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Figure 2.8 Kaplan-Meier type estimate of the hazard function for the data from
Ezample 1.1.

errors of the estimated hazard function at different times are of little help in
interpreting this plot.

In practice, estimates of the hazard function obtained in this way will often
tend to be rather irregular. For this reason, plots of the hazard function may be
“smoothed”, so that any pattern can be seen more clearly. There are a number
of ways of smoothing the hazard function, that lead to a weighted average of
values of the estimated hazard h(t) at death times in the neighbourhood of
t. For example, a kernel smoothed estimate of the hazard function, based on
the r ordered death times, £(1),%(3),. .., t{), With d; deaths and n; at risk at
time £(;), can be found from

£ t—tiy\*\ 45
tg) — p=1 =Y L
ri(t) = b z l:0.7'5{1 ( - )}nj.
Jj=

where the value of b needs to be chosen. The function h'(t) is defined for
all values of ¢ in the interval from b to ) — b, where # is the greatest
death time. For any value of ¢ in this interval, the death times in the interval
(t—b,t-+b) will contribute to the weighted average. The parameter b is known
as the bandwidth and its value controls the shape of the plot; the larger the
value of b, the greater the degree of smoothing. There are formulae that lead to
“optimal” values of b, but these tend to be rather cumbersome. Fuller details
can be found in the references provided in the final section of this chapter.
In this book, the use of a modelling approach to the analysis of survival data
is advocated, and so model-based estimates of the hazard function will be
considered in subsequent chapters.
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2.3.8 Estimating the cumulative hazard function

The cumulative hazard function is important in the identification of models
for survival data, as will be seen later in Sections 4.4 and 5.2. In addition,
since the derivative of the cumulative hazard function is the hazard function
itself, the slope of the cumulative hazard function provides information about
the shape of the underlying hazard function. In particular, a linear cumulative
hazard function over some time interval suggests that the hazard is constant
over this interval. Accordingly, methods that can be used to estimate this
function will now be described.

The cumulative hazard at time ¢, H(f), was defined in equation (1.6) to
be the integral of the hazard function, but is more conveniently found using
equation (1.7). According to this result, H(t) = —log S(t), and so if S(t) is
the Kaplan-Meier estimate of the survivor function, H(t) = —log S(t) is an
appropriate estimate of the cumulative hazard to time ¢.

Now, using equation (2.4),

.\ : i =i
== log (_,_J)
j=1 £

for ¢ty <t < tk41), £ = 1,2,...,7, and t(3),4(2),...,t) are the r ordered
death times, with £, 1) = oo.

If the Nelson-Aalen estimate of the survivor function is used, the estimated
cumulative hazard function, H(t) = —log S(t), is given by

kg
Hity=N -2,
(t) ,Z:; s
T'his is the cumulative sum of the estimated probabilities of death from the
lirst to the kth time interval, & = 1,2,...,r. This quantity therefore has
immediate intuitive appeal as an estimate of the cumulative hazard.

An estimate of the cumulative hazard function also leads to an estimate
ol the corresponding hazard function, since the differences between adjacent
vilues of the estimated cumulative hazard function provide estimates of the
underlying hazard, after dividing by the time interval. In particular, differ-
onees in adjacent values of the Nelson-Aalen estimate of the camulative hazard
lonel directly to the hazard function estimate in Section 2.3.2.

2.4 Estimating the median and percentiles of survival times

Sinee Lhe distribution of survival times tends to be positively skew, the median
I the proferred summary measure of the location of the distribution. Once
the nurvivor funetion has been estimated, it is straightforward to obtain an
sntinte ol the median swrowal tome. This is the time beyond which 50% of
Ehe bnedividunds in the population under study are expected to survive, and is
wiven by Chint vadue (050) which dnosoeh that S{50)) — 0.5,
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not usually be possible to realise an estimated survival time that makes the
survivor function exactly equal to 0.5. Instead, the estimated median survival
time, #(50), is defined to be the smallest observed survival time for which the
value of the estimated survivor function is less than 0.5.

In mathematical terms,

£(50) = min{t; | S(t:;) < 0.5},

where t; is the observed survival time for the ith individual, i =1,2,... ,n.
Since the estimated survivor function only changes at a death time, this is
equivalent to the definition

(50) = min{t;) | S(t(;)) < 0.5},

where t(;) is the jth ordered death time, j = 1,2,...,7.

In the particular case where the estimated survivor function is exactly equal
to 0.5 for values of ¢ in the interval from t(;) to t(;}1), the median is taken to
be the half-way point in this interval, that is (¢(;) + t(;+1))/2.

In the situation where there are no censored survival times, the estimated
median survival time will be the smallest time beyond which 50% of the
individuals in the sample survive.

Ezample 2.8 Time to discontinuation of the use of an IUD

The Kaplan-Meier estimate of the survivor function for the data from Ex-
ample 1.1 on the time to discontinuation of the use of an TUD was given in
Table 2.2. The estimated survivor function, S(t), for these data was shown in
Figure 2.4. From the estimated survivor function, the smallest discontinuation
time beyond which the estimated probability of discontinuation is less than
0.5 is 93 weeks. This is therefore the estimated median time to discontinuation
of the IUD for this group of women.

A similar procedure to that described above can be used to estimate other
percentiles of the distribution of survival times. The pth percentile of the
distribution of survival times is defined to be the value ¢(p) which is such
that F{t(p)} = p/100. In terms of the survivor function, {(p) is such that
S{t(p)} = 1 — (p/100), so that for example the 10th and 90th percentiles are
given by

S{t(10)} = 0.9, S{t(90)} =0.1,

respectively. Using the estimated survivor function, the estimated pth per-
centile is the smallest observed survival time, #(p), for which S{f(p)} < 1 -
(p/100).

It sometimes happens that the estimated survivor function is greater than
0.5 for all values of t. In such cases, the median survival time cannot be
estimated. It would then be natural to summarise the data in terms of other
percentiles of the distribution of survival times, or the estimated survival
probabilities at particular time points.

Estimates of the dispersion of a sample of survival data are not widely used,
but shonld such an estimate be required, the semi-interquartile range (S1QI)
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can be calculated. This is defined to be half the difference between the 7hth
and 25th percentiles of the distribution of survival times. Hence,

SIQR = % {t(75) — (25)},

where #(25) and #(75) are the 25th and 75th percentiles of the survival time
distribution. These two percentiles are also known as the first and third quar-
tiles, respectively. The corresponding sample-based estimate of the SIQR is
{t(75) — £(25)}/2. Like the variance, the larger the value of the SIQR, the
more dispersed is the survival time distribution.

Ezxample 2.9 Time to discontinuation of the use of an IUD

From the Kaplan-Meier estimate of the survivor function for the data from
Example 1.1, given in Table 2.2, the 25th and 75th percentiles of the distribu-
tion of discontinuation times are 36 and 107 weeks, respectively. Hence, the
SIQR of the distribution is estimated to be 35.5 weeks.

2.5* Confidence intervals for the median and percentiles

Approximate confidence intervals for the median and other percentiles of a
distribution of survival times can be found once the variance of the estimated
percentile has been obtained. An expression for the approximate variance of
i percentile can be derived from a direct application of the general result for
the variance of a function of a random variable in equation (2.9). Using this
result,

A 2
5 _ [ 45{t(p)}
var [S{t(p)}] = ( at () ) var {t(p)}, (2.17)
where t(p) is the pth percentile of the distribution and S{t(p)} is the Kaplan-

Meier estimate of the survivor function at ¢(p). Now,

dS{t(p)}  ;
= o) = fH{tp)}

nn estimate of the probability density function of the survival times at t(p),
nndd on rearranging equation (2.17), we get

var {t(p)} = ( ) var [S{t(p)}]-

ET.TF,
Ft(n)}

The standard error of #(p), the estimated pth percentile, is therefore given by

: 1 Wy
se{f(p)} = ———se[S{t(p)}]. (2.18)
f{t(p)}
Uhe stoandard crvor of S{Hp) ) w found using Greenwood’s formula for the
phandhned ervor of the loanplnn Meter entimuate of the survivor function, given in
ot lon (210 whible wn ombbnbe of e 'mllmluli!.\- denwity Tunetion ad !.{'p]
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S{a(p)} — S{i(n)}
iy = Z S,
where
4(p) = max {t(j) | S'(t(j)) >1-— % + e} ,
and

I(p) = min {t(j) | S(t(j)) <1-—- —1% = 6} ;
for j = 1,2,...,r, and small values of e. In many cases, taking e = 0.05 will
be satlsfact.orv. but a larger value of € will be needed if 7(p) and I(p) turn
out to be equal. In particular, from equation (2.18), the standard error of the
median survival time is given by

se S{t ! 2.19)
(160)) = s el (G0 (219)

where f{#(50)} can be found from
Fii(s0)) = SLE00} = SUGO} (2.20)

I(50) — @(50)

In this expression, 4(50) is the largest survival time for which the Kaplan-
Meier estimate of the survivor function exceeds 0.55, and (50) is the smallest
survival time for which the survivor function is less than or equal to 0.45.

Once the standard error of the estimated pth percentile has been found, a
100(1 — @)% confidence interval for ¢(p) has limits of

i(p) £ za/2se{E(p)},

where z,/ is the upper (one-sided) «/2-point of the standard normal distri-
bution.

This interval estimate is only approximate, in the sense that the probability
that the interval includes the true percentile will not be exactly 1 — a. A
number of methods have been proposed for constructing confidence intervals
for the median with superior properties, although these alternatives are more
difficult to compute than the interval estimate derived in this section.

Ezample 2.10 Time to discontinuation of the use of an IUD
The data on the discontinuation times for users of an IUD, given in Exam-
ple 1.1, is now used to illustrate the calculation of a confidence interval for
the median discontinuation time. From Example 2.8, the estimated median
discontinuation time for this group of women is given by £(50) = 93 weeks.
Also, from Table 2.4, the standard error of the Kaplan-Meier estimate of the
survivor function at this time is given by se [S{#(50)}] = 0.1452.

To obtain the standard error of £(50) using equation (2.19), we need an
estimate of the density function at the estimated median discontinuation Lime
This is obtained from equation (2.20), The quantities @(50) and HH0) needod
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in this equation are such that

4(50) = max{t(;) | S(t(J)) 0.55},
and . 2

1(50) = min{t(j) | S(t(j)) < 0.45},
where ;) is the jth ordered discontinuation time, j = 1,2,...,9. Using Ta-
ble 2.4, 4(50) = 75 and I(50) = 97, and so

s 4 S(75) — S(97)  0.5594 — 0.3729
P (93-75( )22 22

Then, the standard error of the median is given by

= 0.0085.

% 0.1452 = 17.13.

se {8(50)} = 575085

A 95% confidence interval for the median discontinuation time has limits of
93 +1.96 x 17.13,

and so the required interval estimate for the median ranges from 59 to 127
days.

2.6 Comparison of two groups of survival data

I'he simplest way of comparing the survival times obtained from two groups of
individuals is to plot the corresponding estimates of the two survivor functions
on the same axes. The resulting plot can be quite informative, as the following
example illustrates.

Frample 2.11 Prognoesis for women with breast cancer

Data on the survival times of women with breast cancer, grouped according to
whether or not sections of a tumour were positively stained with HPA, were
piven in Example 1.2. The Kaplan-Meier estimate of the survivor function, for
onch of the two groups of survival times, is plotted in Figure 2.9. Notice that
In this figure, the Kaplan-Meier estimates extend to the time of the largest
vensored observation in each group.

T'his figure shows that the estimated survivor function for those women
with negatively stained tumours is always greater than that for women with
poditively stained tumours. This means that at any time ¢, the estimated
probubility of survival beyond t is greater for women with negative staining,
uippesting that the result of the HPA staining procedure might be a useful
prognodtic indicator. In particular, those women whose tumours are positively
stadned appear to have a poorer prognosis than those with negatively stained
Etonry

Fhine are bwo possible explanations for an observed difference between two
st bmntod marvivor funetions, such e those in Bxample 2,11, One explanation
bl t there an nocond diflerence hotwoon Bhe survival times of the two groups

ol dnebivielomde, s Chint Ehome b one geonp hinve ndiferent survival experience





