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2. CAUSAL INFERENCE IN EPIDEMIOLOGY

In The Magic Years, Selma Fraiberg [1959] characterizes every toddler as a
scientist, busily fulfilling an earnest mission to develop a logical structure
for the strange objects and events that make up the world that he or she
inhabits. None of us is born with any concept of causal connections. As a
youngster, each person develops an inventory of causal explanations that
brings meaning to the events that are perceived and ultimately leads to
increasing power to control those events. Parents can attest to the delight
that children take in forming causal hypotheses and then meticulously test-
ing them, often through €xasperating repetitions that are motivated mainly
by the joy of scientific confirmation. At a certain age, a child will, upon
entering a new room, search for a wall switch to operate the electric light-
ing, and upon finding one that does, repeatedly switch it on and off merely
to confirm the discovery beyond any reasonable doubt. Experiments such
as those designed to test the effect of gravity on free-falling liquids are
usually conducted with careful attention, varying the initial conditions in
subtle ways and reducing extraneous influences whenever possible by
conducting the experiments safely removed from parental interference.
The fruit of these scientific labors is the essential system of causal beliefs
that enables each of us to navigate our complex world.

Although the method of proposing and testing causal theories is mas-
tered intuitively by every youngster, the inferential process involved has
been the subject of philosophic debate throughout the history of scientific
philosophy. It is worthwhile to consider briefly the history of ideas de-
scribing the inductive process that characterizes causal inference, to un-
derstand better the modern view and its implications for epidemiology.

PHILOSOPHY OF SCIENTIFIC INFERENCE

The dominant scientific philosophy from the birth of historic scienrific
inquiry until the beginning of the scientific revolution was the doctrine of
rationalism. According to this doctrine, scientific knowledge accumulated
through reason and intuition rather than by empirical observation. In an-
cient Greece, the only prominent empirical science was astronomy. Never-
theless, even the observation of the heavens was belittled by Plato, who
considered celestial observations an unreliable source of knowledge com-
pared with reason [Reichenbach, 1951). The highest form of knowledge
was considered to be mathematics, a system of knowledge built upon a
framework of axioms by deductive logic. The geometry of Euclid exem-
plifies the rationalist ideal.

Skeptics of rationalism who believed that perceptions of natural phe-
nomena are the source and ultimate judge of knowledge developed a com-
peting doctrine known as empiricism. The great pioneers of modern em-
piricism were Francis Bacon, John Locke, and David Hume. Bacon saw that
earlier empiricists, though they exalted empirical science, overempha-
sized observation to the extent that logic played little role in the accurnu-



Jation of knowledge. Bacon likened the rationalists to spiders, spinning
cobwebs out of their own substance, and the older empiricists to ants,
collecting material without being able to find an order in it. He envisioned
a new empiricist that he likened to a bee, collecting material, digesting it,
and adding to it from its own substance, thus creating a product of higher
quality. According to Bacon, reason introduces abstract relations of order
to observational knowledge. Bacon is famous for saying “knowledge is
power,” by which he meant that abstract relations imply prediction. Thus,
“fire is hot” is not merely descriptive of fire but also predictive of the
nature of fires not yet observed. Prediction is obtainable by a process
known as #mductive inference or nductive logic. Unlike deductive logic,
inductive logic is not self-contained and therefore is open to error. On the
other hand, deductive logic, being self-contained, cannot alone establish a
theory of prediction, since it has no connection to the natural world.

Bacon formalized the process of inductive inference, demonstrating
how deductive logic could never be predictive without the fruits of induc-
tive inference. John Locke popularized the inductive methods that Bacon
formalized and helped establish empiricism as the prevailing doctrine of
scientific philosophy. Hume was the critic: He pointed out that inductive
inference does not carry a “logical necessity,” by which he meant that in-
duction did not carry the logical force of a deductive argument. He also
demonstrated that it is a circular argument to claim that inductive logic is
a valid process even without a logical necessity simply because it seems to
work well: No amount of experience with inductive logic could be used
to justify logically its validity. Hume thus made it clear that irductive logic
cannot establish a fundamental connection between cause and effect. No
number of repetitions of a particular sequence of events, such as turning
a light on by pushing a switch, can establish a causal connection between
the action of the switch and the turning on of the light. No matter how
many times the light comes on after the switch has been pressed, the pos-
sibility of coincidental occurrence cannot be ruled out. This incomplete-
ness in inductive logic became known as “Hume’s problem.”

Various philosophers have tried to provide answers to Hume'’s problem.
The school of logical positivism that emerged from the Vienna Circle of
philosophers incorporated the symbolic logic of Russell and Whitehead’s
Principia Mathematica into its analysis of the verification of scientific
propositions. The tenet of this philosophy was that the meaningfulness of
a proposition hinged on the empirical verifiability of the proposition ac-
cording to logical principles. This view was inadequate as a philosophy of
science, however, because, as Hume had indicated, no amount of empiri-
cal evidence can verify conclusively the type of universal proposition that
is a scientific law [Popper, 1965). Hume’s problem remained unanswered
by this approach.

Confronting the hopelessness of conclusive verification, some philoso-
phers of science adopted a graduated system of verifiability, embodied by
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the logic of probabilities proposed by Rudolph Carnap. Under this philos-
ophy, scientific propositions are evaluated on a probability scale. Upon
empirical testing, hypotheses become more or less probable depending
on the outcome of the test. The description by Heisenberg of the “uncer-
tainty principle” and the acceptance of quantum mechanics by physicists
earl;f/ in tf.le tw;:l?tlieth century fostered this probabilistic view of scientific
confirmation. Philosophers, influenced strongl i

cists, abandoned the siarch for causality: Bly by contemporary phys

The picture of scientific method drafted by modern philosophy is very different
from traditional conceptions. Gone is the ideal of the scientist who knows the
absqlute truth. The happenings of nature are like rolling dice rather than like re-
volylng stars; they are controlled by probability laws, not by causality, and the’sci-
entist resembles a gambler more than a prophet [Reichenbach, 1951]i

. The notion of verifiability by probabilistic logic did not take root. The
inadequacy of this philosophy was revealed by Karl Popper, who demon-
strated that statements of probabilistic confirmation, being neither axioms
nor observations, are themselves scientific statements requiring probabil-
ity judgments [Popper, 1965]. The resulting “infinite regress” did not re-
solve Hume’s criticism of the inductive process.
Popper proposed a more persuasive solution to Hume’s problem. Pop-

per accepted Hume’s point that induction based on confirmation of a
cause-effect relation, or confirmation of a hypothesis, never occurs. Fur-
thermore, he asserted that knowledge accumulates only by falsification.
According to this view, hypotheses about the empirical world are never
‘;‘)roved by inductive logic (in fact, empirical hypotheses can never be
.proved” at all in the sense that something is proved in deductive logic or
in mathematics), but they can be disproved, that is, falsified. The testing of
hypotheses occurs by attempting to falsify them. The strategy involves
forming the hypothesis by intuition and conjecture, using deductive logic.
to infer predictions from the hypothesis, and comparing observations with
the deduced predictions. Hypotheses that have been tested and not falsi-
fied are confirmed only in the sense that they remain reasonably gdod
explanations of natural phenomena until they are falsified and replaced by
other hypotheses that better explain the observations. The empirical con-
tent of a hypothesis, according to Popper, is measured by how falsifiable
the hypothesis is. The hypothesis “God is one” has no empirical content
because it cannot be falsified by any observations. Hypotheses that make
many prohibitions about what can happen are more falsifiable and there-
fore have more empirical content, whereas hypotheses that make few pi‘o—
hibitions have little empirical content. Lack of empirical content howevér
is not equivalent to lack of validity: A statement without empiric’al conten{
relates to a realm outside of empirical science. ’

Popper also rejected the abandonment of causality. He argued forcefully



that an indeterminist philosophy of science could have only negative con-
sequences for the growth of knowledge, and that Heisenberg’s “uncer-
tainty principle” did not place strict limits on scientific discovery. For Pop-
per, belief in causality was compatible with uncertainty, since scientific
propositions are not proved: They are only tentative explanations, to be
replaced eventually by better ones when observations falsify them. It is
worth noting that at least one prominent physicist, like Popper, did not
relinquish a belief in causality:

... I'should not want to be forced into abandoning strict causality without defend-
ing it more strongly than I have so far. I find the idea quite intolerable that an
electron exposed to radiation should choose of its own free will, not only its mo-
ment to jump off, but also its direction. In that case, I would rather be a cobbler,
or even an employee in a gaming house, than a physicist [Einstein, 1924].

Recent developments in theoretical physics seem to promise vindication
of Einstein’s faith in causality [Waldrop, 1985].

Popper’s philosophy of science has many adherents, but recent scientific
philosophers temper the strict falsificationism that he proposed. Brown
(1977] cites three fundamental objections to the Popperian view: (1) refu-
tation is not a certain process, since it depends on observations, which can
be erroneous; (2) deduction may provide predictions from hypotheses,
but no logical structure exists by which to compare predictions with ob-
servations; and (3) the infrastructure of the scientific laws in which new
hypotheses are imbedded is itself falsifiable, so that the process of refuta-
tion amounts only to a choice between refuting the hypothesis or refuting
the infrastructure from which the predictions emerge. The last point is the
essential view of the post-Popperian philosophers, who argue that the ac-
ceptance or rejection of a scientific hypothesis comes through consensus
of the scientific community [Brown, 1977] and that the prevailing scientific
viewpoint, which Kuhn [1962] has referred to as “normal sc}ence,” occa-
sionally undergoes major shifts that amount to scientific revolations. These
revolutions signal a decision of the scientific community to discard the
infrastructure rather than to falsify a new hypothesis that cannot be easily
grafted onto it.

« GENERAL MODEL OF CAUSATION

Philosophers of science have clarified the understanding of the process of
causal inference, but there remains the need, at least in epidemiology, to
formulate a general and coherent model of causation to facilitate the con-
ceptualijzation of epidemiologic problems. Without such a model, epide-
miologic concepts such as causal interactions, induction time, and the pro-
portion of disease attributable to specific causes would have no ontologic
foundation.

CAUSAL INFERENCE IN EPIDEMIOLOGY 11

We can define a cause of a disease as an event, condition, or character-
istic that plays an essential role in producing an occurrence of the disease.
Causality is a relative concept that can be understood only in relation to
conceivable alternatives. Smoking one pack of cigarettes daily for 10 years
may be thought of as a cause of lung cancer, since that amount of smoking
may play an essential role in the occurrence of some cases of lung cancer.
But this construction postulates some lesser degree of smoking, such as
nonsmoking, as the alternative. Smoking only one pack of cigarettes daily
for 10 years is a preventive of lung cancer if the alternative is to smoke 2
packs daily for the same period, because some cases of lung cancer that
would have occurred from smoking 2 packs daily will not occur. Analo-
gously, we cannot consider that taking oral contraceptives is a cause of
death (by causing fatal cardiovascular disease) unless we know what the
alternative is; if the alternative is childbirth, a life-threatening event, taking
oral contraceptives may prevent death. Thus, causation and prevention are
relative terms that should be viewed as two sides of the same coin.

Concept of Sufficient Cause and Component Causes

Concepts of cause and effect are established early in life. The child who
repeatedly drops a toy and watches it fall or tips a glass and observes the
milk spilling is applying his own method of reasoning to causal proposi-
tions and in so doing is working out his own concept of causation. A char-
acteristic of such early concepts is the assumption of a one-to-one corre-
spondence between the observed cause and effect in the sense that each
such cause is seen as necessary and sufficient in itself to produce the effect.
Thus, the flick of a light switch makes the lights go on. The unseen causes
that also operate to produce the effect are unappreciated: the need for an
unspent bulb in the light fixture, wiring from the switch to the bulb, and
voltage to produce a current when the circuit is closed. To achieve the
effect of turning on the light, each of these is equally as important as mov-
ing the switch because absence of any of these components of the causal
constellation will prevent the effect. For many people, the roots of early
causal thinking persist and become manifest in attempts to find single
causes as explanations for observed phenomena. But experience and re-
flection should easily persuade us that the cause of any effect must consist
of a constellation of components that act in concert [Mill, 1862]. A “suffi-
cient cause” may be defined as a set of minimal conditions and events that
inevitably produce disease; “minimal” implies that none of the conditions
or events is superfluous. In disease etiology, the completion of a sufficient
cause may be considered equivalent to the onset of disease. For biologic
effects, most and sometimes all of the components of a sufficient cause are
unknown [Rothman, 1976).

For example, smoking is a cause of lung cancer, but by itself it is not a
sufficient cause. First, the term smoking is too imprecise to be used in a
causal description. One must specify the type of smoke, whether it is fil-



tered or unfiltered, the manner and frequency of inhalation, and the du-
ration of smoking. More important, smoking, even defined explicitly, will
not cause cancer in everyone. So who are those who are “susceptible” to
the effects of smoking, or, to put it in other terms, what are the other
components of the causal constellation that act with smoking to produce
lung cancer? When causal components remain unknown, there is an incli-
nation to assign an equal risk to all individuals whose causal status for
some components is known and identical. Thus, heavy cigarette smokers
are said to have approximately a 10 percent lifetime risk of developing
lung cancer. There is a tendency to think that all of us are subject to a 10
percent probability of lung cancer if we were to become heavy smokers,
as if the outcome, aside from smoking, were purely a matter of chance. It
is more constructive, however, to view the assignment of equal risks as
reflecting nothing more than our ignorance about the determinants of
lung cancer that interact with cigarette smoke. It is likely that some of us
could engage in chain smoking for many decades without the slightest
possibility of developing lung cancer. Others are or will become “primed”
by presently unknown circumstances and need only to add cigarette
smoke to the nearly sufficient constellation of causes to initiate lung can-
cer. In our ignorance of these hidden causal components, the best we can
do in assessing risk is to assign the average value to everyone exposed to
a given pattern of known causal risk indicators. As knowledge expands,
the risk estimates assigned to people will approach one of the extreme
values, zero or unity.

Each constellation of component causes represented in Figure 2-1 is
minimally sufficient (i.e., there are no redundant or extraneous compo-
nent causes) to produce the disease. Component causes may play a role
in one, two or all three causal mechanisms.

Strength of Causes

Figure 2-1 does not depict aspects of the causal process such as sequence
of action, dose, and other complexities. These aspects of the causal process
can be accommodated by the model by an appropriate definition of each
causal component. The model and diagram do facilitate an understanding
of some important epidemiologic concepts. Imagine, for example, that in
Sufficient Cause I, A, B, C, and D all are factors commonly present or €x-
perienced by people. Suppose E were rare. Although all factrs are causes,
E would appear to be a stronger determinant of disease because those
with E differ greatly in risk from those without E. The other, more common
component causes result in smaller differences in risk between those with
and those without the causes because the rarity of E keeps the risks from
all the other factors low. Thus, the apparent strength of a cause is deter-
mined by the relative prevalence of component causes. A rare factor be-
comes a strong cause if its complementary causes are common. It should

]
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Fig. 2-1. Conceptual schematization of three sufficient causes for a disease
[Rothmanrn, 1976,

be apparent that, although it may have tremendous public health signifi-
cance, the strength of a cause has little biologic significance in that the
same causal mechanism is compatible with any of the component causes
being strong or weak. The identity of the constituent components of the
cause is the biology of causation, whereas the strength of a cause is a
relative phenomenon that depends on the time- and place-specific distri-
bution of component causes in a population.

Interaction Among Causes

Two component causes in a single sufficient cause are considered to have
a mutual biologic interaction. The degree of observable interaction de-
pends on the actual mechanisms responsible for disease. For example, in
Figure 2-1, if G were a hypothetical substance that had not been created,
no disease would occur from Sufficient Cause II; as a consequence, factors
B and F are biologically independent. Now suppose that the prevalence of
C is reduced because it is replaced by G or something that produced G.
In this case the disease that occurs comes from Sufficient Cause II rather
than from I or III, and as a consequence, B and F interact biologically.
Thus, the extent of biologic interaction between two factors is in principle
dependent on the relative prevalence of other factors.

Proportion of Disease Due to Specific Causes

In Figure 2-1, assuming that the three sufficient causes are the only ones
operating, what proportion of disease is caused by A? The answer is all of
it; without A, there is no disease. A is considered a “necessary cause.” What
proportion is due to B? B causes disease through two mechanisms, I and
II, and all disease arising through either of these two mechanisms is due
to B. This is not to say, of course, that all disease is due to A alone, or that
a proportion of disease is due to B alone; no component cause acts alone.



It is understood that these factors interact with others in producing dis-
ease.

Recently it was proposed that as much as 40 percent of cancer is caused
by occupational exposures. Many scientists argued against this claim [Hig-
ginson, 1980; Ephron, 1984]. One of the arguments used in rebuttal was
as follows: x percent of cancer is caused by smoking, y percent by diet, z
percent by alcohol, and so on; when all these percentages are added up,
only a few percent are left for occupational causes. This argument is based
on a naive view of cause and effect, which neglects interactions. There is,
in fact, no upper limit to the sum that was being constructed; the total of
the proportion of disease attributable to various causes is not 100 percent
but infinity. Similarly, much publicity attended the pronouncement that 90
percent of cancer is environmentally caused [Higginson, 1960]; by exten-
sion of the previous argument, however, it is easy to show that 100 percent
of any disease is environmentally caused, and 100 percent is inherited as
well. Any other view is based on a naive understanding of causation.

nduction Period

The diagram of causes also gives us a model for conceptualizing the #n-
duction period, which may be defined as the period of time from causal
action until disease initiation. If, in Sufficient Cause I, the sequence of
action of the causes is A, B, C, D, and E, and we are studying the effect of
B, which, let us assume, acts at a point in time, we do not observe the
occurrence of disease immediately after B acts. Disease occurs only after
the sequence is completed, so there will be a delay while C, D, and finally
E act. When E acts, disease occurs. The interval between the action of B
and the disease occurrence is the induction time for the effect of B. A clear
example of a lengthy induction time is the cause-effect relation between
exposure of a female fetus to diethylstilbestrol (DES) and the subsequent
development of clear cell carcinoma of the vagina. The cancer occurs gen-
erally between the ages of 15 and 30. Since exposure occurs before birth,
there is an induction time of 15 to 30 years. During this time, other causes
presumably are operating; some evidence suggests that hormonal action
during adolescence may be part of the mechanism [Rothman, 1981].

It is incorrect to characterize a disease as having a lengthy or brief in-
duction time. The induction time can be conceptualized only in relation
to a specific component cause. For each component cause, the induction
time differs, and for the component cause that acts last, the induction time
equals zero. If a component cause during adolescence that leads to clear
cell carcinoma of the vagina among young women exposed to DES were
identified, it would have a much shorter induction time for its carcino-
genic action than DES. Thus, induction time characterizes a cause-effect
pair rather than just the effect.

In carcinogenesis, the terms initiator and promotor have!been used to
refer to early-acting and late-acting component causes. Cancer has often
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been characterized as a disease process with a long induction time, but
this is a misconception because any late-acting component in the causal
process, such as a promotor, will have a short induction time, and the
induction time must always be zero for at least one component cause, the
last to act. (Disease, once initiated, will not necessarily be apparent. The
time interval between disease occurrence and detection has been termed
the latent period [Rothman, 1981], although others have used this term
interchangeably with induction period. The latent period can be reduced
by improved methods of disease detection.)

Empirical Content of the Model

According to Popper, the empirical content of a hypothesis or theory de-
rives from the prohibitions that it makes on what can be observed. The
model of causation proposed here makes numerous prohibitions about
causal processes. It prohibits causes from occurring after effects. It states
that unicausal effects are impossible if the setting of the effect of a specific
component cause is interpreted to be part of the causal constellation. It
prohibits a constant induction time for a disease in relation to it various
component causes. The main utility of a model such as this lies in its ability
to provide a conceptual framework for causal problems. The attempt to
determine the proportion of disease attributable to various component
causes is an example of a fallacy that is exposed by the model. As we shall
see in Chapter 15, the evaluation of interactions is greatly clarified with
the help of the model.

How does the model accommodate varying doses of a component
cause? Since the model appears to deal qualitatively with the action of
component causes, it might seem that dose variability cannot be taken into
account. But this view is overly pessimistic. To account for dose variability,
one need only to postulate a set of sufficient causes, each of which contains
as a component a different dose of the agent in question. Small doses
might require a larger set of complementary causes to complete a suffi-
cient cause than large doses [Rothman, 1976). It is not necessary to pos-
tulate an infinite set of sufficient causes to accommodate a spectrum of
doses but only enough to accommodate the number of different mecha-
nisms by which the different dose levels might bring about the disease. In
this way the model could account for the phenomenon of a shorter in-
duction period accompanying larger doses of exposure because there
would be a smaller set of complementary components needed to com-
plete the sufficient cause.

Stochastic thinkers might object to the intricacy of this deterministic
model. A stochastic model could be invoked to describe a dose-response
relation, for example, without a multitude of different mechanisms. A sto-
chastic model would also accommodate the role of chance, which is ap-
parently omitted from the causal model described above. Nevertheless
the deterministic model presented here does accommodate “chance,” but’



it does so by reinterpreting chance in terms of deterministic action beyond
the current limits of knowledge or observability. Thus, the outcome of a
flip of a coin is usually considered a chance event, but theoretically the
outcome can be determined completely by the application of physical laws
and a sufficient description of the starting conditions. At first, it might seem
that a deterministic model is more constricting than a stochastic one, since
the deterministic model excludes random processes from causal mecha-
nisms. One might argue, however, that just the reverse is true: Stochastic
models accept the role of random events, and in doing so limit the sci-
entific explanations that can be applied, since there will be no attempt to
explain the random event. As noted above, Popper [1965] argued forcefully
against accepting any indeterminist metaphysics for this reason, asserting
that even Heisenberg’s uncertainty principle and quantum theory should
not and did not offer barriers to determinist explanations. Indeed, it now
appears that even quantum theory may have a deterministic explanation
{Waldrop, 1985]. Popper advised that “. .. we should abstain from issuing
prohibitions that draw limits to the possibilities of research.” Accepting
random events as components of causal mechanisms does precisely that,
whereas a determinist model can accommodate chance as ignorance of
unidentified components—ignorance that is susceptible to elucidation as
knowledge expands.

CAUSAL INFERENCE IN EPIDEMIOLOGY

Let us consider epidemiologic hypotheses in light of Popper’s criterion for
empirical content, which is equated with the prohibitions placed on what
might occur. On this score, many epidemiologic propositions might seem
to have little empirical content. For example, consider the proposition that
cigarette smoking causes cardiovascular disease. What prohibitions does
this statement make to give it content? It is clear that not all cigarette smok-
ers will get cardiovascular disease and equally clear that some nonsmokers
will develop cardiovascular disease. Therefore, the proposition cannot
prohibit cardiovascular disease among nonsmokers or its absence among
smokers. The proposition could be taken to mean that cigarette smokers,
on the average, will develop more cardiovascular disease than nonsmok-
ers. Does this statement prohibit finding the same rate of cardiovascular
disease among smokers and nonsmokers, presuming that biases such as
confounding and misclassification are inoperant? Not quite, since the effect
of cigarette smoke could depend on a component cause that might be
absent from the compared groups. One might suppose that at least the
prohibition of a smaller rate of cardiovascular disease among smokers
would be implied by the proposition. If one accepts, however, that a given
factor could be both a cause and a preventive in different circumstances,
even this prohibition cannot be attached to the statement. ¢

With no prohibitions at all, the proposition would be devoid of mean-
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ing. The meaning must be derived from assumptions or observations
about the complementary component causes as well as 2 more elaborate
description of the causal agent, smoking, and the outcome, cardiovascular
disease. This elaboration is, in part, the equivalent of a more detailed de-
scription of the characteristics of individuals susceptible to the cardiovas-
cular effects of cigarette smoke.

Biologic knowledge about epidemiologic hypotheses is often scant,
making the hypotheses themselves at times little more than vague state-
ments of association between exposure and disease. These have few de-
ducible consequences that can be falsified, apart from a simple iteration
of the observation. How does one test the hypothesis that DES exposure
of female fetuses in utero causes adenocarcinoma of the vagina, or that
cigarette smoking causes cardiovascular disease? Not all epidemiologic hy-
potheses, of course, are simplistic. For example, the hypothesis that tam-
pons cause toxic shock syndrome by acting as a culture medium for staph-
ylococci leads to testable deductions about the frequency of changing
tampons as well as the size and absorbency of the tampon. Even vague
statements of association can be transformed into hypotheses with consid-
erable content by rephrasing them as 7ull bypotbeses. For example, the
statement “smoking is not a cause of lung cancer” is a highly specific,
universally applicable statement that prohibits the existence of sufficient
Causes containing smoking in any form as a component. Any evidence
indicating the existence of such sufficient causes would falsify the hypoth-
esis. Popper’s criterion for empirical content thus lends a scientific basis
to the concept of the null hypothesis, which has often been viewed merely
as a statistical crutch.

Despite philosophic injunctions concerning inductive inference, criteria
have commonly been used to make such inferences. The justification of-
fered has been that the exigencies of public health problems demand ac-
tion and that despite imperfect knowledge causal inferences must be
made. A commonly used set of standards has been advanced by Hill [1965].
The popularity of these standards as criteria for causal inference makes it
worthwhile to examine them in detail.

Hill suggested that the following aspects of an association be considered
in attempting to distinguish causal from noncausal associations: (1)
strength, (2) consistency, (3) specificity, (4) temporality, (5) biologic gra-
dierllt, (6) plausibility, (7) coherence, (8) experimental evidence, and (9)
analogy.

1. Strength. By “strength of association,” Hill means the magnitude of the
ratio of incidence rates. Hill’s argument is essentially that strong associa-
tions are more likely to be causal than weak associations because if they
were due to confounding or some other bias, the biasing association
would have to be even stronger and would therefore presumably be evi-
dent. Weak associations, on the other hand, are more likely to be explained
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by undetected biases. Nevertheless, the fact that an association is weak
does not rule out a causal connection. It has already been pointed out that
the strength of an association is not a biologically consistent feature but
rather a characteristic that depends on the relative prevalence of other
causes.

2. Consistency. Consistency refers to the repeated observation of an asso-
ciation in different populations under different circumstances. Lack of con-
sistency, however, does not rule out a causal association because some
effects are produced by their causes only under unusual circumstances.
More precisely, the effect of a causal agent cannot occur unless the com-
plementary component causes act, or have already acted, to complete a
sufficient cause. These conditions will not always be met. Furthermore,
studies can be expected to differ in their results because they differ in
their methodologies.

3. Specificity. The criterion of specificity requires that a cause lead to a
single effect, not multiple effects. This argument has often been advanced,
especially by those seeking to exonerate smoking as a cause of lung can-
cer. Causes of a given effect, however, cannot be expected to be without
other effects on any logical grounds. In fact, everyday experience teaches
us repeatedly that single events may have many effects. Hill’s discussion of
this standard for inference is replete with reservations, but even so, the
criterion seems useless and misleading.

4. Temporality. Temporality refers to the necessity that the cause precede
the effect in time.

5. Biologic Gradient. Biologic gradient refers to the presence of a dose-
response curve. If the response is taken as an epidemiologic measure of
effect, measured as a function of comparative disease incidence, then this
condition will ordinarily be met. Some causal associations, however, show
no apparent trend of effect with dose; an example is the association be-
tween DES and adenocarcinoma of the vagina. A possible explanation is
that the doses of DES that were administered were all sufficiently great to
produce the maximum effect, but actual development of disease depends
on other component causes. Associations that do show a dose-response

trend are not necessarily causal; confounding can result in such a trend .

between a noncausal risk factor and disease if the confounding factor itself
demonstrates a biologic gradient in its relation with disease.

6. Plausibility. Plausibility refers to the biologic plausibility of the hypoth-
esis, an important concern but one that may be difficult to judge. Sartwell
[1960), emphasizing this point, cited the remarks of Cheever, in 1861, who
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was commenting on the etiology of typhus before its mode of transmission
was known:

It could be no more ridiculous for the stranger who passed the night in the steer-
age of an emigrant ship to ascribe the typhus, which he there contracted, to the
vermin with which bodies of the sick might be infested. An adequate cause, one
reasonable in itself, must correct the coincidences of simple experience.

7. Coherence. Taken from the Surgeon General’s report on Smoking and
Health [1964], the term coberence implies that a cause and effect interpre-
tation for an association does not conflict with what is known of the natural
history and biology of the disease. The examples Hill gives for coherence,
such as the histopathologic effect of smoking on bronchial epithelium (in
reference to the association between smoking and lung cancer) or the
difference in lung cancer incidence by sex, could reasonably be consid-
ered examples of plausibility as well as coherence; the distinction zippears
to be a fine one. Hill emphasizes that the absence of coherent information,
as distinguished, apparently, from the presence of conflicting information,
shoul;i not be taken as evidence against an association being considered
causal.

8. Experimental Evidence. Such evidence is seldom available for human
populations.

9. Analogy. The insight derived from analogy seems to be handicapped by
the inventive imagination of scientists who can find analogies everywhere.
Nevertheless, the simple analogies that Hill offers—if one drug can cause
birth defects, perhaps another one can also—could conceivably enhance
the credibility that an association is causal.

As is evident, these nine aspects of epidemiologic evidence offered by
Hill to judge whether an association is causal are saddled with reservations
and exceptions; some may be wrong (specificity) or occasionally irrelevant
(experimental evidence and perhaps analogy). Hill admitted that

- None of my nine viewpoints can bring indisputable evidence for or against the

cause-and-effect hypothesis and none can be required as a sine qua non.

In describing the inadequacy of these standards, Hill goes too far. The
fourth standard, the temporality of an association, is a sine qua non: If the
“cause” does not precede the effect, that indeed is indisputable evidence
that the association is not causal. Other than this one condition, which is
part of the concept of causation, there are no reliable criteria for deter-
mining whether an association is causal.



In fairness to Hill, it must be emphasized that he clearly did not intend

that these “viewpoints” be used as critetia for inference; indeed, he stated
that he did not believe that any “hard-and-fast rules” could be posed for
causal inference. If these viewpoints are used by some as a checklist for
inference, we should recall that they were not proposed as such. Indeed,
it is dubious that the inferential process can be enhanced by the rote con-
sideration of checklist criteria [Lanes and Poole, 1984]. We know from
Hume, Popper, and others that causal inference is at best tentative and is
still a subjective process.

The failure of some researchers to recognize the theoretical impossibil-
ity of “proving” the causal nature of an association has led to fruitless
debates pitting skeptics who await such proof against scientists who are
persuaded to make an inference on the basis of existing evidence. The
responsibility of scientists for making causal judgments was Hill’s final em-
phasis in his discussion of causation:

All scientific work is incomplete—whether it be observational or experimental. All
scientific work is liable to be upset or modified by advancing knowledge. That
does not confer upon us a freedom to ignore the knowledge we already have, or
to postpone the action that it appears to demand at a given time.

Recently, Lanes [1985] has proposed that causal inference is not part of
science at all, but lies strictly in the domain of public policy. According to
this view, since all scientific theories could be wrong, policy makers
should weigh the consequences of actions under various theories. Scien-
tists should inform policy makers about scientific theories, and leave the
choice of a theory and an action to policy makers. Not many public health
scientists are inclined toward such a strict separation between science and
policy, but as a working philosophy it has the advantage of not putting
scientists in the awkward position of being advocates for a particular the-
ory {[Rothman and Poole, 1985). Indeed, history shows that skepticism is
preferable in science.
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