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3 Likelihood

“We need a way of choosing a value of the parameter(s) of the model” (1st
paragraph): It is clear from the later text that they do not mean to give the
impression that one is only interest in a single value or point-estimate. For
any method to be worthwhile, it needs to be able to provides some measure
of uncertainty, i.e. an interval or range of parameter values.

“In simple statistical analyses, these stages of model building and estimation
may seem to be absent, the analysis just being an intuitively sensible way of
summarizing the data.” Part of the reason is that (as an example) a sample
mean may simply seem like a natural quantity to calculate, and it does not
seem to require an explicit statistical model. The mean can also be seen as the
least squares estimate, in the sense that the sum of the squared deviations of
the sample values from any other value than the sample mean would be larger
than the sum of the squared deviations about the mean itself, i.e., the sample
mean is a least squares estimate. But that purely arithmetic procedure still
does not require any assumptions about the true value of the parameter value
µ, or about the shape of the distribution of the possible values on both sides
of µ. For the grade 6 exercise about the mean number of errors per page, it
seemed to make sense to divide the total number of errors by the total number
of pages; but what if the task was to estimate the mean weight of the pages?
We discussed in class at least two different statistical models – that would
lead to different estimates.

“In modern statistics the concept which is central to the process of parameter
estimation is likelihood.” Older and less sophisticated methods include the
method of moments, and the method of minimum chi-square for count data.
These estimators are not always efficient, and their sampling distributions
are often mathematically intractable. For some types of data, the method
of weighted least squares is a reasonable approach, and we will also see that
iteratively-reweighed least squares is a way to obtain ML estimates without
formally calculating likelihoods.

Likelihood is central not just to obtain frequentist-type estimators per se,
but also to allow Bayesian analyses to combine prior beliefs about parameter
values to be updated with the data at hand, and arrive at what one’s post-data
beliefs should be.

Likelihood provides a very flexible approach to combining data, provided one
has a probability model for them. As a simple example, consider the chal-
lenge of estimating the mean µ from several independent observations for a
N(µ, σ) process, but where each observation is recorded to a different degree
of numerical ‘rounding’ or ‘binning.’ For example, imagine that because of

the differences with which the data were recorded, the n = 4 observations are
y1 ∈ [4, 6), y2 ∈ [3, 4), y3 ∈ [5,∞), y4 ∈ [−∞, 3.6). Even if we were told the
true value of σ, the least squares method cannot handle this uni-parameter
estimation task.

“The main idea is simply that parameter values which make the data more
probable are better supported than values which make the data less probable.”
Before going on to their first example, with a parameter than in principle
could take any values in the unit interval, consider a simpler example where
there are just two vlaues of π. We have sample of candies from one of two
sources: American, where the expected distribution of colours is 30%:70%
and the other Canadian where it is 50%:50%. In our sample of n = 5, the
observed distribution is 2:3. Do the data provide more support for the one
source than the other?

3.1 Likelihood in the binary model

Notice the level of detail at which the observed data are reported in Figure 3.1:
not just the numbers of each (4 and 6) but the actual sequence in which they
were observed. The Likelihood function uses the probability of the observed
data. Even if we did not know the sequence, the probability of observing 4
and 6 would be 10C4 = 210 times larger; however since we assume there is no
order effect, i.e., that π is constant over trials, the actual sequence does not
contain any information about π, and we would not include this multiplier
in the Likelihood. In any case, we think of the likelihood as a function of π
rather than of the observed numbers of each of the two types.: these data
are considered fixed, and π is varied.. contrast this with the tail area in a
frequentist p-values, which includes other non-observed values more extreme
than that observed. Likelihood and Bayesian methods do not do this.

“π = 0.5 is more likely than π = 0.1” Please realize that this statement by
itself could be taken to mean that we should put more money on the 0.5 than
the 0.1. It does not mean this. in the candy source example, knowing where
the candies were purchased, or what they tasked like, would be additional
information that might in and of itself make one source more likely than the
other. The point here is not to use terms that imply a prior or posterior
probability distribution on π. The likelihood function is based just on the
data, and in real life any extra prior information about π would be combined
with the information provided by the data. It would have been better if the
authors had simply said ”the data provide more support for “π = 0.5 than
π = 0.1.” Indeed, I don’t think “π = 0.5 is more likely than π = 0.1”
is standard terminology. The terminology “0.4 is the ML estimate of π” is
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simpler and less ambiguous.

History: there is some dispute as to who first used the principle of ML for the
choice of parameter value. The name of Gauss is often mentioned. The seldom
mentioned 1912 paper by Fisher, while still a student, is a nice clean example,
and shows how Likelihood (he did not use the word likelihood in the paper) is
flexible and allows for the different bins sizes with which observations might
be recorded, etc. It is worth reading that original paper, but don’t spend
too much time on section 5, where he deals with the ML estimation of the
parameters µ and σ of a Normal distribution: the ML estimate of σ2 involves
a divisor of n rather than n−1, and embarrassment for Fisher, who was from
early on, insisted on the correct degrees of freedom when assessing variation.
His 1912 paper can be found in the digital archives in Adelaide, Australia (he
spent his last years there) but JH has put a copy in the Resources folder.

The usual reference is to papers by Fisher in the early 1920’s, where he worked
of many of the properties of ML estimators.

One interesting feature of the 1912 paper is that Fisher never defined the
likelihood as a product of probabilities; instead he defined the log-likelihood
as a sum of log-probabilities. This is very much in keeping with his summa-
tion of information over observations. Indeed, there is a lot in his writings
about choosing the most informative configurations at which to observe the
experimental or study units.

3.2 Supported range

The choice of critical value is much less standardized or conventional than
say the one for a significance test, or confidence level, or a highest posterior
density.

Fig 3.4 (based on 20/50) vs. Fig 3.3 (based on 4/10): the authors don’t say
it explicitly, but the sharpness of the likelihood function is measured formally
by the second derivative at the point where it is a maximum.

3.3 The log likelihood

The (log-)likelihood is invariant to alternative monotonic transformations of
the parameter, so one often chooses a parameter scale on which the function
is more symmetric.

3.4 Censoring in follow-up studies

See applications below. These will be more relevant after we consider all of
the fitting options, and the benefits/felxibility of a Likelihood approach.

3.5 Other fitting methods

We mentioned earlier that the method of least squares does not make an
explicit assumption about the distribution of the deviations from or even
that the observed data are a sample from a larger universe. Another older
method, that does not make explicit assumptions about the variations about
the postulated means, is the method of minimum chi-square. It was used
for fitting simpler models for dose response data involving count data. This
minimum chi-square criterion does not lead to simple methods of estimation,
or to estimators with easily derived sampling distributions. Nevertheless, it is
one of the thee methods (the others are ML – which requires a fully specified
model for the variations, and LS, that does not) used in the java applet
http://www.biostat.mcgill.ca/hanley/MaxLik3D.swf. The applet allows
you to fit a linear model to the above-described 2-point data, and to monitor
how the log-likelihood, the sum of squared deviations, and the chi-square
goodness of fit statistics vary as a function of the entertained values of β.

The applet shows that the LS method which measures lack of fit on the same
scale that the y’s are measured on (cf the two red lines). The min-X2 method –
applied to y’s that represent counts or frequencies, is similar, in that the “loss
function” is

∑
(y− ŷ)/ŷ2. The criterion for the ML fitting of a Poisson model

is very different, in that it is measured on the probability or log-probability
scale, a scale that is shown in blue, and projecting out from the x− y plane.

Under some Normal models with homoscedastic variation, the LS and ML
methods give the same estimates for the parameter(s) that make up the mean.
If y|x ∼ Normal(µx, σ2), then Lik =

∏
(1/σ) exp[−{(yi−βxi)2/2σ2}]. This is

maximized when the exponentiated quantity is minimized. The minimization
is the same one involved in the LS estimation.

Supplementary Exercise 3.1. Grouped Normal data (from Fisher’s pa-
per1).Three hundred observed measurement errors (ε’s) from a N(0, σ) dis-
tribution are grouped (binned) in nine classes, positive and negative values
being thrown together as shown in the following table:-

1On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, Vol. 222 (1922), pp. 309-368
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Bin 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 All
Frequency (f) 114 84 53 24 14 6 3 1 1 300

Estimate σ2 ...

1. as (1/300)
∑
f×ε2mid. Note that we estimate it using a divisor of n rather

than n− 1, since we do not have to estimate µ : the errors are deviations
from known values, so µ = 0 (structurally).

2. Using Sheppard’s correction for the grouping, i.e, by subtracting w2/12,
where w is the width of each bin, in this case 1. Incidentally, can you
figure out why Sheppard subtracts this amount? Shouldn’t grouping add
rather than subtract noise?

3. Using the method of Minimum χ2.

4. Using the method of Maximum Likelihood.

Supplementary Exercise 3.2. Frequency data, the subject of Galton’s 1894
correspondence with the Homing News and Pigeon Fanciers’ Journal.2

Significance magazine (http://www.significancemagazine.org/) has spe-
cial Galton coverage in 2011, the 100th anniversary of his death – Galton
was born in 1822, the same year, he noted himself, as the geneticist Gregor
Mendel. In the article “Sir Francis Galton and the homing pigeon”, Fanshawe
writes...

”The results for the 3,207 “old birds” are shown in the table. The
table shows the proportion of birds in each category. Galton suggests
summarising the figures by their mean and “variability”, which he
estimates as 976 and 124 yards per minute respectively. It is not clear
which quantity Galton calls the “variability” – his figure appears too
small to be a standard deviation.

The second row of figures are Galton’s, and arise from the propor-
tions that would be expected by approximating the original data by
a Normal distribution. The fit appears extremely good.”

Using these frequencies and bin-boundaries3 from the journal article, and the
Normal distribution assumed by the journal and by Galton,

Bin -5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14+ All
Freq 22 43 164 284 598 645 683 396 132 120 120 3207

2Material (3p of journal, Fanshawe’s article, and R code) avialable under Resources.
35-6 means 500-600 yards per minute, etc.

estimate µ and σ, and, where possible, using SE(µ̂) and SE(σ̂), 4 form sym-
metric (frequentist) confidence intervals for µ and σ,

1. by concentrating the frequencies at the midpoints, and at suitably chosen
values for the two open-ended categories

2. via the method of Minimum χ2, and

3. via the method of Maximum Likelihood. Then

4. determine whether Fanshawe is correct: i.e., is the “124 yards” measure
of “variability” indeed too small to be a standard deviation (SD)?

5. Galton rarely used the SD.5 Instead he – as Gosset often did – used the
Probable Error (PE), i.e., 1/2 the IQR.6

In a Gaussian distribution, how much smaller/larger is the PE than the
SD?

Does this factor explain how Galton arrived at the 124 yards per minute?

The sample size is so large here that the symmetric (z-based) CI for σ is
quite accurate. By what if the sample size were quite small? In this case you
could use the tails of the (non-symmetric) distribution of the distribution of
s2 to derive an asymmetric first-principles frequentist confidence interval for
σ2, and by transformation, for σ.7

4Since s2 ∼ (1/ν) × σ2 × ChiSq(d.f. = ν), then Var[s2] = (1/ν2) × σ4 × 2ν. By Delta
method,

Var[s] ≈ Var[s2]×
{

ds
ds2

}2
= (1/ν2)× σ4 × 2ν︸ ︷︷ ︸× (1/4)× {1/σ2}−1︸ ︷︷ ︸ = (1/ν2)× σ2,

so SE[s] ≈ (1/ν2)−1/2 × σ.

5Karl Pearson was the one who promoted the SD.
6Thus, it is equally probable (50:50) for an observation to be more/less than this amount

from the middle (truth).
7Hint: (taking some semantic liberties) a first-principles 100(1-α)% frequentist CI, (L,U)

for θ is the pair of statistics (L,U), such that Prob(θ̂ ≥ θ̂observed | θ = L) = α/2 and

Prob(θ̂ ≤ θ̂observed | θ = U) = α/2.
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3.6 Other Applications: exercises

3.6.1 2 datapoints and a model

One has 2 independent observations from the (no-intercept) model

E[y|x] = µy|x = β × x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sampled pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The β in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2 units
of weight in total for a sample of x = 1 page, and y = 8 units for a separate
sample of x = 2 pages. The β in the model represents the mean weight per
page of the document.

We gave this ‘estimation of β’ problem { (x, y) = (1, 2) & (2, 8)} to several
statisticians and epidemiologists, and to several grade 6 students, and they
gave us a variety of estimates, such as β̂ = 3.6/page, 3.33/page, and 3.45!

Supplementary Exercise 3.3

How can this be? The differences have to do with (i) what model they (im-
plicitly or explicitly) used for the variation of each y | x around the mean µy|x
and (ii) the method of fitting.

1. From 1st principles derive both the LS and (if possible the) ML estimators
of β when

(a) y | x ∼ ???(µy|x)

(b) y | x ∼ Poisson(µy|x)

(c) y | x ∼ N(µy|x, σ) [assume σ is known]

(d) y | x ∼ N(µy|x, σ
2 = x× σ2

0) [assume σ2
0 is known]

2. Where possible, match the estimators with the various numerical esti-
mates above.

3. One of the numerical estimates came from another fitting method, namely
the (now seldom-used) method of Minimum Chi-square, which seeks the

value of β that minimizes
∑ (O−E)2

E =
∑ (y−βx)2

βx in this example. Verify
that the one remaining estimate of unknown origin is in fact obtained
using this estimator.

See the (Flash) applet on http://www.biostat.mcgill.ca/hanley/software/

One of the messages of this exercise is that for one to use a likelihood approach,
one must have a fully-specified probability model so that one can write the
probability of each observed observation.

And, with different distributions of the y’s around the mean µy|x = E(y|x) =
β × x, the probabilities (and thus the overall likelihood, and its maximum,
would be different.

3.6.2 Application: Estimation of parameters of gamma distribu-
tion fitted to tumbler mortality data [interval-censored and
right-censored data].

The important but seldom-visited article “Tumbler Mortality” by Brown and
Flood in JASA in 1947 shows the “survival” of tumblers (Free Online Dic-
tionary: a. A drinking glass, originally with a rounded bottom. b. A flat-
bottomed glass having no handle, foot, or stem.) in a cafeteria. The article is
available under Resources for Epidemiology and for Statistical Models. Note
that whereas the authors used the word truncation for the observations on
tumblers that were still in service at the end of the test, we would use the
word ‘right-censored ’ today. Since inspections were only once a week, the
lengths of service of the items that did fail are also censored, but within [in
most instances] a 1-week interval. This type of censoring is called ‘interval-
censoring ’.

Supplementary Exercise 3.4

Using the data in Table 1 for the article [contained in the various versions
of the R code in the same link] , determine the MLEs of the two parameters
of the gamma distribution, and compare them with those obtained by the
original authors [they use a slightly approx. ML method]. Do so in two ways
(they should give the same likelihood function, and thus the same MLEs):

1. using an unconditional approach, based on 549 contributions – one per
tumbler, with each tumbler considered in isolation from the other 548
– so that each failure (unconditional) contributes one term and each
(ULTIMATELY) censored observation (also unconditional) contributes
another. [of course, there are ‘multiplicities’; thus, instead of a sum of
549 log-likelihhods, you can use the multiplicities (and multiplication of
a 1-item log-likelihood by the multiplicity) to reduce the computation].

2. using the binomial structure created by the authors: a row that has n
exposed tumblers that week (and that only considers whether the tumbler
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that began that week survived that week) makes n Bernoulli-based log-
likelihoods, (or 1 Binomial-based log-likelihood) for that week.

This exercise shows that there is more than 1 way to set up the likelihood.

3.6.3 Application: Estimation of parameters of a parametric dis-
tribution fitted to avalanche mortality data [all observations
are censored – either left-censored or right-censored. Such
data are often referred to as “current-status” data].

One example of status-quo data is data from a cross-sectional survey of menar-
che status in girls, or the prevalence of decayed-missing-or-filled (DMF) teeth
(or say permanent dentition) in dental public health, or HIV prevalence in the
general population or in specific sub-populations, such as partners of persons
who contracted HIV though blood donations.

Another is the data from the Avalanche Survival Chances by Falk et al. in
the journal Nature in 1994. The article and the data are available under
Resources.

The authors fitted a non-parametric model. We will discuss in class which
parametric models (or mixtures of different parametric models) might make
sense. But, just to get some practice with this type of data, we will start with
a very simply one, even if we know a priori it is too simplistic.

Supplementary Exercise 3.5

Using the raw data, and (for now) the simplistic parametric model we agreed
on in class, determine the MLEs of the two parameters of this gamma distri-
bution, and compare the fit with the fit of the smooth and non-parametric
curves shown in the authors’ article.

3.6.4 Application: Distribution of Observations in a Dilution Se-
ries.

(Again, Text from Fisher’s 1922 paper). An important type of discontinuous
distribution occurs in the application of the dilution method to the estimation
of the number of micro-organisms in a sample of water or of soil. The method
here presented was originally developed in connection with Mr. Cutler’s ex-
tensive counts of soil protozoa carried out in the protozoological laboratory at
Rothamsted, and although the method is of very wide application, this par-
ticular investigation affords an admirable example of the statistical principles
involved.

In principle the method consists in making a series of dilutions of the soil
sample, and determining the presence or absence of each type of protozoa in a
cubic centimetre of the dilution, after incubation in a nutrient medium. The
series in use proceeds by powers of 2, so that the frequency of protozoa in
each dilution is one-half that in the last. The frequency at any stage of the
process may then be represented by

m =
n

2x
,

when x indicates the number of dilutions. Under conditions of random sam-
pling, the chance of any plate receiving 0, 1, 2, 3 protozoa of a given species
is given by the Poisson series

e−m
(

1,m,
m2

2!
,
m3

3!
, . . .

)
,

and in consequence the proportion of sterile plates is

p = e−m,

and of fertile plates

q = 1− e−m.

In general we may consider a dilution series with dilution factor a so that

log p = − n

ax
,

and assume that s plates are poured from each dilution. The object of the
method being to estimate the number n from a record of the sterile and fertile
plates, we have

L = S1(log p) + S2(log q),

when S1 stands for summation over the sterile plates, and S2 for summation
over those which are fertile.

Supplementary Exercise 3.6 Estimate n from the following dilution series
data:

Dilution: 0.25 0.5 1 2 4 8 16 32 64 128
Number of plates: 5 5 5 5 5 5 5 5 5 5

Number of fertile plates: 5 5 5 5 4 3 2 2 0 0
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3.6.5 Application: Pooled testing:- old and new uses

The following excerpts are from a 1976 article “Group testing with a new
goal, estimation”, in Biometrika, 62, 1, p. 181 by authors Sobel and Elashoff.
They begin by referring to the Dorfman, whose article, in the Annals of Math-
ematical Statistics, 1943, first used the ideas of group testing, with a binomial
model, to reduce the number of medical tests necessary to find all members
of a group of size N that have the syphilis antigen. They continued...

Another aspect of the group-testing problem arises when one is in-
terested not in the classification of all the individuals but in the
estimation of the frequency of a disease, or of some property, when
group-testing methods can be used. Given a random sample of size
N, say, from a binomial population, the best estimate of the preva-
lence rate p, in the sense of minimizing the mean square error, will be
obtained by testing each unit separately. However, if N is large and
the tests are costly, then a different criterion, that includes testing
costs, may indicate that group-testing designs should be used. We
might expect benefits from group testing to increase as p decreases.

[....] Example: Rodents are collected from the harbour of a large
city, and, after being killed, dissected, etc., their liver is to be care-
fully examined under a microscope for the presence or absence of a
specific type of bacterium. The goal of the study is to estimate the
proportion p of rodents that carry this bacterium using an economi-
cal experimental design. In this application the cost of obtaining the
animals is negligible compared to the cost of testing, i.e. the micro-
scopic search. It was proposed that an economical design to estimate
p should be possible by combining in a single sample a small por-
tion of the liver from each of several test animals and then carrying
out a microscopic search on a homogeneous mixture of these liver
portions. The problem is to find the best number, say A, of liver
portions to combine and how to estimate the prevalence rate p from
such a design. In addition, if this bacterial type is present in some
particular tests, then the pathologists want to know whether they
should carry out another test on a subset of these same animals or
go on to test a new group of A animals.

[...] Thompson (1962) estimated the proportion of insect vectors
capable of transmitting asteryellows virus in a natural population of
the six-spotted leafhopper, an aphid. Instead of putting one insect
with a previously unexposed aster test plant, he puts several insects
with one test plant, for economic reasons, and waits to see if the plant

develops the symptoms of this virus. If it does, then at least one of
these insects carried the virus; otherwise it is assumed that none
carried it. The statistical problem is to choose an optimal number
A of insects to be put with one test plant.

Contemporary uses: (can also Google Minipool testing)

The following text is an excerpt form Canadian Blood Services : Customer
Letter #2005-18, 2005-05-17, entitled “Planned Measures to Protect the
Blood Supply from West Nile Virus (WNV) - 2005 Season.”

Dear Colleague:

West Nile season is approaching once again and this letter is to in-
form you about enhanced measures Canadian Blood Services has put
in place to further protect the safety of the blood supply during the
2005 season.

For the summer of 2005, Canadian Blood Services will again use
single-unit testing (SUT) to enhance the sensitivity of the West Nile
Virus nucleic acid test. Minipool testing (6 samples/pool) is used
throughout the year.

• In the summer of 2005, a ‘trigger’ will be used to initiate SUT.
SUT will be initiated in a health region when a presumptive
positive blood donor is detected using minipool testing, OR the
prevalence of recent confirmed human cases in the preceding two
weeks exceeds 1/1,000 population in rural areas, or 1/2,500 in
urban areas.

• SUT will cease in a health region when there have been no
positive donors for two weeks or the occurrence of WNV cases
in the population falls below the aforementioned population
triggers.

Supplementary Exercise 3.7 Suppose that in order to estimate the preva-
lence (π)of a characteristic in a population, one tests N randomly sampled
objects by pooling them into nb batches of size k (so that N = nb × k) and
determining, for each batch, i.e. collectively, if at least one of its members is
positive. Suppose that nb+ batches are found to be positive. Develop estima-
tors of π using the method of moments, and using minimum χ2 and Maximum
Likelihood criteria.
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3.6.6 Application: Measuring one’s accuracy at darts

In 2011, Tibshirani (junior!) et al.8 published a very instructive essay. In
addition to its innovative use of a personalized heatmap to show the optimal
strategy for throwing darts, it provides an engaging example for teaching
several statistical concepts and techniques, such as fast Fourier transforms,
the EM algorithm, Monte Carlo integration, importance sampling, and the
Metropolis Hastings algorithm. It is a delightful blend of the applied and the
theoretical, the algebraic and the graphical.

It also continues the tradition of statisticians’ fascination with the imagery
of marksmen (Turner, 2010). In her chapter on metaphor and reality of
target practice, Klein (1997) writes of ‘men reasoning on the likes of target
practice’ and describes how this imagery has pervaded the thinking and
work of natural philosophers and statisticians. Klein shows a frequency
curve, by Yule, for 1,000 shots from an artillery gun in American target
practice. Pearson used it in his 1894 lectures on evolution; he decomposed
the frequency curve into two chance distributions centered slightly to
the right and left of the target, gave reasons why this might occur, and
used it to illustrate the interplay between random variation and natural
selection. He also used it in his 1900 paper in one of the illustrations of his
test of goodness of fit. Incidentally, Klein also reminds us of the origin of
the term ‘stochastic.’ In Liddell and Scott (1920) we find the following entries:

στoχoς an aim, shot. a guess, conjecture.
στoχaσµα a missile aimed at a mark; an arrow, javelin.
στoχaστικoς able to hit: able to guess, shrewd, sagacious.

Since the optimal aiming spot in darts – and thus the heatmap provided by
the online applet – depends strongly on one’s accuracy, much of the Tibshi-
rani et al. article is devoted to the challenge of estimating the (co)variance
parameter(s) that describes this accuracy. All of the estimators rely on the
data generated by throwing n darts, aiming each time at the centre of the
board, i.e., the double-bulls-eye, and recording the result for each throw.

8Tibshirani, R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc.
A (2011) 174, Part 1, 213-226. [See also the follow-up letter from S. Sadhukhan, Z Liu,
and J Hanley, along with the references • Klein, J.L. (1997). Statistical Visions in Time: A
History of Time Series Analysis 1662- 1938. pp. 3-11. Cambridge. Cambridge University
Press. • Liddell, H.G. and Scott R. (1920). A Lexicon, abridged from Liddell and Scott’s
Greek-English Lexicon. p. 653. London. Oxford at the Clarendon Press. • Tibshirani,
R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc. A (2011) 174,
Part 1, 213-226. • Turner, E.L. and Hanley, J.A. (2010) Cultural imagery and statistical
models of the force of mortality: Addison, Gompertz and Pearson. J. R. Statist. Soc. A,
173, Part 3, 483-499.

The authors noted that they would lose considerable information by not mea-
suring the actual locations where the darts land but considered this to be too
time-consuming and error-prone. Instead, they chose the individual scores
produced by the throws (the 44 possible scores are 0:22, 24:28, 30, 32:34, 36,
38:40, 42, 45, 48, 50, 51, 54, 57, 60). Based on n = 100 throws by authors
1 and 2, assuming the simplest variance model (equal, uncorrelated vertical
and horizontal Gaussian errors), their standard deviations were estimated to
be σ̂ = 64.6 and 26.9 respectively (the applet gives σ̂ to 2 decimal places)

Our follow-up letter provides a measure of the statistical precision of these ac-
curacy estimates (for example, we calculate that the 95% limits to accompany
the reported point estimate 64.6 derived from 100 scores are approximately
56 and 75). More importantly, we show that more precise estimates of σ can
often be achieved with the same number of throws (or the same precision with
fewer throws) if one uses a simpler yet more informative version of the result
from each throw.

Here, as in the letter, we focus on the simplest variance model, where horizon-
tal and vertical errors, ex and ey, are Gaussian, centered on (0,0), independent
of each other and of the same amplitude, i.e., σex = σey = σ; ρex,ey = 0.

We first consider the most mathematically tractable, but least practical,
method of estimating σ, namely to measure the exact (x, y) locations where
the n darts land. We then consider the almost as mathematically tractable,
but much more practical – and almost as statistically efficient – method of
estimating σ, namely to merely record in which ‘ring’ each dart lands. We
leave to later the the authors’ more complex – but sometimes less efficient –
method based on actual 0-60 scoring system used in darts games.

Denote by ec,i the error in the c-th co-ordinate (1=‘x’, 2=‘y’) of the i-th dart.

Supplementary Exercise 3.8

1. Show that (1/2n)
∑
c{
∑
i e

2
c,i} is an unbiased estimator of σ2 and that

it is the method-of-moments, the LS, and the ML estimator.

What sampling statistical distribution does this estimator follow?

Use the two separate α/2 tails of this (slightly non-symmetric)
distribution to derive an asymmetric first-principles frequentist confi-
dence interval for σ2.9

9Hint: (taking some semantic liberties) a first-principles 100(1-α)% frequentist CI, (L,U)

for θ is the pair of statistics (L,U), such that Prob(θ̂ ≥ θ̂observed | θ = L) = α/2 and

Prob(θ̂ ≤ θ̂observed | θ = U) = α/2.
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Suppose that for each dart thrown, one calculates the squared
distance from the center, ie d2i = e21,i + e22,i. Show that (1/n)

∑
i d

2
i is

an unbiased estimator of 2σ2. What sampling statistical distribution
does each d2i follow? What is a common name for the distribution of the
square root of this random variable?

2. Suppose we simply divide the dartboard into 7 ‘rings’ 10 and record which
one the dart lands in: 1. the double-bulls-eye; 2. the single-bulls-eye; the
ones formed by the: 3. single-bulls-eye and inner triple; 4. inner and
outer triple; 5. outer triple and inner double; and 6. inner and outer
double, wires respectively; and 7. beyond the outer double wire (i.e., the
throw misses the board). In other words, we divide the dartboard into
just 7 regions. Suppose that the distribution of the results of n = 100
throws is as follows:

ring: 1 2 3 4 5 6 7 all
frequency: 0 6 77 5 12 0 0 100

Calculate (and plot) the logLik(σ2) function and find the MLE of σ2.

3.7 Bayesian approach to parameter estimation

Given that the Bayesian approach is a very important and conceptually dif-
ferent way of making inference about the parameters of a model, and even
though they mentioned Bayes rule in Chapter 2, it is surprising that Clayton
and Hills do not make a statement about the Bayesian approach until Chapter
10; and even then, they do not give it much space. Maybe it’s because they
wanted the reader to become quite comfortable with Likelihood (which pro-
vides the Bridge between the prior and posterior distributions) before doing
so.

10In fact, the innermost region is a circle, the next 5 are rings, and the outermost one is
all of the remaining area.
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