CHAPTER 2.

Some non-parametric procedures

An initial step in the analysis of a set of survival data is to present numerical or
graphical summaries of the survival times for individuals in a particular group.
Such summaries may be of interest in théir own rlght Or as a precursor o a
more detailed analysis of the data. Survival data are conveniently summarised
through estimates of the survivor function and hazard function. Metths for
estimating these functions from a single sample of survival data are described
in Sections 2.1 and 2:3. These methods are said to be norn:parametrié or
distribution-free, since they do not require specific assumptions to be made
about the underlying distribution of the survival times. -

Once the estimated survivor function has been found, the medla.n and other
percentiles of the distribution of survival times can be estimated, as shown
in Section 2.4. Numerical summaries of the: data, derived on the basis of
assumptions about the probability distribution from which the data have been
obtained, will be considered later in Chapters 5 -and 6. '

When the survival times of two, groups of patients are being compared, an
informal comparison of the survival experience of each group of individuals
can be made using the estimated survivor functions. However, there are more
formal procedures that enable two groups of suivival data to be compared.
Two non-parametric procedures for ¢omparing two or more groups of sur-
vival times, namely the log-rank test and the Wzlco:ton test, are descnbed in
Section 2.6.

2.1 Estimating the survwor functlon

the observations are censored. The survivor functlon S(t), deﬁned in equa—
tion (1.1), is the probability that an-individual survives for a time greater
than or equal to ¢. This functlon can be estlmated by the empzncal survivor
function, given by . i
Number of individuals with surv1val thes > t
Number of individuals in the data set

Equivalently, $(t) = 1—F'(t), where £ (t) is the empirical dzstnbutzon ﬁmctwn
that is, the ratio of the total number of individuals alive at tinie ¢-to the total
number of individuals in the study. Notice'that the empirical survivor function
is equal to unity for values of ¢ before the first death time, and zero a.fter the
final death time.

The estimated survivor finction 4S(t) is assum_ed to be cops,ta.nt between

S(t) = (21)
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two adjacent death times, and so a plot of S(t) against ¢ is a step-function.
The function decreases immediately after each observed survival time.

Ezample 2.1 Pulmonary metastasis

One complication in the management of patients with a malignant bone tu-
mour, or osteosarcoma, is that the tumour often spreads to the lungs. This
pulmonary metastasis is life-threatening. In a study concerned with the treat-
ment of pulmonary metastasis arising from osteosarcoma, Burdette and Gehan
(1970) give the following survival times, in months, of eleven male patients.

11 13 13 13 13 13 14 14 15 15 17

Using equation (2.1), the estimated values of the survivor function at times
11, 13, 14, 15 and 17 months are 1.000, 0.909, 0.455, 0.273, and 0.091. The
estimated value of the survivor function is unity from the time origin until 11
rnonths, and zero after 17 months. A graph of the estimated survivor function
is given in Figure 2.1.
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Figure 2.1 FEstimated survivor function for the data from Ezample 2.1.

The method of estimating the survivor function illustrated in the above
example cannot be used when there are censored observations. The reason for
this is that the method does not allow information provided by an individual
whose survival time is censored before time ¢ to be used in computing the
estimated survivor function at t. Non-parametric methods for estimating S(t),
which can be used in the presence of censored survival times, are described in
the following sections.
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2.1.1 Life-table estimate of the survivor functzon

The life-table estimate of the survivor function, also known as’ the Actuamal
estimate of survivor function,. is obtained by first d1v1dmg the period of ob-
servation into a series of time intervals. These intervals need. not necessarily
be of equal length, a.lthough they usually are. The number of intervals used
will depend on the number of individuals in the study, but would usually be
somewhere between 5 and 15.

Suppose that the jth of m such mterva,ls §=1,2,...,m, extends from tnne
t; to t;y, and let d; and ¢; denote the number of deaths and the pumber
of censored survival times, respectively, in this time.interval. Also let 7 be
the number of individuals who-are alive, and therefore at risk of death, at
the start of the jth interval. We now make the assumption that the censoring
process is such that the censored survrval times ‘occur uniformly throughout
the jth interval, so that the avérage number of mlerduals who are at risk
during this interval is L IR
. —nJ—cJ/2 o o (2.2)
This assumption is sometlmes known as the actuarial assumptzon

In the jth interval, the probablhty of death can be estimated by d;/ nJ,
that the corresponding survival probability is (n d;)/n; . Now con51der the
probability that an individual survives beyond trrne oo k =1,2%...,m, that
is, until some time after the start of the kth interyal. This will be the product
of the probabilities that an individual survives beyond the start- of the kth
interval and through each of the’ 'k — 1 preceding mtervals, and so the hfe—table
estimate of the survivor function is given by :

Dk o —d;\ - . ) ’

*« . f ¥ 7. . .

5 (1) ‘E( — ) R (2.3)
for t, < t < ti ., k.= 1,2,...,m. The estimated probability. of surviving
until the start of the first interval, ¢}, is of course unity, while the estimated
probability of surviving beyond th.+1 Is zero. A graphical estimate of the
survivor function will then be’a step—functron with constant values of the
function in each time. mterval :

Ezample 2.2 Survival of multiple myeloma patients
To illustrate the computation of the life-table estirmate, consider the data on
the survival times of the 48 multiple myeloma patients given in ‘Table 1,3. In
this illustration, the information collected on other expla.na.tory variables for
each individual will be ignored.
The survival times are first grouped to give the number of patlents who die,
, and the number who are censored, ¢;, in each of the first five years of the
study, and in the subsequent three-year period; The number at risk of death
at the start of each of these intervals, nj, is then computed, together with the
adjusted number at risk, n Finally, the probability of survival through each
interval is estimated,-from Wthh the estimated survivor function is obtained
using equation (2.3). The calculatlons are shown in Table 2 1, in whrch the
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tilge Period is gi\{en m, months, and the interval that begins at time t;, and
ends just before time teys for k=1,2,... m, is denoted t—

Table 2.1 Life-table estimate of the survs }
oo 1.5 f wor function for the data from

Interval Time period d; ¢ n; n (n; —d;)/nf  S8*(t)

1 0- 16 4 48 460 0.6522 0.6522
2 12- 10 4 28 260 0.6154 0.4013
3 24~ 1 0 14 140 0.9286  0.3727
g 36— 3 1 13 125 0.7600 0.2832
g ;1(8): Z f 9 80 0.7500 0.2124

5 45 0.1111 0.0236

A - . . .
- fgiph of the life-table estimate of the survivor function is shown in Fig-
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Figure 2.2 Life-table estimate of the survivor function.

. The_ff)rm of the estimated survivor function obtained using this method
is sensitive Fo the choice of the intervals used in its construction just as the
shape of a histogram depends on the choice of the class intervals (’)n the oth
hand, the Iife-tabl_e estimate is particularly well suited to situad;ions in whifll;
the actual death times are unknown, and the only available information is the
nu{nber of deaths and the number of censored observations that occur in
series of consecutive time intervals. In practice, such interval-censored i T
data occur quite frequently. s

When the actual survival times are known, the life-table estimate can still be
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used, as in Example 2.2, but the grouping of the survival times does result in
some loss of information. This is particularly so when the number of patients
is small, less than about 30,say. - - - - = = S '

2.1.2 Kaplan-Meier éstimate of the survivor funétibn

The first step in the analysis of ungrouped censored survival data is normally
to obtain the Kaplan-Meier estimate of the survivor function. This estimate
is therefore considered in some detail, To obtain the Kaplan-Meier estimate, a
series of time intervals is constructed, as for-the life-table estimate. However,
each of these intervals is designéd. to'be such that one death time is contained
in the interval, and this death time is taken to occur at the start of the interval.

As an illustration, suppose that t(1); t(2) and ¢(3) are three observed survival
times arranged in rank order, so that {1y <1%(2) < i), qnd that c is a censored
survival time that falls between t(z) and t(3). The constructed intervals then
begin at times t(;), ¢(2) and t(s), and each interval includes the one death time,
although there could be more than one individual who dies at’ aby particular
death time. Notice that no interval begins at the censored time of ¢. The
situation is illustrated diagrammatically in Figure.2.3, in which D represents
a death and C a censored survival time. Notice that two individuals die at
t(1), one dies at t(3), and three die at t(3). ' S

D . D
| D D. . C : D
— - T ' ! Time.
to tay t) O :

Figure 2.3 Construction of intejvq_l,s"uséd in the derivation of the Kaplon-Meier
estimate. ' o ' .

The time origin is denoted by to, and so, there is an initial ‘period “com-
mencing at o, which ends just-befo,re't(l),._the time of the first death. This
means that the interval from to to t(;) will not include a death time. The
first constructed interval extends from (1) to just before t(z), and since the
second death time is at #(z), thisinterval includes the-single death time at %(,).
The second interval begins at time t(z) and ends just before t(sy;.and includes
the death time at £(s) and the censored timé c. There is also a third interval
beginning at t(s), which contains the longest survival time, #(3).

In general, suppose that there are n individuals with observed survival times
t1,ta,. .., tn. Some of these observations may be right-censored, and there may
also be more than one individual with the samé observed survival time. We
therefore suppose that there are r death times amongst-the individuals, where
r < n. After arranging these death times in ascending order, the jth is-denoted
tyy, forj=1,2,...,r, and so the r ordered death times are t(1) Ltgy <00 <
t(r)- The number of individuals who are alive just before time t(;), including
those who are about to die at this time, will be dencted n;, for j =1,2,:..,7,
and d; will denote the number who die at this time. The time interval from
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t(jy — 0 to (5, where § is an infinitesimal time interval, then includes one
death time. Since there are n; individuals who are alive just before t(; and d;
deaths at t(;), the probability that an individual dies during the interval from
t(j) — 9 to t(;y is estimated by d; /n;. The corresponding estimated probability
of survival through that interval is then (n; — d;)/n;.

It sometimes happens that there are censored survival times that occur at
the same fime as one or more deaths, so that a death time and a censored sur-
vival time appear to occur simultaneously. In this event, the censored survival
time is taken to occur immediately after the death time when computing the
values of the n;.

From the manner in which the time intervals are constructed, the interval
from £(;) t0 £;41) — 4, the time immediately before the next death time,
contains no deaths. The probability of surviving from t; to tg+1y — 0 is
therefore unity, and the joint probability of surviving from t(;y — & to t;) and
from t(;) to t(j41) — 0 can be estimated by (n; —d;)/n;. In the limit, as 4 tends
to zero, (m; — d;)/n; becomes an estimate of the probability of surviving the
interval from #(;) to #(;41). :

‘We now make the assumption that the deaths of the individuals in the sam-
ple occur independently of one another. Then, the estimated survivor func-
tion at any time, ¢, in the kth constructed time interval from tky tO t(gi1),
k=1,2,...,r, where t(,.,) is defined to be oo, will be the estimated prob-
ability of surviving beyond #(xy. This is actually the probability of surviving
through the interval from (k) t0 t(x41), and all preceding intervals, and leads
to the Kaplan-Meier estimate of the survivor function, which is given by

s0=1] (“ni) , e

j=1

for tey £t <tar), £=1,2,...,r, with S'(t) =1fort < t(1), and where tert1)
is taken to be co. Strictly speaking, if the largest observation is a censored
survival time, ¢*, say, S(t) is undefined for ¢ > ¢*. On the other hand, if the
largest observed survival time, t(ry, is an uncensored observation, n, = d,, and

so S (t) is zero for ¢t > t(r)- A plot of the Kaplan-Meier estimate of the survivor
function is a step-function, in which the estimated survival probabilities are
constant between adjacent death times and decrease at each death time.

Equation (2.4) shows that, as for the life-table estimate of the survivor
function in equation (2.3), the Kaplan-Meier estimate is formed as a product
of a series of estimated probabilities. In fact, the Kaplan-Meier estimate is
the limiting value of the life-table estimate in equation (2.3) as the number
of intervals tends to infinity and their width tends to zero. For this reason,
the Kaplan-Meier estimate is also known as the product-limit estimate of the
survivor function.

Note that if there are no censored survival times in the data set, n; — d; =
741, J =1,2,..., k, in equation (2.4), and on expanding the product we get

S’(t):@x@x...x@_ (2.5)
n1 ng Ng
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This reduces to ng1/ny, for k=1,2,...;7—1, with Sty=1 fqr t < t{yy and
S(t) = 0 for t > t(). Now, n; is the number of individuals at risk just before

the first death time, which is the number'of individuals in the sample, .an..d Tet1
is the number of individuals with survival times greater .thag orequal t0 L(xy1)-
Consequently, in the absence of censoring, S(t) is simply. the empirical survivor
function defined in equation (2.1). The Kaplan-Meier estimate is- therefore a

generalisation of the empirical survivor function that accommodates censored
observations. oo . .

Ezample 2.3 Time to discontinuation of the use of.a_n I ub ,

Data from 18 women on the time to discontinuation of' the us_e.:o_f an IUD
were given in Table 1.1. For these data, thie survivor fanction, S (), represents
the probability that a woman discontinues the'us_e'of the contrap(?]f).i_blffe dew'ce
after any time ¢. The Kaplan-Meier estimate of the Sll.rV'iVO{‘ function is r,ead.l'ly
obtained using equation (2.4), and the required calculations are set out in
Table 2.2. The estimated survivor function, S(t), is plotted.in Figure 24

Table 2.2 Kaplan-Mq.'_ier"esﬁmat’e of - the survivor .

function for the data from" Ezample 1.1 .

Time interval ng o dy (nj —.d;)/n; 5(t)

0- 18 0 1.0000 . 1.0000

10~ 18 1 0.9444 . 0.9444
19~ 15 1 0.9333.  0.8815

30- 13 1L 09231 - 0.8137 ..
36— 12,1 09167  0.7459 .
59— 8 1 0.8750 0.6526

75— 7 1 0.8571°  0:5594. .
93« - 6 1 08333  0.4662 .
97- 5 1 0.8000  0.3729 -
107 3 1 06667 . 0.2486

Note that since the largest diséontinuatio;l time of j107 days is c'en_s'_or'ed? S (t)
is not defined beyond t = 107.: . .

2.1.8 Nelson-Aalen estimate of the surviyor function

An alternative estimate of the sﬁrvi_vqr function, which is based on the indi-
vidual event times, is the Nelson-Aalen estimate, given by

. T k A N . . . l - -
Sty = [[exo(~ds/ng). . S (2.6)
i=1" T o
This estimate can be obtained from an estimate: of the cumulative hazard
function, as shown in Section 2.3.3. Moreover, the Kaplan-Meier estimate of
the survivor function can be regarded as an’ appro?dmation_to the N.elsgn-
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Figure 2.4 Kaplan-Meier esti j ;
i er estimate of the survivor function for the data from Ex-

Aalen estimate. To show this, we use the result that

2 g3

2

thl(cE ;s appromately equal to 1 — = when z is small. It then follows that
wxh;;Ch ié/qﬂ)bfw 1=(d;/n;) = (n;—d;)/n;, so long as d; is small relative to n,
o es:fn te egc(c;a)pt at the latest survival times. Consequently, the Kaplazi,
estimate, , in equation (2.4), approxi , .
mmate, 50, in st (2.4), approximates the Nelson-Aalen esti-
Shgl‘he’ Nelspn—Aalen_ estimate of the survivor function, also known as Al
any egri :‘e ﬁs:.zmate,. will always be greater than the Kaplan-Meier estimate at-
iven time, since e~ > 1 — z, for all values of z. Al
Aalen estimate has been sh , b o g Nelson-
. ] own to perform better than the K i
estimate in small samples, in many ci 5wl e
st : y circumstances, the estimates will
similar, particularly at the, earlie i i ’ - oo very
I, T survival times. Since the Kapl i i
mate is a generalisation of the empiri i i o tter o oot
ha miach o rarisation o pirical survivor function, the latter estimate

ef=1-z+ N

TE;:lampfe 2.4 Time to discontinuation of the use of an IUD
Sm(‘e, i‘:,i :u;slrsl(l:lg:;v;] ;:;’I;a}»lbledi& whicllll gives the Kaplan-Meier estimate of the
e aata on the time to discontinuati
an IUD, can be used to calculat imate, T o e e of
o 1 e use ate the Nelson-Aalen estimate. This estimate is
Fr. .

o thc;nsl utIhvlls table we see ’?hat the Kaplan-Meier and Nelson-Aalen estimates

vor function differ by less than 0.04. However, when we consider
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Table 2.3 Nelson-Aalen estimate of the
survivor function for the data from Ezam-.

ple 1.1. )
Time interval exp(~d;/n;) . S()
0- .1.6000 ~ 1.0000
10- ~ ° 0.9460 £ 0.9460
19~ . 09355  0.8850
30— .'0.9260 - - 0,8194
36 '0.9200 - 0.7539. .
59— 0.8825 " 0.6653
75— 0.8669 . 0.5768
93- . . 0.8465 -0.4882
97— 0.8187 . . 0.3997 .

107 9.7165 . -0.2864

the precision of these estimates, which we d.q in Section 2.2, we see that a
difference of 0.04 is of no practical importance. .- : B

2.2 Standard error of the estimated survivgf function '

An essential aid to the interpretation- of an estimate of .any- quantity is the
precision of the estimate, which is reflected in the standard érror of the esti-
mate. This is defined to be the square root of the est;inia_te_d variance of the
estimate, and is used in the construction of an interval estimate for. a quan-
tity of interest. In this section, the standard error of estimates of the survivor

function are given. . c '
Because the Kaplan-Meier estimate is the most important and widely used

estimate of the survivor function, the-derivation of the standaxd -error of 5(t)
will be presented in detail in-this section. The details of this derivation can

be omitted on a first reading. ’

2.2.1* Standard error of the Kaplan—Meier estimate
The Kaplan-Meier estimate of the survivor function for any value of ¢ :m‘t,h.e
interval from %z to t(x+1) can be written as ' :

P
=1 L
fork=1,2,...,r, where p; = (n_j—cij)/n_.,- is the estimated probability that an
individual survives through the time interval that begins at t(;),J = 1,2,...,7.
Taking logarithms, - ' . ' T
. . k .
log S(t) =) logBj,.

j=1
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within it. The intervals constructed in this manner are sometimes referred to
as. pointwise confidence intervals, since they apply to a specific survival time.

A confidence interval for the true value of the survivor function at a given
time ¢ is obtained by assuming that the estimated value of the survivor func-
tion at ¢ is normally distributed with mean S(t) and estimated variance
given by equation (2.12). The interval is computed from percentage points
of the standard normal distribution. Thus, if Z is a random variable that
has a standard normal distribution, the upper (one-sided) a/2-point, or the
two-sided o~point, of this distribution is that value z, /2 which is such that
P(Z > z4/5) = a/2. This probability is the area under the standard normal
curve to the right of z,/, as illustrated in Figure 2.5. For example, the two-

sided 5% and 1% points of the standard normal distribution, zg g5 and 2y ggs,
are 1.96 and 2.58, respectively.
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Figure 2.5 Upper and lower a/2-points of the standard normal distribution.

A 100(1 - )% confidence interval for S(t), for a given value of t, is the
interval from S(t) — 2,2 se {S(¢)} to S(¢) + 242 se {S(t)}, where se {S@®)}is
found from equation (2.13). These intervals for S (t) can be superimposed on
a graph of the estimated survivor function, as shown in Example 2.5.

One difficulty with this procedure arises from the fact that the confidence
intervals are symmetric. When the estimated survivor function is close to
Zero or unity, symmetric intervals are inappropriate, since they can lead to
confidence limits for the survivor function that lie outside the interval 0,1).
A pragmatic solution to this problem is to replace any limit that is greater
than unity by 1.0, and any limit that is less than zero by 0.0.

An alternative procedure is to transform 5(t) to a value in the range
(—00,00), and obtain a confidence interval for the transformed value. The
resulting confidence limits are then back-transformed to give a confidence
interval for S(t) itself. Possible transformations are the logistic transforma-
tion, log[S(t)/{1 — S(t)}], and the complementary log-log transformation,
log{—1log S(t)}. Note that from equation (1.7), the latter quantity is the
logarithm of the cumulative hazard function. In either case, the standard
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error of the transforméd value of S(t) .g:a,n be found using the approximation
in equation (2.9). T E SO ‘

1 Fgr exa.mp(le, the variance of log{—log 5(¢)} is obtained frO.I,I.l. the expression
for var {log S(t)} in equation (2.11). Using the general result in equaplon.(2.9),

var {log(—X)} = 2 var (X)_,_ |
and setting X = log 5(t) gives '
k

.y 4
var [log{—-‘log S(t)}] ~ g3 > n;(n; - ;)"

j=1

The standard error of log{—log S (t)} is the square root ,0f this ql;agﬁtyﬁ This
leads to 100(1 — &)% limits of the form

g ()l 2 sel1ogl~log SO

where 242 is the upper o /2-point of the standard nor.ma.l'djstr_ik_)_u.tion_. -

A further problem is that in the tails of the dis.tnb.u_t_lon o;fAth,e surviva
times, that is, when S(t) is close to zero or unity, the variance o_? S (t) obtained
using’Greenwood’s formula can underestimate ’che. actual variance. In the_se
circumstances, an alternative expression for the standard error of 5(¢) m;y
be used. Peto et al. (1977) propose that the standard error qf S (t) should be
obtained from the equz_xtion ; - S

sy Sy = S}
t = __’.A—,

for t(ry <t < f(k+1) k= 1,2,...;r, where 5(t) is the Ka.plamMei'e,r estimate
of S(t) and ny is the number of individuals at risk'at t(x); the stast of the kth
constructed time interval. o L — |

This expression for the standard error of § (t).ls conservative, in the sense
that the standard errors obtained will tend to be larger than they ought to
be. For this reason, the Greenwood estimate is rt.écqm'xnendec:l for general.use.

.5 Time to discontz‘n_uationiof the use of an IUD _
’?ﬁiﬁﬁiﬁaﬁd error of the estimated survivor qu}ctio‘n, and 95% .c.onﬁ.denc.e
limits for the corresponding true value of the ﬁmctlog, f??, the ,.datfi. fr.ox.n
Example 1.1 on the times to discontinuation of use o_f an TUD, are given in
Table 2.4. In this table, confidence limits outside the_range. (q!.l) h?ve been

zero or unity. S o
fel;{raoﬁf tgs :able we sez that in general the s.tand.a.r(.i err,o;-g,f the e,'smmate.d
survivor function increases with the discontinyation time. The reason for tl'ns
is that estimates of the survivor function at later times are baged gn fewer in-
dividuals. A graph of the estimated sur_vi\;:)r f}mq;ign, with the 95% confidence

imi as dashed lines, is given'in Figure 2.6.
hnﬁtsi:]?;wprcl)rtant to observe that.the conﬁdenc.e'_ limits plotted on (s;:ihta
graph are only valid for any given time. Different methods are. needed to
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Iable 2.4 Sta”da’d error o t a l:Onﬁd T 1()7
.
fS( ) 7ld ence zntem;als S(t)

Time i 3 S
e interval  S(t) se{S(t)} 95% confidence interval
(O 1.0000 0.0000
i;’: 83;144 0.0540 (0.839, 1.000)
e 0.8_1;? ggggg (0.727, 1.000)
- ) ) (0.622, 1.000
gg— (())gggg 8.;107 (0.529, 0.963;
.652) .1303 (0.397
75~ 0.5594 0.14 prien
. 1412 (0.283, 0
93—~ 0.4662 0.14 192, 0.700)
- , 1452 (0.182, 0.751
97 0.3729 0.1430 (0.093’ 0 653)
107 0.2486 0.1392 o)

(0.000, 0.522)
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Figure 2.6 7 ;
Estimated survivor function and 95% confidence limits for S(t)

produce confidence bands th
at are such that there j i
oy : are ere is a given probabili
Thos aﬁ:: :fitlels;rxiv;)r lf)unct:l(;m 18 contained in the band f(l))r (z:.lla\l:al.llltz’s ?)I;C:l
© band: 0 be wider than the band ‘
coniands » ' : : and formed from th i i
e g ltlﬁét;n]ajletaﬂs' will not. be included, but references to thezeplgl;fgvlse
i muc;ecgrtlontof ?}1118 chapter. Notice also that the width of th(;s:
eater than the difference b i
and Nelson-Aalen estimates of the survivor functi?)ilwe:;los‘];z gal’}!:gl- Mezle; '
, es 2.

and 2.3. Similar calculatio
. ) ns lead to confi imj i
Nelson-Aalen estimates of the survivor fug;l;li(c)flhmlts pesed on lfe-table and
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2.3 Estimating the hazard function

A single sample of survival data may also be summ_a.rised. through the bazard
function, which shows the dependence of the inst'ii:nta.ileous risk of death on
time. There are a number of ways of estimating -this furiction, two.of which

are described in this section.

2.8.1 Life-table estimate of the hazard-f'tm‘ction

Suppose that the observed survival times have been grouped. into a series of
m intervals, as in the construction of the life-table estimate. of the survivor
function. An appropriate estimate of the average hazard. of death per unit
time over each interval is the observed number of. deaths in that interval,
divided by the average time survived in that interval. This latteér quantity is
the average number of persons at risk in the interval, multiplied by the length
of the interval. Let the number.of deaths in the jth tirne interval be dj, j =
1,2,...,m, and suppose that n is the average number of individuals at risk
of death in that interval, where n} is given by equation (2.2). Assuming that
the death rate is constant during the ;jth interval, the average ‘time survived
in that interval is (n; —d;/2)7;, where 7; is the length of the jth time interval.
The life-table estimate of the hazard function in the jth time interval is then

given by
d - -
(ny—d;/2)75" -
for t; <t< t; s i=L2..,m, so t_ﬁat R*(t) is a sfep—functiqh_,’. .
The asymptotic standard error .of this estimate has been shown by Gehan
(1969) to be given by - ' ‘ o CL

R (t) =

so (0} = «([d}b('t)(ﬂ/:zli k

and confidence intervals for the corresponding true hazard over each of tht;_: m
time intervals can be obtained in the manner described in Section 2.2.3.

Example 2.6 Survival of multiple. myeloma patients .
The life-table estimate of the survivor function for the data from. Example 1.3
on the survival times of 48 multiple myeloma patients was given in Table 2.1.
Using the same time intervals as were used in Example 2.2, calculations leading
to the life-table estimate of the hazard function are giver in Table 2.5. '
The estimated hazard function is plotted as a step-futiction in Figure 2.7.
The general pattern is for the hazard to remain roughly constant over the
first two years from diagnosis, after ‘which time it declines and then increases
gradually. However, some caution is needed in interpreting this estimate, as
there are few deaths two years after diagnosis. . .



