the foot of his %* Table,
Fisher suggests that for n>30, *j2x*- *j2n — 1 may be used as a normal variate with unit
standard deviation. A more accurate formula, though less simple, has been given by Wilson and

Hilferty J. This assumes that (£ j is normally distributed about 1 - — with standard deviation

equal to » / —. Fiducial limits for f» — $xs have been calculated from these approximations for

# = 20, 30, 40, 60, and compared in Table II with the true values obtained from the r-Function
Table. The error in the limits based on Fisher's approximation only appears to decrease with
increasing x in one instance, whereas the error in Wilson's and Hilferty's formula decreases in all
cases and is much smaller.

By using the equations (16) and (17) this table also serves as a comparison of the approxima-
tions for the significance levels of JJ* for large values of n, the number of degrees of freedom.

* B. A. Fisher, Statistical Method* for Research Workert, Tpble m .
+ Edited by Karl Pearson (1922). + Nat. Acad. Sci. xvn. No. 12 (1981), p. 684.
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TABLE II.
Comparison of Approximate Formulae for Fiducial Limits of m

for Large Values of x.

iHj- = Trne value, obtained from I'-Function Tables,
nt/= Approximate valae, obtained from Fisher's formula,

m^-= Approximate value, obtained from Wilson's and Hilferty's formula.
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X

20
30
40
60

20
30
40
ftO

20
30
40
60

20
30
40
50

11-082
18-742
26-770
36-032

13-255
21-594
30-196
38-966

33-103
45-401
57-347
69-067

29-062
40-691
52-069
63-287

10-764
18-414
26-436
34-694

13-116
21-456
30-056
38-825

32-700
46-003
56-953
68-676

28-919
40-548
51-926
63-144

•318
•328
•334
•338

•139
•139
•140
•140

•403
•398
•394
•391

143
•143
•143
•143

mW

11070
18-732
26-761
35-025

13-254
21-594
30-196
38-966

33-113
45-409
57-355
69-074

29-060
40689
52-068
63-286

•012
•010
•009
•007

•001
•000
•000
•000

- •010
- •008
- • 0 0 8
- -007

•002
•002
•001
•001

(11) Note on Karl Pearson's Paper: "On a method of ascertaining limits
to the actual number of marked members In a population of given size
from a s a m p l e . " [Biometriia, Vol. xxA. pp. 149—174.]

BY K. RAGHAVAN NAIR, M A

Madras University.

On page 161 of this paper Professor Karl Pearson has proved at some length the following
result:

1+~t=r+ ~T72 ( ,y-r)(^-r- l ) + - + \r ft^T" |n + 1 \F^r (U>

where r + *-»n and all the letters denote positive integers.

The problem discussed in this paper is the' frequency distribution of populations of si«e N
with number of marked individuals varying from r, r+1, ... to N—t, obtained on proceeding by
the method of Inverse Probability from the knowledge that a sample of n contains r marked
and $ unmarked individuals. The terms on the left-hand side of (1) are respectively proportional
to the probabilities of populations of size N containing r, r+1, r+2, ... N— $ marked individuals.
It is clear, therefore, that there are ^ - r - i + l or N-n + \ terms in the aliove series.
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