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and

I(p) = min {t(j) | S(t(j)) <1-—- —1% = 6} ;
for j = 1,2,...,r, and small values of e. In many cases, taking e = 0.05 will
be satlsfact.orv. but a larger value of € will be needed if 7(p) and I(p) turn
out to be equal. In particular, from equation (2.18), the standard error of the
median survival time is given by
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where f{#(50)} can be found from
Fii(s0)) = SLE00} = SUGO} (2.20)
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In this expression, 4(50) is the largest survival time for which the Kaplan-
Meier estimate of the survivor function exceeds 0.55, and (50) is the smallest
survival time for which the survivor function is less than or equal to 0.45.

Once the standard error of the estimated pth percentile has been found, a
100(1 — @)% confidence interval for ¢(p) has limits of

i(p) £ za/2se{E(p)},

where z,/ is the upper (one-sided) «/2-point of the standard normal distri-
bution.

This interval estimate is only approximate, in the sense that the probability
that the interval includes the true percentile will not be exactly 1 — a. A
number of methods have been proposed for constructing confidence intervals
for the median with superior properties, although these alternatives are more
difficult to compute than the interval estimate derived in this section.

Ezample 2.10 Time to discontinuation of the use of an IUD
The data on the discontinuation times for users of an IUD, given in Exam-
ple 1.1, is now used to illustrate the calculation of a confidence interval for
the median discontinuation time. From Example 2.8, the estimated median
discontinuation time for this group of women is given by £(50) = 93 weeks.
Also, from Table 2.4, the standard error of the Kaplan-Meier estimate of the
survivor function at this time is given by se [S{#(50)}] = 0.1452.

To obtain the standard error of £(50) using equation (2.19), we need an
estimate of the density function at the estimated median discontinuation Lime
This is obtained from equation (2.20), The quantities @(50) and HH0) needod
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in this equation are such that

4(50) = max{t(;) | S(t(J)) 0.55},
and . 2

1(50) = min{t(j) | S(t(j)) < 0.45},
where ;) is the jth ordered discontinuation time, j = 1,2,...,9. Using Ta-
ble 2.4, 4(50) = 75 and I(50) = 97, and so

s 4 S(75) — S(97)  0.5594 — 0.3729
P (93-75( )22 22

Then, the standard error of the median is given by

= 0.0085.

% 0.1452 = 17.13.

se {8(50)} = 575085

A 95% confidence interval for the median discontinuation time has limits of
93 +1.96 x 17.13,

and so the required interval estimate for the median ranges from 59 to 127
days.

2.6 Comparison of two groups of survival data

I'he simplest way of comparing the survival times obtained from two groups of
individuals is to plot the corresponding estimates of the two survivor functions
on the same axes. The resulting plot can be quite informative, as the following
example illustrates.

Frample 2.11 Prognoesis for women with breast cancer

Data on the survival times of women with breast cancer, grouped according to
whether or not sections of a tumour were positively stained with HPA, were
piven in Example 1.2. The Kaplan-Meier estimate of the survivor function, for
onch of the two groups of survival times, is plotted in Figure 2.9. Notice that
In this figure, the Kaplan-Meier estimates extend to the time of the largest
vensored observation in each group.

T'his figure shows that the estimated survivor function for those women
with negatively stained tumours is always greater than that for women with
poditively stained tumours. This means that at any time ¢, the estimated
probubility of survival beyond t is greater for women with negative staining,
uippesting that the result of the HPA staining procedure might be a useful
prognodtic indicator. In particular, those women whose tumours are positively
stadned appear to have a poorer prognosis than those with negatively stained
Etonry

Fhine are bwo possible explanations for an observed difference between two
st bmntod marvivor funetions, such e those in Bxample 2,11, One explanation
bl t there an nocond diflerence hotwoon Bhe survival times of the two groups
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Figure 2.9 Kaplan-Meier estimate of the survivor functions for women with tu-
mours that were positively stained (—) and negatively stained (- ).

from those in the other. An alternative explanation is that there are no real
differences between the survival times in each group, and that the difference
that has been observed is merely the result of chance variation. To help dis-
tinguish between these two possible explanations, we use a procedure known
as the hypothesis test. Because the concept of the hypothesis test has a centn‘:},l
role in the analysis of survival data, the underlying basis for this procedure is
described in detail in the following section.

2.6.1 Hypothesis testing

The hypothesis test is a procedure that enables us to assess the extent to which
an observed set of data are consistent with a particular hypothesis, known as
the working or null hypothesis. A null hypothesis generally represents a sim-
plified view of the data-generating process, and is typified by hypotheses that
specify that there is no difference between two groups of survival data, or tha
there is no relationship between survival time and explanatory variables such
as age or serum cholesterol level. The null hypothesis is then the hy |.ml.;u'».~;]:i
that will be adopted, and subsequently acted upon, unless the data indicate
that it is untenable.

The next step is to formulate a test statistic that measures the extent to
which the observed data depart from the null hypothesis. In general, the tes!
statistic is g0 constructed that the larger the value of the statistic, the greator
the departure from the null hypothesis. Hence, if fhe mall hypothoesis s thnd
there is no difference between two proups, relatively large values of the tewd
stabistic will be interpretod m evidones agningt this pull iy pothoesis
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Once the value of the test statistic has been obtained from the observed
data, we calculate the probability of obtaining a value as extreme or more
extreme than the observed value, when the null hypothesis is frue. This quan-
tity summarises the strength of the evidence in the sample data against the
null hypothesis, and is known as the probability value, or P-yalue for short.
If the P-value is large, we would conclude that it is quite likely that the ob-
served data would have been obtained when the null hypothesis was true, and
that there is no evidence to reject the null hypothesis. On the other hand, if
the P-value is small, this would be interpreted as evidence against the null
hypothesis; the smaller the P-value, the stronger the evidence,

In order to obtain the P-value for a hypothesis test, the test statistic must
have a probability distribution that is known, or at least approximately known,
when the null hypothesis is true. This probability distribution is referred to
as the null distribution of the test statistic. More specifically, consider a test
statistic, W, which is such that the larger the observed value of the test
statistic, w, the greater the deviation of the observed data from that expected
under the null hypothesis. If W has a continuous probability distribution,
the P-value is then P(W > w) = 1 — F(w), where F(w) is the distribution
function of W, under the null hypothesis, evaluated at w.

In some applications, the most natural test statistic is one for which large
positive values correspond to departures from the null hypothesis in one di-
rection, while large negative values correspond to departures in the opposite
direction. For example, suppose that patients suffering from a particular ill-
ness have been randomised fo receive either a standard treatment or a new
lreatment, and their survival times are recorded. In this situation, a null hy-
pothesis of interest will be that there is no difference in the survival experience
of the patients in the two treatment groups. The extent to which the data are
vonsistent with this null hypothesis might then be summarised by a test statis-
e for which positive values indicate that the new treatment is superior to
the standard, while negative values indicate that the standard treatment is
superior. When departures from the null hypothesis in either direction are
vially important, the null hypothesis is said to have a fwe-sided alternative,
nnd the hypothesis test itself is referred to as a two-sided test.

Il W is a test statistic for which large positive or large negative observed
vitlues lead to rejection of the null hypothesis, a new test statistic, such as |[W|
ot W, can be defined, so that only large positive values of the new statistic
idieate that there is evidence against the null hypothesis. For example, sup-
prone Lhat W ois a test statistic that under the null hypothesis has a standard
tornal distribution. If w is the observed value of W, the appropriate P-value

I W]y P(W = |w|), which in view of the symmetry of the standard
nofinl disteibution, is 2P(W = Jw|). Alternatively, we can make use of the
poilt thiat iF W has o standard normal distribution, W2 has a chi-squared
distibition on one degree of froedom, written y§. Thus a P-value for the

b skded iy pobhosis test basod on the statistic W ois the probability that a
v o varinble exconds @ The rogquired Povalue can therefore be found
Wil tallon of the stapdard novial o chl -u|llnl|-l| dintribution Munetions
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When interest centres on departures in a particular direction, the hypothesis
test is said to be one-sided. For example, in comparing the survival times of
two groups of patients where one group receives a standard treatment and
the other group a new treatment, it might be argued that the new treatment
cannot possibly be inferior to the standard. Then, the only relevant alternative
to the null hypothesis of no treatment difference is that the new treatment is
superior. If positive values of the test statistic W reflect the superiority of the
new treatment, the P-value is then P(W 2 w). If W has a standard normal
distribution, this P-value is half of that which would have been obtained for
the corresponding two-sided alternative hypothesis.

A one-sided hypothesis test can only be appropriate when there is no inter-
est whatsoever in departures from the null hypothesis in the opposite direction
to that specified in the one-sided alternative. For example, consider again the
comparison of a new treatment with a standard treatment, and suppose that
the observed value of the test statistic is either positive or negative, depend-
ing on whether the new treatment is superior or inferior to the standard. If
the alternative to the null hypothesis of no treatment difference is that the
new treatment is superior, a large negative value of the test statistic would
not be regarded as evidence against the null hypothesis. Instead, it would be
assumed that this large negative value is simply the result of chance varia-
tion. Generally speaking, the use of one-sided tests can rarely be justified in
medical research, and so two-sided tests will be used throughout this book.

If a P-value is smaller than some value a, we say that the hypothesis is
rejected at the 100a% level of significance. The observed value of the test
statistic is then said to be significant at this level. But how do we decide on
the basis of the P-value whether or not a null hypothesis should actually be
rejected? Traditionally, P-values of 0.05 or 0.01 have been used in reaching a
decision about whether or not a null hypothesis should be rejected, so that if
P < 0.05, for example, the null hypothesis is rejected at the 5% significance
level. Guidelines such as these are not hard-and-fast rules and should not be
interpreted rigidly. For example, there is no practical difference between a

P-value of 0.046 and 0.056, even though only the former indicates that the
observed value of the test statistic is significant at the 5% level.

Instead of reporting that a null hypothesis is rejected or not rejected at some
specified significance level, a more satisfactory policy is to report the actual
P-value. This P-value can then be interpreted as a measure of the strength
of evidence against the null hypothesis, using a vocabulary that depends on
the range within which the P-value lies. Thus, if P > 0.1, there is said to
be no evidence to reject the null hypothesis; if 0.05 < P < 0.1, there is slight
evidence against the null hypothesis; if 0.01 < P <0.05, there is moderate
evidence against the null hypothesis; if 0.001 < P < 0.01, there is sbrang

evidence against the null hypothesis, and if P < 0,001, the evidence againel
the null hypothesis is overwhelming.

An alternative to quoting the exact P-value associated with a hypothesis
test, is to compare the observed value of the fest statigtic with those valuos

that would correspond to particular P-values, when the nall hypothesin |

-
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true. Values of the test statistic that lead to rejection of the null hypothesis
at particular levels of significance can be found from tables of the percentage
points of the null distribution of that statistic. In particular, if W is a test
statistic that has a standard normal distribution, for a two-sided test tﬁe
upper a/2-point of the distribution, depicted in Figure 2.5, is the vall,le of
the test statistic for which the P-value is @. For example, values of the test
statistic of 1.96, 2.58 and 3.29 correspond to P-values of 0.05, 0.01 and 0.001
Thus, if the observed value of W were between 1.96 and 2.58, we would decla:e.-.
that 0.01 < P < 0.05. On the other hand, if the null distribution of W is chi-
squared on one degree of freedom, the upper a-point of the distribution is the
value of the test statistic which would give a P-value of a. Then, values of
the test statistic of 3.84, 6.64 and 10.83 correspond to P-values of 0.05, 0.01
and 0.001, respectively. Notice that these values are simply the squa;es of
those for the standard normal distribution, which they must be in view of the
fact that the square of a standard normal random variable has a chi-squared
distribution on one degree of freedom.

For commonly encountered probability distributions, such as the normal
and chi-squared, percentage points are tabulated in many introductory fext
books on statistics, or in statistical tables such as those of Lindley and Scott
(1984). Statistical software packages used in computer-based statistical analy-
ses of survival data usually provide the exact P-values associated with hypoth-
esis tests as a matter of course. Note that when these are rounded off 1;0 say
three decimal places, a P-value of 0.000 should be interpreted as P < U.‘O(}l..,

In deciding on a course of action, such as whether or not to reject the hy-
|m‘t.hesis that there is no difference between two treatments, the statistical
‘ wvidence summarised in the P-value for the hypothesis test will be just one
ingredient of the decision-making process. In addition to the statistical evi-
dence, there will also be scientific evidence to consider. This may, for example
concern whether the size of the treatment effect is clinically impuortant. In pa:—,
ticular, in a large trial, a difference between two treatments that is significant
al, say, the 5% level may be found when the magnitude of the treatment effect
11 50 small that it does not indicate a major scientific breakthrough. On the
other hand, a new formulation of a treatment may prolong life by a factor of
fwo, and yet, because of small sample sizes used in the study, may not appear
(0 he significantly different from the standard. .

Ruther than report findings in terms of the results of a hypothesis testing
procedure, it is more informative to provide an estimate of the size of any
Creatment difference, supported by a confidence interval for this difference.

Unfortunately, the non-parametric approaches to the analysis of survival data
Biedng considered in this chapter do not lend themselves to this approach. We
will therefore return to this theme in subsequent chapters when we consider
iocdely for survival data.

I Che comparison of two groups of survival data, there are a number of

piethods thint can be used o gquamtily the extent of between-group differences
Pwor oo parnametrie: procodures will now be congidered, namely the log-rank
Poml e the Wileoxon toal I I
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2.6.2 The log-rank test

In order to construct the log-rank test, we begin by considering separately
each death time in two groups of survival data. These groups will be labelled
Group I and Group II. Suppose that there are r distinct death ti.mes‘, F(i) <
t(z) < -+ < t(y), across the two groups, and that at time t(;), d1; individuals
in Group I and dy; individuals in Group II die, for j =1,2,...,r. Unless two
or more individuals in a group have the same recorded death time, the values
of dy; and dz; will either be zero or unity. Suppose further that there are ny;
individuals at risk of death in the first group just before time 1(;), and that
there are ny; at risk in the second group. Consequently, at time #(;), there are
dj = dy; + dy; deaths in total out of n; = ny; +nz; individuals at risk. The
situation is summarised in Table 2.7.

Table 2.7 Number of deaths at the jth death time in each of two
groups of individuals.

Group  Number of  Number surviving Number at risk

deaths at t(j) bEyOﬂd t(j) j'l.'I.St before t{j)
1 dlj ni; — dlj nij
11 daj ng; — daj n2;
Total d; n; —dj nj

Now consider the null hypothesis that there is no difference in the survival
experiences of the individuals in the two groups. One way of assessing the
validity of this hypothesis is to consider the extent of the difference between
the observed number of individuals in the two groups who die at each of the
death times, and the numbers expected under the null hypothesis. Information
about the extent of these differences can then be combined over each of the
death times.

If the marginal totals in Table 2.7 are regarded as fixed, and the null hy-
pothesis that survival is independent of group is true, the four entries in this
table are solely determined by the value of dy;, the number of deaths at (;
in Group 1. We can therefore regard d; as a random variable, which can take
any value in the range from 0 to the minimum of d; and ny;. In fact, d,; has
distribution known as the hypergeometric distribution, according to which the
probability that the random variable associated with the number of deaths in
the first group takes the value dy; is

o) ()
(dlj nyj —dij
e -
Ny

(2.21)
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(&)

represents the number of different ways in which d;; times can be chosen from
d; times and is read as “di; C d;”. It is given by

(dj ) 4y
dij ) ~ di;i(d; — dyz)!’

where d;!, read as “d; factorial”, is such that

In this formula, the expression

dj!:de{dj—l)X"'X2X1.

The other two terms in expression (2.21) are interpreted in a similar manner.
The mean of the hypergeometric random variable dy; is given by

€15 =ﬂ1jdj/nj, (222}

so that ej; is the expected number of individuals who die at time #(;) in
Group I. This value is intuitively appealing, since under the null hypothesis
that the probability of death at time ¢;) does not depend on the group that
an individual is in, the probability of death at ¢(;) is d;/n;. Multiplying this
by ny;, gives e;; as the expected number of deaths in Group I at #(;).

The next step is to combine the information from the individual 2 x 2
tables for each death time to give an overall measure of the deviation of the
observed values of dy; from their expected values. The most straightforward
way of doing this is to sum the differences dy; — e1; over the total number of
death times, r, in the two groups. The resulting statistic is given by

r

UL = Z(dlj =3 81_.,'). (223)

j=1
Notice that this is ) dy; — ) €5, which is the difference between the total
ubserved and expected numbers of deaths in Group 1. This statistic will have
zero mean, since E (dy;) = e1;. Moreover, since the death times are indepen-
ilent, of one another, the variance of Uy, is simply the sum of the variances of
the dy ;. Now, since dy; has a hypergeometric distribution, the variance of dy;

i given by
_ mayna;di(ng — d;)

V15 = n?(nj ) 1) ) (2'24)
s Lhat the variance of Uy, is
v
var (Ug) = Y _wi; = Vi, (2.25)
J=1
any. Purthermore, 16 ean be shown that 7, has an approximate normal dis-
ibiton, when the number of death times s not too small. Tt then follows

it 14 /G5 b o normad distnbuton wikh zero mean and unit variance,
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denoted N(0,1). We therefore write

UL
T N(0,1),
where the symbol “~” is read as “is distributed as”. The square of a stan-
dard normal random variable has a chi-squared distribution on one degree of
freedom, denoted y2, and so we have that
Ui .2
v G s
This method of combining information over a number of 2 x 2 tables was
proposed by Mantel and Haenszel (1959), and is known as the Mantel-Haenszel
procedure. In fact, the test based on this statistic has various names, including
Mantel-Coz and Peto-Mantel-Haenszel, but it is probably best known as the
log-rank test. The reason for this name is that the test statistic can be derived
from the ranks of the survival times in the two groups, and the resulting rank
test statistic is based on the logarithm of the Nelson-Aalen estimate of the
survivor function.

The statistic Wr = UE / Vi, summarises the extent to which the observed
survival times in the two groups of data deviate from those expected under
the null hypothesis of no group differences. The larger the value of this statis-
tic, the greater the evidence against the null hypothesis. Because the null
distribution of W is approximately chi-squared with one degree of freedom,
the P-value associated with the test statistic can be obtained from the distri-
bution function of a chi-squared random variable. Alternatively, percentage
points of the chi-squared distribution can be used to identify a range within
which the P-value lies. An illustration of the log-rank test is presented below
in Example 2.12.

(2.26)

Ezample 2.12 Prognosis for women with breast cancer
In this example, we return to the data on the survival times of women with
breast cancer, grouped according to whether a section of the tumour was
positively or negatively stained. In particular the null hypothesis that there
is no difference in the survival experience of the two groups will be examined
using the log-rank test. The required calculations are laid out in Table 2.8.
We begin by ordering the observed death times across the two groups of
women: these times are given in column 1 of Table 2.8. The numbers of wormen
in each group who die at each death time and the numbers who are at risk
at each time are then calculated. These values are dij, 15, dz; and ng; given
in columns 2 to 5 of the table. Columns 6 and 7 contain the total num
bers of deaths and the total numbers of women af risk over the two groups,
at each death time. The final two columns give the values of e1; and vy,
computed from equations (2.22) and (2.24) respectively. Summing the entric
in columns 2 and 8 gives Y. dy; and ) ey , from which the log-rank stals
tic can be caleulated from (7, Sdyy — 3 ey The value ol 1y Y Wy
ean be obtained by summing the entries in the final colummn. Wo lind it
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Table 2.8 Calculation of the log-rank statistic for the data from
Ezample 1.2.

Death time d1] N1y dzj 25 dJ n; €1y U1
5 0 13 1 32 1 45 0.2889 0.2054
8 0 13 1 31 1 44 0.2955 0.2082
10 0 13 1 30 1 43  0.3023 0.2109
13 0 13 1 29 1 42  0.3095 0.2137
18 0 13 1 28 1 41 0.3171  0.2165
23 1 13 0 27 1 40 0.3250 0.2194
24 0 12 1 27 1 39 0.3077 0.2130
26 0 12 2 26 2 38 0.6316 0.4205
31 0 12 1 24 1 36 0.3333 0.2222
35 0 12 1 23 1 35 0.3429 0.2253
40 0 12 1 22 1t 34 0.3529 0.2284
41 0 12 1 21 1 33 0.3636 0.2314
47 1 12 0 20 1 32 0.3750 0.2344
48 0 11 1 20 1 31 0.3548 0.2289
50 0 11 1 19 1 30 0.3667 0.2322
59 0 11 1 18 1 29 0.3793 0.2354
61 0 11 1 17 1 28 0.3929 0.2385
68 0 4l 1 16 1 27 04074 0.2414
69 1 11 0 15 1 26 0.4231 0.2441
71 0 9 1 15 1 24 0.3750 0.2344
113 0 6 1 10 1 16 0.3750 0.2344
118 0 6 1 8 1 14 0.4286 0.2449
143 0 6 1 i 1 13 0.4615 0.2485
148 1 6 0 6 1 12 0.5000 0.2500
181 1 5 0 4 1 9 0.5556 0.2469
Total 5 9.5652  5.9289

[/} —5H—9.565 = —4.565 and V; = 5.929, and so the value of the log-rank
topl statistic is H—"L txt (—4565)2/5929 =3:5156.

T'he corresponding P-value is calculated from the probability that a chi-
wqinred variate on one degree of freedom is greater than or equal to 3.515,
wied i 0,061, written P = 0.061. This P-value is sufficiently small to cast
donbt on the null hypothesis that there is no difference between the survivor
functions for the two groups of women. In fact, the evidence against the null
liypothesis is nearly significant at the 6% level. We therefore conclude that the
it o provide some evidence that the prognosis of a breast cancer patient
i dependent on the result of the staining procedure.

68 The Wilcowon test

Pliee Wileason tent, sometimes known s the Brestow test, is also used to test

P dl by pothests that Chiore b oo ditforenes in the saryvivor funetions for two
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groups of survival data. The Wilcoxon test is based on the statistic
Uw =Y _ nj(dy; — e1j),
j=1

where, as in the previous section, dy; is the number of deaths at time f(; in
the first group and ey is as defined in equation (2.22). The difference between
Uw and Uy is that in the Wilcoxon test, each difference dj; — e1; is weighted
by n;, the total number of individuals at risk at time f(;). The effect of this
is to give less weight to differences between dy; and e;; at those times when
the total number of individuals who are still alive is small, that is, at the
longest survival times. This statistic is therefore less sensitive than the log-
rank statistic to deviations of dy; from e;; in the tail of the distribution of
survival times.
The variance of the Wilcoxon statistic Uy is given by

T
(i 2
Viw = E ;U155
j=1

where vy is given in equation (2.24), and so the Wilcoxon test statistic is
Ww = Uiy /Vaw, (2.27)

which has a chi-squared distribution on one degree of freedom when the null
hypothesis is true. The Wilcoxon test is therefore conducted in the same
manner as the log-rank test.

Ezample 2.13 Prognosis for women with breast cancer

For the data on the survival times of women with tumours that were positively
or negatively stained, the value of the Wilcoxon statistic is Uy = —159, and
the variance of the statistic is Vi = 6048.136. The value of the chi-squared
statistic, U2, /Viw, is 4.180, and the corresponding P-value is 0.041. This is
slightly smaller than the P-value for the log-rank test, and on the basis of
this result, we would declare that the difference between the two groups is
significant at the 5% level.

2.6.4 Comparison of the log-rank and Wilcozon tests

Of the two tests, the log-rank test is the more suitable when the alternative
to the null hypothesis of no difference between two groups of survival times
is that the hazard of death at any given time for an individual in one group
is proportional to the hazard at that time for a similar individual in the
other group. This is the assumption of proportional hazards, which underlics
a number of methods for analysing survival data. For other types of departure
from the null hypothesis, the Wilcoxon test is more appropriate than the o
rank test for comparing the two survivor functions.

In order to help decide which test is the more suitable in any given situn
tion, we make use of the result that if the hazard funetions are proaporiional
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the survivor functions for the two groups of survival data do not cross one
another. To show this, suppose that h;(t) is the hazard of death at time ¢ for
an individual in Group I, and hs(t) is the hazard at that same time for an in-
dividual in Group II. If these two hazards are proportional, then we can write
hy(t) = 1hy(t), where v is a constant that does not depend on the time ¢. In-
tegrating both sides of this expression, multiplying by —1 and exponentiating

gives
& {- /0 i du} oL {— /O " ha(a) du}. (2.28)

Now, from equation (1.5),

S(t) :exp{—f; h(u}du},

and so if Sy(t) and S3(t) are the survivor functions for the fwo groups of
survival data, from equation (2.28),

S1(t) = {S2(1)}" .

Since the survivor function takes values between zero and umity, this result
whows that S (t) is greater than or less than Sy(t), according to whether 9 is
loss than or greater than unity, at any time ¢. This means that if two hazard
functions are proportional, the true survivor functions do not cross. This is a
necessary, but not a sufficient condition for proportional hazards.

An informal assessment of the likely validity of the proportional hazards
msumption can be made from a plot of the estimated survivor functions for
lwo groups of survival data, such as that shown in Figure 2.9. If the two esti-
mnted survivor functions do not cross, the assumption of proportional hazards
iy be justified, and the log-rank test is appropriate. Of course, sample-based
otimates of survivor functions may cross even though the corresponding true
linzard functions are proportional, and so some care is needed in the interpre-
tntion of such graphs. A more satisfactory graphical method for assessing the
vilidity of the proportional hazards assumption is described in Section 4.4.1
ul Chapter 4.

I summary, unless a plot of the estimated survival functions, or previous
dntn, indicate that there is good reason to doubt the proportional hazards
winatiption, the log-rank test should be used to test the hypothesis of equality
ol two purvivor functions.

Powmnple 214 Prognosis for women with breast cancer

Pyt the graph of the two estimated survivor functions in Figure 2.9, we see
thint the wurvivor function for the negatively stained women always lies above
Wit for the positively stained women. This suggests that the proportional
Benredn nammption @ appropriste, and that the log-rank test is more appro-
pinte Chan the Wileoxon test. Howevar, in thin example, there is very little
silferenoe Botwoon (he rosalte of the two hypothesis tests





