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Table 2.4 Standard error of S(t) and confidence intervals for 8(t)
for the data from Ezample 1.1.

Time interval ~ S(t) se {S(t)} 95% confidence interval
0- 1.0000 0.0000
10— 0.9444 0.0540 (0.839, 1.000)
19— 0.8815 0.0790 (0.727, 1.000)
30~ 0.8137 0.0978 (0.622, 1.000)
36— 0.7459 0.1107 (0.529, 0.963)
59— 0.6526 0.1303 (0.397, 0.908)
75— 0.5594 0.1412 (0.283, 0.836)
93- 0.4662  0.1452 (0.182, 0.751)
97— 0.3729 0.1430 (0.093, 0.653)
107 0.2486 0.1392 (0.000, 0.522)

Estimated survivor function

(=]

20 40 60 B8O 100 120

Discontinuation time

Figure 2.6 FEstimated survivor function and 95% confidence limits for S(t).

produce confidence bands that are such that there is a given probability, such
as 0.95, that the survivor function is contained in the band for all values of (.
These bands will tend to be wider than the band formed from the pointwise
confidence limits. Details will not be included, but references to these methods
are given in the final section of this chapter. Notice also that the width of thege
intervals is very much greater than the difference between the Kaplan-Meier
and Nelson-Aalen estimates of the survivor function, shown in Tables 2.2
and 2.3. Similar calenlations lead to confidence limits based on life-table nnd
Nelson-Aalen estimates of the survivor function
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2.3 Estimating the hazard function

A single sample of survival data may also be summarised through the hazard
function, which shows the dependence of the instantaneous risk of death on
time. There are a number of ways of estimating this function, two of which
are described in this section.

2.3.1 Life-table estimate of the hazard function

Suppose that the observed survival times have been grouped into a series of
m intervals, as in the construction of the life-table estimate of the survivor
function. An appropriate estimate of the average hazard of death per unit
time over each interval is the observed number of deaths in that interval,
divided by the average time survived in that interval. This latter quantity is
the average number of persons at risk in the interval, multiplied by the length
of the interval. Let the number of deaths in the jth time interval be d;, j =
1,2,...,m, and suppose that n’ is the average number of individuals at risk
of death in that interval, where 7 is given by equation (2.2). Assuming that
the death rate is constant during the jth interval, the average time survived
in that interval is (n; —d; /2)7;, where 7; is the length of the jth time interval.
The life-table estimate of the hazard function in the jth time interval is then

piven by

st il

(n —d;/2)7;’

for £ <t <t;.,,j=12,...,m, so that h*(t) is a step-function.

The asymptotic standard error of this estimate has been shown by Gehan
(1969) to be given by

h*(t) =

w0} = OV O

nnd confidence intervals for the corresponding true hazard over each of the m
fime intervals can be obtained in the manner described in Section 2.2.3.

Puample 2.6 Survival of multiple myeloma patients

The life-table estimate of the survivor function for the data from Example 1.3
o Ghe survival times of 48 multiple myeloma patients was given in Table 2.1.
Unbng the same time intervals as were used in Example 2.2, calculations leading

for Lhe life-table estimate of the hazard function are given in Table 2.5.

The eptimuted hazard function is plotted as a step-function in Figure 2.7.
e general pattern is for the hazard to remain roughly constant over the
fept bwor yones from dingnosis, after which time it declines and then increases
wendundly, However, sorme caution ig needed in interpreting this estimate, as
thiore nee Tow deaths two yoores after dingnosis
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Table 2.5 Life-table esitimate of the haz-
ard function for the data from Ezample
1,8,

Time period 7; dj 7] h™(t)

0- 12 16 46.0 0.0351
12— 12 10 26.0 0.0397
24— 12 1 14.0 0.0062
36— 12 3 125  0.0227
48— 12 2 8.0 0.0238
60— 36 4 4.5 0.0444
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Figure 2.7 Life-table estimate of the hazard function for the data from Ezample
Jes

2.3.2 Kaplan-Meier type estimate

A natural way of estimating the hazard function for unground survival data
is to take the ratio of the number of deaths at a given death time to the
number of individuals at risk at that time. If the hazard function is assumed
to be constant between successive death times, the hazard per unit time can
be found by further dividing by the time interval. Thus if there are d; deaths
at the jth death time, {(;, j = 1,2,...,r, and n; at risk at time #(;, the
hazard function in the interval from ;) to f(; 1) can be estimated by

fj{f} tf; .

nyTy

(2.16)

[y
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for t(;y <t < t(j+1), where 7; = t(;41) — t(;). Notice that it is not possible to
use equation (2.16) to estimate the hazard in the interval that begins at the
final death time, since this interval is open-ended.

The estimate in equation (2.16) is referred to as a Kaplan-Meier type esti-
mate, because the estimated survivor function derived from it is the Kaplan-
Meier estimate. To show this, note that since fa(ﬁ), tg) St < tgigay, is an
estimate of the risk of death per unit time in the jth interval, the probabil-
ity of death in that interval is h(t)7;, that is, d;/n;. Hence an estimate of
the corresponding survival probability in that interval is 1 — (d;/n;), and the
estimated survivor function is as given by equation (2.4).

The approximate standard error of f:(t) can be found from the variance of d;,
which, following Section 2.2.1, may be assumed to have a binomial distribution
with parameters n; and p;, where p; is the probability of death in the interval
of length 7. Consequently, var (d;) = n;p;(1 —p;), and estimating p; by d;/n;
pives

h(e)} = bty (=%
se (0} = (0 (%)
However, when d; is small, confidence intervals constructed using this stan-
ilard error will be too wide to be of practical use.

Leample 2.7 Time to discontinuation of the use of an IUD

(lonsider again the data on the time to discontinuation of the use of an TUD
lor 18 women, given in Example 1.1. The Kaplan-Meier estimate of the sur-
vivor function for these data was given in Table 2.2, and Table 2.6 gives the
vorresponding Kaplan-Meier type estimate of the hazard function, computed
fiom equation (2.16). The approximate standard errors of f?,(t) are also given.

Table 2.6 Kaplan-Meier type estimate of the hazard
funetion for the data from Example 1.1.

Time interval 7, i d;  h(t) se {h(t)}
0- 10 18 0 0.0000 =

10— 9 18 1 0.0062 0.0060

19- 11 15 1 0.0061 0.0059

30— 6 13 1 0.0128  0.0123

36— 23 12 1 0.0036  0.0035

59- 16 8 1 0.0078  0.0073

75~ 18 7 1 0.0079 0.0073

93 4 6 1 0.0417  0.0380

97 10 5 1 0.0200 0.0179
Pigore 28 dhows a plot ol the estirnated hazard function. From this figure,
e e somne ovidence Chad tha Jangeer Che TUD 1 ased, the preater is the risk of
llzscontinnation, bt Che picture an nol veny clear. The approximate standard
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Figure 2.8 Kaplan-Meier type estimate of the hazard function for the data from
Ezample 1.1.

errors of the estimated hazard function at different times are of little help in
interpreting this plot.

In practice, estimates of the hazard function obtained in this way will often
tend to be rather irregular. For this reason, plots of the hazard function may be
“smoothed”, so that any pattern can be seen more clearly. There are a number
of ways of smoothing the hazard function, that lead to a weighted average of
values of the estimated hazard h(t) at death times in the neighbourhood of
t. For example, a kernel smoothed estimate of the hazard function, based on
the r ordered death times, £(1),%(3),. .., t{), With d; deaths and n; at risk at
time £(;), can be found from

£ t—tiy\*\ 45
tg) — p=1 — j By
ri(t) = b z l:0.7'5{1 ( - )}nj.

J:

where the value of b needs to be chosen. The function h'(t) is defined for
all values of ¢ in the interval from b to ) — b, where # is the greatest
death time. For any value of ¢ in this interval, the death times in the interval
(t—b,t-+b) will contribute to the weighted average. The parameter b is known
as the bandwidth and its value controls the shape of the plot; the larger the
value of b, the greater the degree of smoothing. There are formulae that lead to
“optimal” values of b, but these tend to be rather cumbersome. Fuller details
can be found in the references provided in the final section of this chapter.
In this book, the use of a modelling approach to the analysis of survival data
is advocated, and so model-based estimates of the hazard function will be
considered in subsequent chapters.
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2.3.8 Estimating the cumulative hazard function

The cumulative hazard function is important in the identification of models
for survival data, as will be seen later in Sections 4.4 and 5.2. In addition,
since the derivative of the cumulative hazard function is the hazard function
itself, the slope of the cumulative hazard function provides information about
the shape of the underlying hazard function. In particular, a linear cumulative
hazard function over some time interval suggests that the hazard is constant
over this interval. Accordingly, methods that can be used to estimate this
function will now be described.

The cumulative hazard at time ¢, H(f), was defined in equation (1.6) to
be the integral of the hazard function, but is more conveniently found using
equation (1.7). According to this result, H(t) = —log S(t), and so if S(t) is
the Kaplan-Meier estimate of the survivor function, H(t) = —log S(t) is an
appropriate estimate of the cumulative hazard to time ¢.

Now, using equation (2.4),

3 : i il
) =~ log (#)
i=1 i)

for ¢ty <t < tk41), £ = 1,2,...,7, and t(3),4(2),...,t) are the r ordered
death times, with £, 1) = oo.

If the Nelson-Aalen estimate of the survivor function is used, the estimated
cumulative hazard function, H(t) = —log S(t), is given by

kg
Hity=N -2,
(t) ,Z:; s
T'his is the cumulative sum of the estimated probabilities of death from the
lirst to the kth time interval, & = 1,2,...,r. This quantity therefore has
immediate intuitive appeal as an estimate of the cumulative hazard.

An estimate of the cumulative hazard function also leads to an estimate
ol the corresponding hazard function, since the differences between adjacent
vilues of the estimated cumulative hazard function provide estimates of the
underlying hazard, after dividing by the time interval. In particular, differ-
onees in adjacent values of the Nelson-Aalen estimate of the camulative hazard
lonel directly to the hazard function estimate in Section 2.3.2.

2.4 Estimating the median and percentiles of survival times

Sinee Lhe distribution of survival times tends to be positively skew, the median
I the proferred summary measure of the location of the distribution. Once
the nurvivor funetion has been estimated, it is straightforward to obtain an
sntinte ol the median swrowal tome. This is the time beyond which 50% of
Ehe bnedividunds in the population under study are expected to survive, and is
wiven by Chint vadue (050) which dnosoeh that S{50)) — 0.5,

Hoonuue the nonepresinetie sablinton of S0 ave stop-functions, it will





