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CHAPTER 2 .  . . , . . , , ' ". . . . . 

Some non-parametric procedures 

. . 
An initial step in the analysis of :%,set df survival data. & to present numerical or 
graphical summaries of the s+-vival times for individuals in a fi&icul+r group. 
Such summaries may be of interest in, their o%m right, os as a prec.msor to a 
more detailed analysis of the data, Surviyal data a& cobve~~ie~~t~~~summ.&ise.d 
through estimates of the survivor function and h'az.&d function. ~ e t h . ~ &  for 
estimating these functions &om 8, single sample of s-id data ire described 
in Sections 2.1 and 2;3. These kethods are said to be n~ri+~arbrn.et.~t or 
distribution-free, since they do not require specific assmptions to be made 
about the underlying distribution of the surdval tikes.; 

Once the estimated survivor function has been found, the median and other 
percentiles of the distribution of survival times can be estimated, as shown 
in Section 2.4. Numerical summaries of the data, derived on the basis of 
assumptions about the probability distribution &om which the data have been 
obtained, will be considered later in Chapters: 5 and 6. 

When the survival times of two, groups of patients are being compared, an 
informal comparison of the surviiritl experience bf e& group of bdividuals 
can be made using the .estimated survivor functions. .Hoqiever; there are more 
formal procedures that enable two groups of sui-vivd data to be compared. 
Two non-parametric procedures for comparing .tyb .or more group? of sur- 
vival times, namely the log-rank test and the ~(lcoxon test, are des.cribed in 

. . . . . . Section 2.6. . . . . 

2.1 Estimating the  survivor ,function . , . . 

Suppose &st that we have a single sample of survival times, where none ~f 
the observations are censored. Tbe survivor .function S(t), d-eflned in equa- 
tion (1.1), is the probability that &.individual. s h v &  for a t e e  greater 
than or equal to t. This function dan be kstimated by the empirical survivor 
function, given by 

Number of &diiduals with survival times 2 t 
S(t) = 

Number of individuals. in the data set ' . . . 

(2.1) 

Equivalently, ~ ( t )  = 1- F (t) , where F(t) is the empirical di.stribu&o.n .fi.n.ction, 
that is, the ratio of thetotal number of individuals alive at time &to the total 
number of individuals in the study. Noticethat the einpirical survivor k c t i o n  
is equal to unity for values of t before . . the first death t b e ,  and. zero after the 
final death time. 

The estimated survivor frinbtion , ~ ( t )  is a s s d  $0 be copstant b.etGeen 
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two adjacent death times, and so a plot of ~ ( t )  against t is a stepfunction. 
The function decreases immediately after each observed survival time. 

Example 2.1 Pulmonarg metastasis 
One complication in the management of patients with a malignant bone tu- 
mow, or osteosarcoma, is that the tumour often spreads to the lungs. This 
pulmonary metastasis is life-threatening. In a study concerned with the treat- 
ment of pulmonary metastasis arising from osteosarcoma, Burdette and Gehan 
(1970) give the following survival times, in months, of eleven male patients. 

Using equation (2.1), the estimated values of the survivor function at times 
11, 13, 14, 15 and 17 months are 1.000, 0.909, 0.455, 0.273, and 0.091. The 
estimated value of the survivor function is unity from the time origin until 11 
months, and zero after 17 months. A graph of the estimated survivor function 
is given in Figure 2.1. 

0 3 6 9 12 15 18 

Survival time 

Figure 2.1 Estimated survivor function for the data from Example 2.1. 

The method of estimating the survivor function illustrated in the above 
example cannot be used when there are censored observations. The reason for 
this is that the method does not allow information provided by an individual 
whose survival time is censored before time t to be used in computing the 
estimated survivor function at t. Non-parametric methods for estimating S(t),  
which can be used in the presence of censored survival times, are described in 
the following sections. 

[ ESTIMATING THE SURVWOR FUNCTION . . 17 

1 2.1.1 Life-table estimate of the iurvivir function, : 

1 The life-table estimate of the survivor function, also known as'the Actvarial 
estzmate of sumvor function, is obtained by first dividing the period of ob- i servation into a series of time intervals. These intervals need not necessarily r 

p be of equal length, although they ~ u d y  are. The number of intervals used 
t will depend on the number of individuals in the study, but would usually be 

somewhere between 5 and 15. 
I 

Suppose that the jth of m such intervals, J = 1,2,.  . . , m, ex%ends £ram time 
ti to ti+,, and let d, and c, denote the number of deaths and the number 
of censored survival times, respectively, in this time interval. Also let cj be 
the number of individuals who are alive, and therefore at risk of death, at 
the start of the jth interval. We now make the assumption that the censoring 
process is such that the censored sutvival times .occur uniformly throughout 
the jth interval, so that the average number of Individuals who are at risk . . 
during this interval is . . . . .  . . 

. n$ = n j  - cj/2. ' . . 
. (2.2) 

This assumption is sometimes known.as the actuamal assumptjon. 
In the jth interval, the probability of death can be estimated by d,/nl,, so 

that the correspondlng survival probability is (ni - d,)/ni. Now consider the 
probability that an individual survives beyond time t8;k = 1,2,. . . , m,, that 
is, until some time after the start of the kth interval. This will be the product 
of the probabilities that an individual Survives beyond the start of the kth 
interval and through each of the k - 1 preceding intervals, and so the life-table 
estimate of the survivor function is given by 

' 

for tk < t < tB+l, k = 1,2, .  . . , m. The estimated probability of surviving 
until the start of the first interval, ti, is of course unity, while the estimated 
probability of surviving beyond tk+l is zero. A graphic4 estimate of the 
survivor function will then be a step-function with constant values of the 
function in each time interval. 

Example 2.2 Survzval of multzple myeloma patzents 
To illustrate the computation of the life-table estimate, consider the data on 
the survival times of the 48 multiple myeloma patients given in Table 1.3. In 
this illustration, the information collected on other explanatory variables for 
each individual will be ignored. 

The survival times are first grouped to give the number of patients who die, 
d,, and the number who are censored, c,, in each of the first five years of the 
study, and in the subsequent thee-year period. The number at risk of death 
at the start of each of these intervals, n,, is then computed, together with the 
adjusted number at risk, nl,. Finally, the probability of survival through each 
interval is estimated, from which the estimated survivor function is obtained 
using equation (2.3). The calculatiok are shown in Table 2.1, in which the 

. . 
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time period is given in months, and the interval that begins at time t i  and 
ends just before time t/,+,, for k = 1,2,. . . , m, is denoted tb-. 

TabIe 2.1 Life-table estzmate of the suruzvor functzon for the data from 
Example 1.3. 

Interval Time period d, c, n, n: (ni - d,)/n: S*(t) 

1 0- 16 4 48 46.0 0.6522 0.6522 
2 12- 10 4 28 26.0 0.6154 0.4013 
3 24- 1 0 14 14.0 0.9286 0.3727 
4 36- 3 1 13 12.5 0.7600 0.2832 
5 48- 2 2 9 8.0 0.7500 0.2124 
6 60- 4 1 5 4.5 0.1111 0.0236 

A graph of the life-table estimate of the survivor function is shown in Fig- 
ure 2.2. 

0.0 
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Figure 2.2 Life-table estimate of the suruivor function. 

The form of the estimated survivor function obtained using this method 
is sensitive to the choice of the intervals used in its construction, just as the 
shape of a histogram depends on the choice of the class intervals. On the other 
hand, the life-table estimate is particularly well suited to situations in which 
the actual death times are unknown, and the only available information is the 
number of deaths and the number of censored observations that occur in a 
series of consecutive time intervals. In practice, such interval-censored survival 
data occur quite frequently. 

When the actual survival times are known, the lifetable estimate can still be 

i 
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i 
i used, as in Example 2.2, but the grouphg of thk survival times dies result in 

some loss of information. This is pa&icdarly so wl+n the number . . of patients 
is small, less than about 30,.say. . - . . . ' ' . 

. . 

2.1.2 Kaplan-Meier estimate of the survivor. function 
. . 

The first step in the analysis. of @grouped censored siwival data is normay 
to obtain the Kaplan-Meier estimate of the survivor ~.cti.o.w. This estimate 
is therefore considered in some detail; To obtain the Kapl.an-Meier es.t.jaate., a 
series of time intervals is constructed, as for.the lifetable est.i;m,af,e. .wowever, 
each of these intervals-is desig&d toLbe such that one death'th.e is contained 
in the interval, and this death time is taken to occu~ at the st.art,of the interval. 

As an illustration, suppose that t(l~i, t(2) G d  t (3)  && three.0bserve.d s-wival 
times arranged in rank order, so that.t.(l) < &(2) <' t(3), and that cis a censored 
survival time that falls between t(2) and t(3).  he codtructed iqtekals.then 
begin at times t(l), t (z) and t(3), ,and ea& interval includes the one death time, 
although there could be'more than one individval who dies a t  aby particular 
death time. Notice that no,i~iterval begins at the cemo.red t . b e  of c. The 
situation is illustrated diagrampatically in Figure.2.3; in w* D represents 
a death and C a censored sun;ival time. Notice that two ~dividuals die at 
t(l), one dies at t(2), and th rq  die at't(3). . . 

. . 
. . 

D 
D D . . 

.D. . C  D . D . . 

I 1  I I. I Time . 
to t(l) . t(2) t(3) 

.. , . . 

Figure 2.3 Construction ,of intehq.k.'ishd in 'the derivation of . the . Kaplan-Meier 
estimate. . . .  . . 

The time origin is denoted by to, and sd, there is an initial'.p.eriod"c.om- 
mencing at to, which ends j ~ t . b e f o r e ' t ( ~ ) , .  the time of the Gst. de.abh. This 
means that the i n t e ~ a l  from to t ~ ; t ( ~ )  wiU not include a d&b ti-me.. The 
first constructed i n t e . 4  extends fr& t(l) to,just:b.efore ti;), and. si-~ce the 
second death time is at this.intenal includes thesingle death time at t(l). 
The second interval begins at time t(2) and ends j d t  before t($;;and includes 
the death time at t(,) and the censored time c. There is alsd a third interval 
beginning at t(3), which coGt* the longest survival time, t(3). 

In general, suppose that there are n hdividuals &t,h ob.served sunrival.times 
tl, t2, . . . , t,. Some of.these observations' may be ;ight-c~nsmd, and there may 
also be more than one individual v&h the .game observed sunrival .time. We 
therefore suppose thB there ate r death times amongst.the~i~.&.~~u.&, where 
r ,< n. After arranging these death: times in ascendmg order, the jth is-denoted 
t(j), for j = 1,2,. . . ; r ,  and so the 7: ordered death: t i r ~ ~  are tiI) ;< ti2) < . . . < 
t(,). The number of individuals who are alive just, before t,@e t(j), including 
those who are about to die at this t&e, will be dknoted nj, for j = 1,2, : . . , r ,  
and d j  will denote the number . who . die at this time. The tirne.ip-tewal from 

. . . .  . 
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t(,) - 6 to t(,), where 6 is an infinitesimal time interval, then includes one 
death time. Since there are n j  individuals who are alive just before t(,) and d, 
deaths at t(,), the probability that an individual dies during the interval from 
t(,) - 6 to t(,) is estimated by d, In,. The corresponding estimated probability 
of survival through that interval is then (nj - d,)/n,. 

It sometimes happens that there are censored survival times that occur at 
the same time as one or more deaths, so that a death time and a censored sur- 
vival time appear to occur simultaneously. In this event, the censored survival 
time is taken to occur immediately after the death time when computing the 
values of the n,. 

From the manner in which the time intervals are constructed, the interval 
from t(3) to t(,+l) - 6, the time immediately before the next death time, 
contains no deaths. The probability of surviving from t(,) to t(,+l) - 6 is 
therefore unity, and the joint probability of surviving from t(,) - 6 to t(,) and 
from t(,) to t(,+l) - 6 can be estimated by (n, - d, )In,. In the limit, as 6 tends 
to zero, (n, - d,)/n, becomes an estimate of the probability of surviving the 
interval from t(,) to t(j+,). 

We now make the assumption that the deaths of the individuals in the sarn- 
ple occur independently of one another. Then, the estimated survivor func- 
tion at any time, t ,  in the kth constructed time interval from t(k) to t(k+l), 
k = 1,2, . . . , r, where t(,+l) is defined to be m, will be the estimated prob- 
ability of surviving beyond t(k). This is actually the probability of surviving 
through the interval from t(k) to t(k+l), and all preceding intervals, and leads 
to the Kaplan-Meier estimate of the survivor function, which is given by 

for t(k) < t < t(k+l), k = 1,2,.  . . , r, with S( t )  = 1 fort < tp ) ,  and where t(,+l) 
is taken to be m. Strictly speaking, if the largest observation is a censored 
survival time, t*, say, ~ ( t )  is undefined for t > t*. On the other hand, if the 
largest observed survival time, t(,), is an uncensored observation, n, = d,, and 
so S(t) is zero for t 2 t(,). A plot of the Kaplan-Meier estimate of the survivor 
function is a step-function, in which the estimated survival probabilities are 
constant between adjacent death times and decrease at each death time. 

Equation (2.4) shows that, as for the life-table estimate of the survivor 
function in equation (2.3), the Kaplan-Meier estimate is formed as a product 
of a series of estimated probabilities. In fact, the Kaplan-Meier estimate is 
the limiting value of the life-table estimate in equation (2.3) as the number 
of intervals tends to infinity and their width tends to zero. For this reason, 
the Kaplan-Meier estimate is also known as the product-limzt estimate of the 
survivor function. 

Note that if there are no censored survival times in the data set, nj - d j  = 
n3+l, j = 1,2,. . . , k, in equation (2.4), and on expanding the product we get 

This reduces to nk+l/nl, for k = 1,2, .;. ;r - 1, with ~ ( t ' ) ' =  1 f& t < t(,) and 
~ ( t )  = 0 for t 2 t(,). Now, nl  is the number of.individuals at ribk,just before 
the &st death time, which is the number'of individuals in the sample; and nk+l 
is the number of individuals with'swival times gre&ter ihan orqual ' to  
Consequently, in the absence of censorhg, ~ ( t )  'is simply the'enipirical survivor 
function defined in equation (2.1). The Kaplan-Meier . estimate is. therefore a 
generalisation of the empirical survivor function that . ac.commo.dates . censored 
observations. 

. . 

. . 

Example 2.3 Time to disseontinudtion of the use of an IUD ', ' '  
. ' ' , 

Data from 18 women on the time to  discontinuation 'of the use of an IUD 
were given in Table 1.1. For these data; the survivor function, ~ ( t ) ,  represents 
the probability that a woman discontinues the useof the contrwepkive device 
after any time t. The ~ ~ ~ l a n - ~ e i e ;  estimate of the sllniivof function is readily 
obtained using equation (2.4), a ~ d  $he required calculations are set out'in 
Table 2.2. The estimated survivor function, S(i):,. .is' plotted. in .Figure 2.4. 

. . . .  

Table 2.2 ~ a p l a n - ~ ~ { e r . e s t i n ~ a t e  of .  the survivor,. . . ' 

jbnction for the data, porn' Example 1.1:. 

Time intkrval - n.j . . di, ( d )  g(t) . . .  

0- .18 : 0 1.0.0.00 . 1.0.000 ': 
. 18 , .1 ' 0.9444 . 0.9444 

15 1 ' 0.9333. 0.8815 197 
30- 13 1. 0.923.1 ," .. 0.8137 ..: . 
36- 12 : . 1 . 0.9167 0.7459 . , ., 

5% 8 1 , 0.8750 0,6526 
7 1 75- 0.8571 ' 0:5594. . 

93- . 6 1 0.8333 0:4662 . , 

5 1 0.8000 ' ,0,3729 ' 97- 
107 . 3 1' 0.6667, . 0.2486' . . 

. . 
. . 

Note that since the largest discontinvation . time . of ,107 days is i.eb.ored, S(t)  
is not defined beyond t:= 107: 

. . 
2.1.3 Nelson-Aalen estimate 0 f the .suyvivor fbnction ' . . .:. . 

An alternative estimate of the survivor function, .which is based &the indi- 
vidual event times, is the Nelson-Aalen estimate, $+en by 

, . ' . . , . , 

' . ' k .  . . 
' $(t) = ne$(-dj/kj). , '  .. . , . ' , . . " . 

' (2.6) 
j=l 

. .  . 

This estimate can be obtihed. from an estimate- of the cumulative b a r d  
function, as shown in Section.2.3.3. Moreover, the Kaplan-M.eier estimate of 
the survivor function can be regarded, as an. approximation, to . the . N.elson- 

. . 

. . . .  . . . 
. . 
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Figure 2.4 Kaplan-Meier estimate of the suruivor function for the data from Ex- 
ample 1 . 1 .  

Aalen estimate. To show this, we use the result that 

which is approximately equal to 1 - x when x is small. It then follows that 
eq(-dj/n3) = 1 - (d,/n,) = (nj - dj)/n3, so long as d, is small relative to nj, 
which it will be except at the latest survival times. Consequently, the Kaplan- 
Meier estimate, ~ ( t ) ,  in equation (2.4), approximates the Nelson-Aden esti- 
mate, S(t), in equation (2.6). 

The Nelson-Aalen estimate of the survivor function, also known as Alt- 
shuler's estimate, will always be greater than the Kaplan-Meier estimate at 
any given time, since e-% 2 1 - x, for all values of x. Although the Nelson- 
Aalen estimate has been shown to perform better than the Kaplan-Meier 
estimate in small samples, in many clcumstances, the estimates will be very 
similar, particularly at the earlier survival times. Since the Kaplan-Meier esti- 
mate is a generalisation of the empirical survivor function, the latter estimate 
has much to commend it. 

Example 2.4 Time to discontinuation of the use of an IUD 
The values shown in Table 2.2, which gives the Kaplan-Meier estimate of the 
survivor function for the data on the time to discontinuation of the use of 
an IUD, can be used to calculate the Nelson-Aalen estimate. This estimate is 
shown in Table 2.3. 

From this table we see that the Kaplan-Meier and Nelson-Aalen estimates 
of the survivor function d8er by less than 0.04. However, when we consider 

Table 2.3 ~e lson-~al in  estimate p j  the 
suruivorfiiction fop the data from E~arn? 
ple 1.1. . . .  . 

Tiple interval exp(-dj Inj) . S(t) ' 

@ . i .a000 ' ' i .oooo 
. 1@ , ' 0.9460 ' 0.9460 '.. 

1% ' '.. ' 0.9355 , ' 0.8850 
3@ .'0.9260 . . 0.8194 
3% ' 0.9200 . 0.7539 . 
5% 0.8825 ,. ' 0.6653 
75- 0.8669 . 0.5768 
93- , ,0.8465 .0.4882 
97- 0.8187 . . 0.3997. 

107 0.7165 .0.2864 
. . 

. , .  

the precision of these estimates, which we do in Section 2.2; . we . see that a 
difference of 0.04 is of no practical impo jance: '.. . .: 

2.2 Standard error of t h e  estimated survivor function 
- 

An essential aid to the interpretation of an estimate of any q&mtity is the 
precision of the estimate, which is reflected in the standard error of the esti- 
mate. This is defined to be the square root of the estimated variake of the 
estimate, and is used in the construction of an interval estimate for a quan- 
tity of interest. In this section; the standard error of estimates of the survivor 
function are given. 

Because the Kaplan-Meier estimate is the +ost important and widely used 
estimate of the survivot. function, the derivation of the standxd error of S( t )  
will be presented in detail in this sectioq. The details of this d e h t i o n  can . ., . . 
be omitted on a f is t  reading. .. , 

. . 

2.2.1' Standard error of the Kaplan-Meier estimate . . ,'. ' 

The Kaplan-Meier estimate of the survivor function for a i~y  value of t in the 
interval &om t(k) to t(k+l) can . . be written as :. . . . 

b ' .  

j=1 

for k = 1,2,. . . , r, where*, = (n, -dj)/n, is the estimated probability libat an 
individual survives through the timeinternal that begins at t(,), j = 1,2,. . . , r.  
Taking logarithms, E 
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within it. The intervals constructed in this manner are sometimes referred to 
as pointwise confidence intervals, since they apply to a specific sunrival time. 

A confidence interval for the true value of the survivor function at a given 
time t is obtained by assuming that the estimated value of the survivor func- 
tion at t is normally distributed with mean S(t) and estimated variance 
given by equation (2.12). The interval is computed from percentage points 
of the standard normal distribution. Thus, if Z is a random variable that 
has a standard normal distribution, the upper (one-sided) al2-point, or the 
twc-sided a-point, of this distribution is that value 2 4 2  which is such that 
P(Z > z, /~)  = a/2. This probability is the area under the standard normal 
curve to the right of z,/2, as illustrated in Figure 2.5. For example, the twc- 
sided 5% and 1% points of the standard normal distribution, 20.025 and z0.005, 
are 1.96 and 2.58, respectively. 

0 

Value of z 

Figure 2.5 Upper and lower a/2-points of the standard normal distribution. 

A 100(1 - a)% confidence interval for S(t), for a given value of t ,  is the 
interval from ~ ( t )  - 1 4 2  se {S(t)} to ~ ( t )  + z a p  se { ~ ( t ) } ,  where se {S(t)} is 
found from equation (2.13). These intervals for S(t) can be superimposed on 
a graph of the estimated survivor function, as shown in Example 2.5. 

One difficulty with this procedure arises from the fact that the confidence 
intervals are symmetric. When the estimated survivor function is close to 
zero or unity, symmetric intervals are inappropriate, since they can lead to 
con6dence limits for the survivor function that lie outside the interval (0,l). 
A pragmatic solution to this problem is to replace any limit that is greater 
than unity by 1.0, and any limit that is less than zero by 0.0. 

An alternative procedure is to transform s ( t )  to a value in the range 
(-oo,oo), and obtain a confidence interval for the transformed value. The 
resulting confidence limits are then back-transformed to give a confidence 
interval for S(t) itself. Possible transformations are the logistic transforma- 
tion, log[S(t)/{l - S(t))], and the complementary log-log transformation, 
log{- log S(t)}. Note that from equation (1.7), the latter quantity is the 
logarithm of the cumulative hazard function. In either case, the standard 

error of the transformed value of $(t) can be found ;sing the approximation 
in equation (2.9). 

For example, the variance of log{- lbg $ ( t ) }  is obtained from the expression 
for var {log $(ti} in equation (2.11). Using the general result inkquation (2.91, 

. . . . . . 
. 1  

var {log (-X)) '= - var (XI;. . ' 
. . 

X 2 ' .  . , . 
. .~ 

and setting X = log ~ ( t )  gives ' 

' . . 
. . 

The standard error of log{- log S(t')} is the squ.Fe root of . this . ~uan t i tp  This 
leads to 100(1- a)% limits of the . form . , 

- $(t)e~~IfzY/z se{l.ogI- log 4(t)l}l, ' . . 

where is the upper a/2-point of the standard normal distrib.uti.on..' 
A further problem is that in the tails of the distribution ofithe survival 

times, that is, when ~ ( t )  is cldse to zero or unity, the variance of' S(t) obtained 
using Greenwood's formula can underestimate the actual vari-ance. I n  these 
circumstances, an alternative expression for the standard e.rrof of S(t) inay 
be used. Peto et al. (1977) propose that the standard error . .  of , . . .  S(t) should be 
obtained from the equation 

for t(k) < t < t(k+l), k'.= 1,2,.  . . IT,  where S(t) is the Kaplan-Mei?r estimate 
of S(t) and nk is the number of individuals at risk at t(k) ; the start of the kth 
constructed time interval. 

This expression for the standard error of b( t ) i s  conseru&ive, in the sense 
that the standard errors obtained will tend to be'larger than they ought to 
be. For this reason, the Greenwood &mate is . recommended . .  for general..use. 

Example 2.5 Time to discontznuatzon of the use of an IUD 
.' 

The standard error of the estimated, survivor h c t i o n ,  apd 85% c.onfdenee 
limits for the corresponding truevalue' of the 'function, for the dat.a. from 
Example 1.1 on the times to gscontiniation of use of &n IUD, are given in 
Table 2.4. In this table, confidence limits outside the'range (0,l) h a ~ e  been . . 

. . . . 
replaced by zero or unity. 

. . 

From this table we see that in gf3neral the standqd'error .of thk &timated 
survivor function increasek with the discontinuation-time. d he reason for this 
is that estimates of the survivor function at later times are b&ed on fewer in- 
dividuals. A graph of the estimated survivor function, with the 95% confidence - - 
limits shown as dashed lines, is given:in. Figwe '2:6. 

It is important to bbserve that. the confidence limits platt'e.d on such a 
graph are only valid for any given time. Different methods are. needed to . . .  

. . 
. . .  
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Table 2.4 Standard emir of $t) and confidnce intervals for S ( t )  
for the data from Example 1.1. 

Time interval ~ ( t )  se { ~ ( t ) }  95% confidence interval 

0- 1.0000 0.0000 

Discontinuation time 

Figure 2.6 Estzmated survivor functzon and 95% confidence lzmzts for S ( t ) .  

produce confidence bands that are such that there is a given probability, such 
as 0.95, that the survivor function is contained in the band for all values of t .  
These bands will tend to be wider than the band formed from the pointwise 
confidence limits. Details will not be included, but references to these methods 
are given in the final section of this chapter. Notice also that the width of these 
intervals is very much greater than the difference between the Kaplan-Meier 
and Nelson-Aalen estimates of the survivor function, shown in Tables 2.2 
and 2.3. Similar calculations lead to contidence limits based on lifetable and 
Nelson-Aalen estimates of the survivor function. 
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2.3 Estimating the hazard functioil . . 

A single sample of survival data may also be summarised through the hazard 
function, which shows the dependence of the instantaneous risk of death on 
time. There are a number of ways of estimating this function, two of which 
are described in this section. 

2.3.1 Life-table estzmate of the hazard finctzon . . 

Suppose that the observed survival times have been grouped into a series of 
m intervals, as in the construction of the life-table estimate of the survivor 
function. An appropriate estimate of the average hazard of death per unit 
time over each interval is the observed number of deaths in that interval, 
divided by the average time survived in that idterval. This latter quantity is 
the average number of persons at risk in the interval, multiplied by the length 
of the interval. Let the number of deaths in the j th time interval be d, , j = 
1,2, . . . , m, and suppose that n; is the average number of individuals at risk 
of death in that interval, where n; is given by equation (2.2). A s s d g  that 
the death rate is constant during the jth interval, the average~time survived 
in that interval is (n; - d,/2)7,, where 7, is the length of the jth t i e  interval. 
The lifetable estimate of the hazard function in the jth time in tend is then 
given by 

for ti < t < j = 1,,.2,. . . ,m,  so %at h*(t) is a step-function: - 
The asymptotic standard error .of this e s t aa t e  h,as been s h  by Gehan 

(1969) to be given by 
. . 

. . 

and confidence intervals for the corresponding true hazard over each of th? m 
time intervals can be obtained in the manner described in Section 2.2.3. 

Example 2.6 Survzval of multiple myeloma patien* 
The lifetable estimate of the survivor function for the data from Example 1.3 
on the survival times of 48 multiple myeloma patients was given in Table 2.1. 
Using the same time intervals as were used in Example 2.2, calculatiom leading 
to the lifetable estimate of the hazard function are given in Table 2.5. 

The estimated hazard function is plotted as a s t egbc t ion  in Figure 2.7. 
The general pattern is for the hazard to remain .roughly constant over the 
f is t  two years horn diagnosis, after which time it declines and then increases 
gradually. However, some caution is needed in interpreting tb,k estimate, as 
there are few deaths two years after diagnosis. . 


