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GRAPHICAL METHODS

This chapter is about graphical methods: types of graphs and ways
of encoding quantitative information on graphs. The methods allow us
to analyze both the overall structure of the data and the detail of the
data.

Section 3.1 discusses two methods, logarithms and residuals. These
are general purpose tools that are useful in all areas of graphical data
analysis.

Section 3.2 is about graphing one or more sets, or categories, of
measurements of one quantitative variable. Suppose we have
measurements of the brain weights of three groups of animals: gorillas,
orangoutangs, and chimpanzees. In this example we have one
quantitative variable, brain weight, and a categorical variable, animal
species. The graphical methods of the section let us study and compare
the data distributions: where the sets of data lie along the measurement
scale.

Section 3.3 is about dot charts, which are used to show
measurements of a quantitative variable in which each measurement has
a label associated” with it that we want to display on the graph. An
example is the distances of the planets from the sun; each measured
object, a planet, has a distance and a name. Several different forms of
the dot chart are described; the different forms accommodate different
measurement scales and different structures of the measurement labels.

Section 3.4 is about graphing two quantitative variables to study
their relationship; for example, the methods could be used to study how
brain weights of gorillas are related to their body weights.
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In Section 3.5 the setting is similar to Section 3.4, but now there are
two or more categories of measurements of two quantitative variables.
For example, we might have measurements of brain weights and body
weights of gorillas, orangoutangs, and chimpanzees. The section
presents methods of superposition and juxtaposition of the different
categories of data-that allow us to study the relationship. of the two
variables and to identify the categories.

Section 3.6 deals with measurements of three or more quantitative
variables; an example is measurements of blood pressure, heart rate,
weight, height, age, and sodium intake for a group of people.
Understanding such multidimensional data is difficult, but the use of
graphical methods in the section can often increase our understanding,.

Section 3.7 is about statistical variation. There is a general
discussion of the empirical variation in data and the sample-to-sample
variation of a statistic computed from data. Two-tiered error bars are
introduced for showing sample-to-sample variation.

3.1 GENERAL METHODS: LOGARITHMS AND RESIDUALS

Logarithms

Logarithms are one of man’s most useful inventions. They are
indispensable in science and technology and are a vital part of graphical
methods. Their usefulness has been amply illustrated earlier in the
book — for improving resolution and for showing data where percents
and factors are important.

In Figure 3.1, logarithms of the maximum amounts of solar
radiation penetrating ocean water at various ocean depths are graphed
against depth [88]. Until 1984 it was presumed that living things did
not exist in the ocean below about 200 meters because of low light
intensity. In 1984 scientists at the Smithsonian Institution in
Washington, D.C. and the Harbor Branch Foundation in Florida
discovered an alga at a depth of 268 meters in waters off the coast of San
Salvador Island .in the Bahamas. The filled circles in Figure 3.1 are
measurements of radiation that the discoverers presented in their paper
and the open circles are values that they extrapolated from the
measured values. The line on the graph is the least squares line fitted to
the measured values. ' '

Logarithms are useful here because radiation changes by five
powers of ten from about 10° at sea level to about 102 at 268 meters.
Also, it is natural to use a log scale because we would expect attenuation

GENERAL METHODS: LOGARITHMS AND RESIDUALS 105

_of the solar radiation, if the transmission properties of the ocean water

are relatively constant, to be multiplicative as a function of depth; if s is
the radiation at sea level and f is the fraction of radiation remaining
after passing through one centimeter of ocean water, then the radiation
at a depth of one centimeter is r(1) = fs, at two centimeters is
r(2) = f 25, and-at d centimeters is r(d) = f 45. On a log scale, radiation
is

log(r(d )) =d log(f) + }"pg(s)

and is thus a linear function of d. Figure 3.1 shows such an attenuation
process is commensurate with the log measurements, which are roughly
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Figure 3.1 LOG BASE. 10. Graphing data on a log base 10 scale is
reasonable when the data go through many powers of 10, as on the vertical
scale of this graph.
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linear with depth. The extrapolated radiation value at 210 meters fits
the pattern of the measured values, but the extrapolated value at 268
meters does not; either the ocean water changes its properties or there
has been a faulty extrapolation. '

Log Base 2 and Log Base e

Log base 10 is almost always used in scientific graphs for a log scale.
This is much too limiting. Log base2 and log basee (natural
logarithms) should always be considered. Using a different base does
not change the pattern of the points but changes only the values at the
tick marks because the logarithm of one base is just a constant times the
logarithm of another base. The relationship between log base b and log
base ¢ is

log.(x) = logy(x)/logy(c) .

Thus

loga(x) = logyo(x)/log1a(2)

and
log,(x) = logio(x)/loge(e) .

The choice of the base depends on the range of the data values that
need to be visually compared. Suppose the data go through many
powers of 10, as the radiation data in Figure 3.1 do. In such a case it is
reasonable to use log base 10. But suppose the data range over.two
powers of 10 or less. This is the case in Figure 3.2; the data are the
number of telephones in the United States from 1935 to 1970 [128,
P- 783]. In such a case it is inevitable that equally spaced tick marks for
log base 10 will involve fractional powers of 10, as Figure 3.2 illustrates.
It is difficult to deal with such fractional powers. It is easy enough to
remember 10°° is a little bigger than 3, but to keep many fractional
powers of 10 in our heads and try to use them to study a graph is
cumbersome. In such a situation it m_a{‘fkes sense to convert to log base 2
as in Figure 3.3. It is easier to deal with powers of 2 than fractional
powers of 10. For example, we can see that the number of phones
increased by a factor of about 4 from 1935 to 1960.
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On a log base 2 graph it is often helpful to label one scale line on a
log scale and the other scale line in the original units of the data. This
reduces the amount of mental conversion from the log scale to the
original scale. This second scale, however, does not completely
eliminate mental conversion. Suppose there is a datum at 27 and a
datum at.23; the second is greater by a factor of 26 In order to evaluate
this factor, we must know 2% = 64. Remembering powers of 2 up to 2'°
is easy:
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' Figure 3.2 LOG BASE 10. The data, a time series of the number of
telephones in the United States, are graphed on a log base 10 scale. When
the data range through two or fewer powers of 10, the log base 10 scale is
not as informative since we must deal with fractional powers of 10, as on
this graph.
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2= 2 26 = 64
2= 4 2 = 128
B =8 2% = 256
2% = 16 2 = 512
25 = 32 210 = 1024 .

The computer revolution has made it even easier to remember these
powers. We can go even higher by using the computer scientists’ trick:
Let k = 1000 and approximate 1024 = 2'° by k so that

214 = 2% x 210 = 16k = 16,000

and
224 = 2% x 220 = 16k? = 16,000,000 .

Also, the following fractional powers of 2 are easy to remember because
they are very close to simple numbers: o

203 = 1231 = 1.25
205 — 1414 =14
206 = 1516 = 1.5
208 = 1741 =175 .

A trick that can be used to keep the exponents on a log base 2 scale
from getting too large — perhaps we can call it the statistical scientist’s
trick — is to take the original units to be in thousands, millions, or
billions. For example, suppose the data range from 10* meters to 10°
meters. The numbers on a log base two scale range from about 13 to 20.
The trick is to think of the original units as kilometers; now the data
range from 10 to 1000 kilometers and the numbers on the log base 2
scale range from about 3 to 10. This trick was employed in Figure 3.3,
where the units of the vertical scale are log millions of telephones.

Logarithms bdse e are also useful because they have a wonderful
property. Suppose u and v are values of the data. Let d be their
difference on a natural log scale,

d = log,(v) — log.(u) .

Then if d ‘lies between —0.25 to 0.25, the percent change in going from
u to v, which is

100 [”““ ]
U
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is approximately equal to 100d%. In Figure 3.4 this approximation is
illustrated with made-up data. A is larger than B by about 0.1 on the
natural log scale, so A is about 10% larger than B; B is larger than C by
about 0.25, so B is about 25% larger than C.

Let us see why this approximation works. Let
Lty
u

L

then the percent change in going from u to v is 100r%. Now

d = log,(v) — log,(u) = log, [%] = log,(1+r) .
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Flgure 3.3 LOG BASE 2. When the data go through a small number of
powers of 10, log base 2 often provides a useful scale. The left vertical
scale line shows the data in log units and the right vertical scale fine shows
the original units.
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But if d is small,
log,(1+r) = r

and therefore

d=r
VALUE
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Figure 3.4 NATURAL LOGS. Logarithms base e are sometimes a good

choice for a log scale. If two values on a natural log scale differ by d, where -

d is between —0.25 and 0.25, the percent difference of the values is to a
good approximation 100d%. On this graph, A is greater than B by about 0.1
log units, so A is about 10% bigger than B. ‘ :
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Here are several values of r and 4:

log,(1+0.05) = 0.049 log,(1—0.05) = —0.051
log,(1+0.1) = 0.095 log,(1-0.1) = —0.105
log,(1+0.15) = 0.140 log,(1—0.15) = —0.163
log,(1+0.2) = 0.182 log.(1-02) = —0.223
1oge(1+o.25) = 0223 loge’(1—0.25) = —0.288.

When d is greater than 0.25 or less than —0.25, the approximation is less
accurate and is not as useful.

It is, of course, considerably harder to go back mentally to the
original scale from a natural log scale than from base 2 or 10. We know
readily what 23 and 10® are, but ¢® is harder. For this reason it is
particularly important to use one scale line to show the original scale, as
illustrated in Figure 3.4. ‘

If all differences of the data on a natural log scale are between
+0.25, the approximation can be used, of course, for any two graphed
values. This is illustrated in Figure 3.5. The conductivity of ocean
water [88] is graphed against depth. The range of the data is about 0.15
natural log units, so no two measurements on the original scale differ by
more than 15%.

Graphing Percent Change

When the maximum percent variation in the data is small, there is
another way to graph the data that shows percent change between any
two values. In Figure 3.6 the left vertical scale line shows the original
data units and the right vertical scale shows percent change of
conductivity from the sea-level value. The right scale shows that at 100
meters there is about a —5% change in conductivity from sea level and
at 250 meters there is about a —15% change. Because these percent
changes are small, the percent change in going from 100 meters to 250
meters is approximately (—15%) — ( —5%) = —10%. Thus, from the right
vertical scale we can judge the percent change between any two values
and not just between the baseline and another value; this approximation
works well provided the percent changes of the two values from the
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baseline both lie between plus and minus 15%, which they always do in
Figure 3.6. In general, a baseline value might be a value for some
special condition, such as sea level in this example, or it might be the
maximurm value of the data, the minimum value, or a middle value.

Let us take a closer look at this approximation and why it works.
Suppose b is the baseline. value. Let (1+s)b and (1+t)b be two other
values shown along the scale. The percent changes of the two values
relative to the baseline are 100s% and 100t%, respectively; depending on
the value of the baseline, s and ¢t might be both positive, both negative,
or have opposite signs. The percent change in going from (1+s)b to
(1+t)b is '

1+t)b — (1+s)b 1+
¢ =100 =100|——-1].
(1+s)b 1+s
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Figure 3.5 NATURAL LOGS. Conductivity is graphed on a natural log
scale. Since the range of log conductivity is about 0.15, 100 times the
difference of any two values can be interpreted as.percent change. '
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If |s]is sinall, then

——=1-5
1+s
Thus
1+t '
— = (I+t)1-s)=1+t —s—ts.
™ (1+t)(1=s)
If |s| and |t| are both small, then
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Figure 3.6 PERCENT CHANGE. The right vertical scale line shows
percent change of conductivity from the sea-level value. Since the
deviations from the baseline are all between + 15%, the right vertical scale
line can be used to judge, to a good approximation, the percent change

between any two values.
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Thus

Potr 37

M =1+4+t—s.

(1+s)

Toete 20348 S,

Venice

This means that

¢ = 100t — 100s .

Dulilin
[ o)
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Here is one example of the approximation. Suppose the baseline is
b =200, and u =180 and v = 230 are two other values. Then the ‘
change in u relative to b is -10% and the change in v relative to b is E
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15%. Thus the change in going from u to v is approximately 25%. The
actual value, to one decimal place, is 27.8%.

AL

‘Warlcw

Viemma
() [ )

Residuals

AN/ AR AN A AN

Coperhagen

Figure 3.7 is a graph published in 1801 by William Playfair in his
Statistical Breviary [109]. On the graph, the populations of 22 cities are
encoded by the areas of the circles. Playfair, who was part statistical
scientist and part political thinker, was the first person to study
graphical data display and to experiment with graphical methods in a
broad and serious way. In several brilliant strokes he invented many
types of graphs that are in use today. His Commercial and Political Atlas
of 1786 [108] and his subsequent publications contain time series graphs,
bar charts, pie charts, and graphs with data encoded by circle areas and
line lengths. However, some of Playfair’s inventions did not work, as
will be demonstrated in Chapter 4.
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The graph in Figure 3.8 was made to see how accurately the circle
areas of Playfair’s graph encode the data; the analysis was inspired by
the observation that the circle area for Turin is slightly less than that for
Genoa, even though the population values recorded on the graph for
these cities are equal. Let Y; be the circle areas and let X; bé the
populations. If the areas are to encode the data we should have
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PLAYFAIR GRAPH. This graph, published by William Playfair in 1801, encodes the populations of European cities

by circle areas.

which on a log scale is

LONDON

Peteerhungh

log.(Y;) = log.(X;) + log.(K)

or

Figure 3.7

y,-=x,~+k.
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Figure 3.8 RESIDUALS. In the top panel, the areas of the circles in
Playfair's graph are graphed against the populations, both on a natural log
scale. The top panel shows that the points lie“close to the line, but there is
too little resolution to study the residuals, which are the vertical deviations.
In the bottom panel the residuals are graphed against the populations and an
interesting pattern in the deviations emerges.
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In the top panel of Figure 3.8, y; is graphed against x;. Areas are
relative to the area of the smallest circle in Figure 3.7, which shows the
value for Edinburgh; that is, one unit of area on the vertical scale of the
top panel in Figure 3.8 is equal to the area of the Edinburgh circle in
Figure 3.7. Since :

k=y,--x,-,

k was estimated by the mean of the 22 values of y; — x;; the estimate is
—4.12. The line y = x — 4.12 is graphed in the top panel in Figure 3.8.

If the encoding by circle area were perfect, the points in the top
panel of Figure 3.8 would lie exactly on the line. The vertical
deviations of the points from the line, which are called residuals, tell us
by how much the actual areas deviate from a perfect encoding. The
values of the residuals are

¥ — (xi—412)=y; —x; + 412, for i=1 to 22.

But it is difficult to assess the residuals because the points of the graph
lie in a narrow band around the line, which results in poor resolution of
the residuals.

The resolution of the residuals can be greatly improved by graphing
them against x;. This is done in the bottom panel of Figure 3.8. The
residuals are now much more spread out since we have removed the
overall linear effect. We can interpret the residuals as percent
deviations, as discussed earlier in this section, because a log base ¢ scale
is used and because all residuals are between —0.25 and 0.25 log units.
The largest residual is about 0.15, which means the area of the circle
corresponding to the value is about 15% larger than the ideal area of the
fitted line, and the smallest residual is about —0.15; thus the percent
deviations of the actual areas from the ideal ones range between about
—15% and 15%.

The graph of residuals in the bottom panel also shows an
interesting pattern that is only barely discernible in the top panel. The
residuals are not random as a function of the x; but rather drift in a
correlated way above and below zero. The tendency is for residuals
corresponding to small populations to be positive and residuals for the
larger populations to be negative; this means the circle areas for small
populations tend to be too large and the circle areas for large
populations tend to be too small. This drift in the residuals is curious.
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If the deviation of the actual areas from an jdeal encoding were a matter
of measurement error, we would not expect, considering -most
mechanisms that might produce errors, to see the drift. More
information about the production process and how the paper of the

original graph has changed through time would be needed to solve the
enigma.

Graphing residuals is an important method that has applications in
all areas of graphical data analysis. We will look at several other
examples.

Residuals can arise from comparing data with visual references
other than fitted lines. The reference might be a curve, as in the top
panel of Figure 3.9, which graphs made-up data. Judging the vertical
deviations of the points from the curve is difficult because of the rapidly
changing slope. (This issue of graphical perception is discussed in
detail in Section 4 of Chapter 4) The visual impression from the top
panel is that the residuals are smaller on the right than on the left. The

graph of residuals against x in the bottom panel shows that the opposite
is the case.

Graphing residuals is also illustrated in Figure 3.10, again, by
made-up data. Observations are compared to a theoretical value for each
of eight groups. The two-tiered error bars show 50% and 95%
confidence intervals for the observations. The residuals, which in this
case are the data minus the theoretical values, are graphed in the bottom
panel; the result is increased resolution of the deviations of the data
from the theoretical values and a better comparison of where the
theoretical values lie with respect to the confidence intervals for .the
data.

>

The Tukey Sum-Difference Graph

*

There is another situation where graphing residuals is helpful.
Suppose y; is graphed against x; fori = 1 to # to see how close x; and y;
are to one another. An example is shown in the top panel of
Figure 3.11. The data on the vertical axis, Yi, are the logarithms of
abundances of certain elements in rocks brought back from the moon’s
Mare Tranquillitatis by the Apollo 11 astronauts in 1969 [91, p. 27]. The
data on the horizontal axis, x;, are the '\logarithms of abundances of the
same elements in basalt from the earth. The purpose of the graph is to
see how the composition of the moon rocks compares with that of
basalt.
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Figure 3.9 GRAPHING RESIDUALS. The visual impression from the top
panel is that the vertical deviations of the points from the curve are greater
for small x values than for large ones. The graph of residuals in the bottom
panel shows the opposite is true.
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GRAPHING RESIDUALS: In the
observations are compared with made-up theoretical values. The two-tiered
error bars represent 50% and 95% confidence intervals.
which in this case are the data minus the theoretical values, are graphed in
the bottom panel; the increased resolution "a-llo_ws us to compare more
effectively where the theoretical values lie with réspect to the confidence
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Figure 3.11 TUKEY SUM-DIFFERENCE GRAPH. in the top panel two sets
of data with the same measurement scate are graphed to see how close the
corresponding values are. The bottom panel is the Tukey sum-difference
graph: Y~ X, is graphed against y;+ X; This graphical method, which is a
45° clockwise rotation of the top panel followed by an expansion of the
vertical scale, allows us to study more effectively the deviations of the points
from the line y = x.



122 GRAPHICAL METHODS

In studying the composition data we would like to understand the
values of y; — x;, the amounts by which the abundances differ. On the
the top panel of Figure 3.11, y;—x; is equal to the vertical deviation of
the point (x;, y;) from the line y=x, and x; —y; is equal to the
horizontal deviation of (x;, y;) from the line. As with other graphs,
however, it is difficult to assess the values of these deviations, or
residuals, partly because the resolution of the residuals is poor.

In Figure 3.7, where we studied Playfair’s data, our purpose was to
see how the areas, y;, depend on the population measurements, x;. The
variable y is a dependent variable and x is an independent variable.
For the abundance data in the top panel of Figure 3.11 the situation is
different. .Neither variable is dependent or independent; we are seeking
simply to see how the two variables are related, and by how much the
abundances differ. We might look at residuals, in analogy with the
Playfair data, by graphing y; — x; against x;. This, however, does not
treat x; and y; equally, and we could just as well graph y; — x; against y;.

One way to graph y;—x; that takes the equivalence of x; and y; into
account is the Tukey sum-difference graph: y; — x; is graphed against
y; + x;, as illustrated in the bottom panel of Figure 3.11. The sum-
difference graph can be thought of as the result of rotating the points in
the top panel by 45° in a clockwise direction and then allowing the
rotated points to expand in the vertical direction to fill the data region.
To see this suppose

yitx;
“e

and

Yi—X;

V2

v =

If we graphed v; against u; and kept the number of data units per cm
the same as on the graph of y; vs. x;, the points on the new graph
would be exactly a 45° clockwise rotation of the points on the old one.
The reader can rotate the book page: 45° clockwise to see how the
configuration of points on this new graph would appear. In the Tukey
sum-difference graph there is no v/2, which is a constant factor that does
not affect the configuration of points; also, the number of data units per
cm for y; — x; is not forced to be the same as y; + x;, but rather the
vertical scale is chosen so that the y; — x; -fill up the data region that is
available.

GENERAL METHODS: LOGARITHMS AND RESIDUALS 123

In the bottom panel of Figure 3.11 the expansion of the scale for the
¥; — x; now lets us assess these residuals far more effectively than in the
top panel. The left vertical scale line shows differences of log base 10
abundances and the right vertical scale line shows differences of log
base 2 abundances; the right vertical scale line helps us appreciate the
factors since the differences vary only by about two powers of 10.

Figure 3.11 shows that titanium, which is one of the most abundant
elements in both rock types, is higher in the moon rocks by about a
factor of 10. Also, sodium is lower by a“factor of about 5. This had
already been discovered by the Surveyor spacecraft in 1967, which also
measured composition in Mare Tranquillitatis. Surveyor landed on the
moon, scoopéed up a lunar sample, measured abundances by alpha
scattering, and sent the measurements back to earth as strings of zeros
and ones. At the time, some doubted the reliability of the Surveyor
results, in particular the high values of titanium and the low values of
sodium. “Many doubting Thomases had to wait for the first Apollo
landing on the Moon in July of 1969 to be convinced,” wrote Anthony
Turkevich, University of Chicago chemist and one of the developers of
the Surveyor measurement methods [91, p. 23]. And convinced they
were since the rock samples brought back by the Apollo missions
showed the Surveyor measurements had been exceedingly accurate.

3.2 ONE OR MORE CATEGORIES OF MEASUREMENTS OF
ONE QUANTITATIVE VARIABLE: GRAPHING
DISTRIBUTIONS

Frequently, the goal of a data analysis is to study the distribution of
one or more categories of measurements of a quantitative variable. That
is, we want to study where the data for each category lie along the
measurement scale.

An example of the study of distributions is shown in Figure 3.12.
The data are from an experiment [51] on a special type of stereogram
called a random dot stereogram, which was invented by Bela Julesz for
studying visual perception [70, 71]. A viewer sees a three-dimensional
object that is formed by a left and a right image, each of which has the
appearance of tightly packed random dots. Typically, a viewer does not.
immediately see the object in such a stereogram, but after concentrating
on the images for a while the object suddenly appears. The data in
Figure 3.12 are the times taken by subjects to see a particular stereogram
in which the viewed object was a spiral ramp pointing toward the
viewer. Subjects were given varying types of prior information about
what they were going to see, to determine if prior information can
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reduce appearance times. In Figure 3.12 there are two groups of
measurements, where the grouping is based on the prior information
given. The NV subjects received either no information or ve?rbal
information. The VV subjects received a.combination of verbal and vzs.ual
information. The NV group as whole received less prior ir.lformatlon
than the VV group, and the goal is to see if the distribution of the
VYV times is redticed compared with that for the NV times.

Point Graphs and Histograms

One standard way to show measurements of a variable or to
compare different sets of measurements of a variable is to graph each set
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Figure 3.12 POINT GRAPH. The data are the _times that two groups of
people took to see a complex random dot stereogram. The goal is .to
compare the distributions of the two sets of data. in this figure two point

graphs are used to make the comparison.
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of values along a line. Such a point graph is used in Figure 3.12 to show
the stereogram times.

Another standard method for studying distributions is the histogram,
one of the staples of scientific graphics that has a long history going
back at least to the 19th century. In Figure 3.13 the stereogram times
are shown by histograms. The variable on the vertical scales is percent
of counts — 100 times the number of counts in each interval divided by
the total number of observations, which is 43 for the NV times and 35
for the VV times. Since the numbers of observations are different for
the two groups, using the percent of counts in each interval rather than
the counts themselves provides a more effective comparison of the two
distributions.

A point graph is a reasonable display when the number of
observations is not large. In Figure 3.12 we probably have reached the
upper limit of the number of values that can be effectively shown
without offsetting the plotting symbols in the horizontal direction to
avoid overlap. When the number of values is large, or even moderate,
the histogram is the better display to use. This is illustrated in
Figure 3.14; the histogram shows redshifts of quasars from a catalog
compiled by Adelaide Hewitt and Geoffrey Burbidge, two astronomers
at the Kitt Peak National Observatory in Tucson, Arizona [59].

It should be remembered that a histogram reduces the information
in the data. A measured value, such as redshift, is itself usually an
interval of values because there is limited accuracy in measuring devices
and because data are often rounded. When a histogram is made, the
interval width of the histogram is generally greater than the data
inaccuracy interval, so accuracy is lost. As we decrease the interval
width of a histogram, accuracy increases but the appearance becomes
more ragged until finally we have what amounts to a point graph. In
most applications it makes sense to choose the interval width on the
basis of what seems like a tolerable loss in the accuracy of the data; no
general rules are possible because the tolerable loss depends on the
subject matter and the goal of the analysis. (One exception to this
statement is the very small fraction of cases in which the purpose of the
histogram is to estimate a probability density rather than to simply
show the data [44, 114]; this usage will not be treated here.)

Point graphs and histograms certainly do a good job of showing us
individual distributions of data sets, but they generally do not provide
comparisons of distributions that are as incisive as methods that will be
described later in this section. From Figures 3.12 and 3.13 there is a
suggestion that the VV times are less than the NV times — that is, that
the increased prior information given to the VV group reduced viewing
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HISTOGRAM. Each histogram shows the percentage- of
values in intervals: of equal length. The histogram does a good job of
displaying each data set, but is usually not as effective for comparing

distributions as other methods.
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times — but the two graphs give us little quantitative information about
the magnitude of the difference.

Percentile Graphs

Figure 3.15 shows percentile graphs of the two distributions of
stereogram times. A pth percentile of a distribution is a number, ¢, such
that approximately p percent of the values of the distribution are less
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Figure 3.14 HISTOGRAM. In most applications it makes sense to choose
the interval width on the basis of what seems like a tolerable loss in
accuracy of the data. In this example the width is 0.1 units.
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than or equal to q; p is the p-value of g. Suppose x; is the smallest
observation in a data set, x, is the next to smallest, and so forth up to x,,
which is the largest observation. For example, if the data are

5 1 9 3 14 9 7
then

x1=1 x3=3 x3=5 x4=7 x5=9 x6=9 xy=14.

We will take x; to be the p;th percentile of the data where

i—0.5
pi = 100 ==
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Figure 3.15 PERCENTILE GRAPH. ‘On each panel, the data are graphed
against their p-values. The p-value foran observation is very nearly the
percentage of the data that is less than or equal to the observation; the
observation is said to be the pth percentile.
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For thg above set of seven values
p1=100(1-05)/7 =7.1
p2=100(2 — 0.5) / 7 = 21.4
and so forth to
pr=100(7 — 0.5) /7 =929

On the percentile graph each x; is graphed ;gainst its p-value, p;.

Subtracting 0.5 in the formula for the p-value of x; is a convention

- in statistical science [21] and arises from the desire to make the

definition of the percentile of a set of data as consistent as possible with
the concept of the percentile of a theoretical probability distribution,
such as the normal. One piece of heuristic reasoning that might satisfy

. some is the following: Suppose x; is the result of rounding. When we

count how many observations are less than or equal to x;, we count only
1/2 for x; itself, because there is a 50-50 chance that the actual value of
the observation is less than or equal to x;, the recorded value. But for
percentile graphs the subtraction of 0.5 is a trivial issue that has little
affect on the visual appearance of the display.

Percentile graphs are often more effective for comparing data
distributions than point graphs or histograms because the p; are shown,
which means corresponding percentiles can be compared. For example,
in Figure 3.15 we can easily see that the 50th percentile, or the median,
of the NV times is slightly less than 3 log, seconds; this median value
can be compared with that of the VV times, which is about 2 log,
seconds. Comparing percentiles is usually the most informative way to
compare two distributions; we will return to this point later.

Box Graphs

It is sometimes enough, in order to convey the salient features of
the distribution of a set of data, to show just a summary of the data.
One such summary, shown in Figure 3.16, is the Tukey box graph [125].
The five horizontal lines on each box graph. portray five percentiles
whose p-values, from bottom to top, are 10, 25, 50, 75, and 90. All
values in the data set above the 90th percentile and below the 10th
percentile are graphed, as on a point graph.
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We need a rule to compute the percentiles that appear on the box
- graph. So far, we know only that x; is the p;th percentile. It is not
always the case that the p; will happen to include the numbers needed
for the box graph. For the example introduced earlier, the x; and p; are

'I-l
E

P
1 7.1
3 21.4
5 35.7
7 50

9 64.3
9 78.6
14 92.9

N U R W N e

In this example, one of the x; happened to be the 50th percentile,
however, none of the other box graph percentiles appear. We can get
other percentiles by linearly interpolating the x; and p; values.

Here is a simple way to do the linear interpolation. Let p be the p-
value of the percentile. We want a value of v such that

v—0.5

100 ———=p .
n p
Solving for v we get
Y= 700 05.

If v turns out to be an integer then x, is the ‘pth percentile. However, v
will often not be an integer. Let k be the integer part of v and let f be
the fractional part; for example, if v = 10.375 then k = 10 and f = 0.375.
The pth percentile using linear interpolation is ) '

A—f)xe+ frpss -

Let us apply this to the computation of the 25th percentile for the above
set of seven values. '

725

= =+ (.
v 100 0.5

= 2.25.
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The 25th percentile is
0.75 X2 + 0.25 X3
=075-3+025-5

=35.

The interpolation rule always leads to a simple result for the 50th
percentile; if n is odd, it is the middle observation, x(+1), and if n is
even, it is the average of the two middle observations, x,/; and x,/54;.

Box graphs have many strengths. One is that the chosen percentiles
can be compared effectively. For example, in Figure 3.17 we can see
easily that the 50th percentiles of the NV times and VV times differ by
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Figure ?.16 TUKEY BOX GRAPH. A box graph shows selected
percentiles of the data, as illustrated in this figure. All values beyond the
10th and 90th percentiles are graphed individually as on a point graph.
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roughly one log, second, or a factor of 2. A second strength is that by
graphing the large and small values, unusual values are not swept
under the rug as they often are when the summary of the distribution
consists of a sample mean and a sample standard deviation. (This point
will be discussed further in Section 3.7.) Finally, box graphs can be
used even when the number of distributions is not small.

In Figure 3.18 ten distributions are compared by box graphs. The
data on the vertical axis are the payoffs from 254 runnings of the daily
New Jersey Pick-It Lottery from May 22, 1975 to March 16, 1976 [102],
just after the lottery began. In this game a player picks a three-digit
number from 000 to 999. It costs 50¢ to bet on one number. Players
who selected the winning number share the prize, which is half of the
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Flgure 3.17 - BOX GRAPH. Box graphs are an excellent way to compare
distributions because they allow us to compare corresponding percentiles.
In this example we see the 50th percentile of the NV times is greater than
that for the VV times by about one log, second, or a factor of 2.
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money bet on that day. Since the drawing of the winning number is
random, so that all numbers are equally likely, the best strategy is to
pick a number that few other people are likely to pick.

The payoffs in Figure 3.18 have been divided into ten groups
according to the winning number. The first group, labeled 07, is
winning numbers from 000 to 099; the second group is 100 to 199; the
third group is 200 to 299; and so forth. Thus the ten box graphs give a
comparison of the ten distributions of payoffs. '
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Figure 3.18 BOX GRAPH. The vertical scale is payoff of the New Jersey
lottery, or numbers game, in which a player picks a three-digit number from
000 to 999. Winners share half of the pot. Each box graph shows the
distribution of payoffs for all numbers with a particular leading digit. A
leading digit of zero has the highest payoffs because fewer people tend to
pick them. As the leading digit increases from one to nine the payoffs
increase in a zigzag fashion, showing odd first digits are preferred to even.
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Figure 3.18 has a clear message: the payoffs for numbers starting
with zero tend to be high, which means bettors avoid them. One
exception to this behavior is a zero-starting number with a payoff
around $100, which is nearly the lowest value of all payoffs; in this case
the winning number was 000, and it is not surprising that it was a
popular one. There is an interesting trend in the remaining nine
groups of numbers. The payoffs tend to increase in going from the
smaller to the larger numbers, but in a zigzag fashion, suggesting that
odd first digits are preferred to even.

If bettors’ choices were uniformly distributed over all the numbers,
the expected payoff would be $250 (not $500 since the state takes half of
the money). However, the graph suggests that by the right choice of a
number with a leading 0 we might be able to push the expected payoff
above $500, the break-even point. Unfortunately, this is no longer true.
Richard Becker and John Chambers showed that as time went along
New Jersey Pick-It players caught on, the distribution of chosen
numbers became more nearly uniform, and the maximum payoffs
declined and rarely exceeded $500 [9].

The details of the box graph given in Figure 3.16 are not meant to

create dogma. Variations are often sensible. Figure 3.16 is already a.

variation of the original method, which is called a box plot by its
inventor, John Tukey [125]. In a particular application it might make
sense to choose other percentiles or to eliminate the graphing of the
individual large and small values or to draw the box graphs horizontally
rather than vertically. Also, procedures other than linear interpolation
can be used to compute percentiles. One simple rule is to select the x;
whose p; comes closest to the p-value of the desired percentile. In the
above example the 25th percentile would be 3 using this procedure,
since its p-value, 21.4, is closest to 25. If n is not small, say n is greater
than 50, linear interpolation-and this procedure will usually give similar
results. -

Percentile Graphs with Summaries

The percentile graph and the.box graph can be combined as in
Figure 3.19 to form a percentile graph with summary. The horizontal
reference lines show the five percentiles of the box graph; this allows us
to compare these five percentiles w'\ith\ more visual efficiency than if the
reference lines were not there. *
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Percentile Comparison Graphs

The percentile comparison graph was invented in 1966 by Martin Wilk
and Ram Gnanadesikan [135). It is not widely known in science and
technology, but its use deserves to spread because of its enormous
power for comparing two data distributions.

When distributions are compared, the goal is usually to rank the
categories according to how much each has of the variable being
measured; for the stereogram times we want to know which group took
more time, and for the lottery data we are interested in finding the
leading digits that give the highest payoffs.

The most effective way to investigate which of two distributions has
more is to compare the corresponding percentiles. This was the
insightful observation of Wilk and Gnanadesikan and their invention
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Figure 3.19 PERCENTILE GRAPH WITH SUMMARY. The five percentiles
of the box graph are shown on a percentile graph by horizontal lines.



136 GRAPHICAL METHODS

could not be more simple or elegant — graph the percentiles of one
distribution against the corresponding percentiles of the other
distribution. For example, we might graph the 50th percentile of the
first data set against the 50th of the second data set, the 75th percentile
of the first against the 75th percentile of the second, and so forth.

The top panel of Figure 3.20 is a percentile comparison graph; the
two data sets are the scores of males and the scores of females on the
verbal SAT test in 1983 [111]. There were 464,733 people in the males’
data set and 497,809 in the females’ data set. The highest possible score

on the test is 800 and the lowest is 200. The following are the p-values .

of the percentiles of the distributions that are shown on the graph: 1
2 3 4 5 10 20 30 40 50 60 70 80 90 95 96 97 98 99.
The point in the lower left corner of the data region is the 1st percentile
for the males against the 1st percentile for the females, and the point in
the upper right corner of the data region is the 99th percentile for the
males against the 99th percentile for the females. The bottom panel .of
Figure 3.20 uses the Tukey sum-difference graph, discussed in
Section 3.1, to give a clearer picture of the differences of the percentiles.

How do we make the percentile comparison graph? Suppose, first,
that there is a moderate number of observations in the smaller of the
two data sets, say no more than 50. Let x,,..,x, be the first data set,
ordered from smallest to largest, and let y,,...y,, be the second set of
data, also ordered.

" Suppose m = n. Then y; and x; are both 100(i—0.5)/n percentiles of
their respective data sets, so we would make the percentile comparison
graph by graphing y; against x;. Thus in the m = n case the graph is
quite simple — we just graph the ordered values for one group against
the ordered values of the other group.

Suppose m < n. Then y; is the 100(i—0.5)/m percentile of the y
data, so on the percentile comparison graph-we graph y; against the
100(i—0.5)/m percentile of the x data, which typically must be computed
by interpolation. Thus in the case of an unequal number of
observations in the two data sets, there are as many points on the graph
as there are values in the smaller of the two data sets.

Figure 3.21 illustrates the unequal case; the display is a percentile
comparison graph of the stereogram ‘data: the 43 NV times and 35
VV times. There are 35 points on the graph. For example, the 9%th VV
time is yo = 1.0 log, seconds; this is a percentile with p-value 24.3, and
it is graphed against the 24.3 percentile of the NV times, which was
computed by interpolating the 10th and 11th' NV times, yo and vy,,; the
interpolated value is 0.06 y;0 + 0.94 y; = 1.62 log, seconds.
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Figure 3.20 PERCENTILE COMPARISON GRAPH. The percentile
comparison graph, illustrated in the top panel, is a simple but powerful tool
for comparing two distributions. Percentiles from one distribution . are
graphed against corresponding percentiles from the other distribution. The
data in this figure are scores of males and females on the verbal SAT test.
The percentiles compared are 1,2,..., 5; 10, 20 ,..., 90; and 95, 96 ,..., 99.
The bottom panel is a Tukey sum-difference graph of the values in the top
panel. The graph shows that throughout most of the range of the
distribution, scores of males are about 10 points higher.
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Figure 3.21 PERCENTILE COMPARISON GRAPH. In the top panel
percentiles of the VV times are graphed against corresponding percentiles of

the NV times. The bottom panel is a Tukey sum-difference graph..

Throughout the entire range of the distributionthe NV times are greater than
the VV times; the average increase is about 0.6 ~Iog2 seconds, which is a
factor of 1.5.
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Suppose the smaller of the two data sets has a large number of
values. For example, for the SAT data the smaller group, the males, has
464,899 values. We do not need, of course, to graph 464,899 points,
because far fewer points can characterize the differences between the
two distributions. In such a case a liberal helping of percentiles, with
p-values ranging from close to 0 to close to 100, can be graphed against
one another. In many cases, as few as 15 to 25 percentiles can
adequately compare the two distributions. This procedure was used for
the percentile comparison graph of the SAT scores in Figure 3.20.

The question of which of two distributions has more and by how
much is a simple one whose answer can be complicated. The percentile
comparison graph, by giving us a detailed comparison of the two
distributions, can show whether the answer is simple or complicated,
and if complicated, just what the complication is. This will be
illustrated by several examples.

Figure 3.20 shows that the way in which the scores of males and

. females differ is relatively simple. Throughout most of the range of the

distribution the males’ percentiles are about 10 points higher than the
females’ percentiles, but at the very bottom end the difference tapers off.
Thus a reasonable summary of the pattern of the points is a line parallel
to the line y = x with an equation y = x + 10. The comparison of the
two distributions can be summarized by the simple statement, the males’
scores are about 10 points higher throughout most of the range of the
distributions.

Figure 3.22 is a percentile comparison graph of made-up test scores.
The pattern is a line through the origin with equation y = 0.8x. Now it
is not true that the corresponding percentiles differ by a constant
amount as they did for the verbal SAT scores; now the high-percentiles
differ by more than the low ones. But because the general pattern is a
line through the origin with slope 0.8, the percentage decrease of the
males’ scores is a fixed amount. That is, because the males’ scores, y, are
approximately related to the females’ scores, x, by y = 0.8x, we have
(y—x)/x = —0.2, which means the males’ scores are approximately 20%
lower throughout the range of the distribution.

If we were to take the logarithms of the values in Figure 3.22 the
multiplicative pattern would be transformed into an additive pattern

.like Figure 3.20. In Figure 3.21, logarithms performed such a

multiplicative-to-additive transformation for the stereogram times. The
general pattern of the points in Figure 3.21 is a line, y = x + k, where k
is about 0.6 log, seconds. Had we graphed the points without taking
logarithms the general pattern would have been a line through the
origin with slope 206 = 1.5.
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Figure 3.23 compares two other sets of hypothetical scores. The
pattern of the data is a line with a slope less than 1; the line y =x
intersects this pattern at the 50th percentiles of the distributions. The
50th percentiles of the two groups are equal, but the distributions differ
in a major way: the high scores for the females are higher than the
high scores for the males, and the low scores for the males are higher
than the low scores for the females. The two distributions are centered
at the same place but the females’ scores are more spread out.

Figure 3.24 also compares hypothetical scores. Throughout most of
the range of the distribution, males and females are the same, but at the
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Figure 3.22 PERCENTILE COMPARISON GRAPH. The data are
hypothetical test scores. Since the points lie close to a line through the
origin with slope 0.8, scores of males are about-20% lower throughout most
of the range of the distribution. ‘
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very top end the females have higher scores. That is, the exceptionally
high scores for the females are better than the exceptionally high scores
for the males.

Figure 3.25 is back to real data: 1983 mathematics SAT scores for
males and females [111]. The top panel compares the same percentiles
that are compared for the verbal scores in Figure 3.20; the bottom panel
is a Tukey sum-difference graph. From the 99th to the 50th percentile
most of the percentiles for the males are 55 to 60 points higher than
those for the females. But from the 56th percentile to the lowest
percentiles the differences decrease from about 55 points to about 10
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Figure 3.23 PERCENTILE COMPARISON GRAPH. The points lie close to
a line that has slope less than one, and the 50th percentiles lie on the line
y = x. Thus the 50th percentiles, or middles, of the two distributions are the
same but the female scores are more spread out.
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points. The way in which the scores of males and females differ is
considerably more complicated than the simple linear patterns in some
of the previous percentile comparison graphs.

Means are often used to characterize how two distributions differ,
but this often misses important information or worse yet, misleads. The
mean scores for the math test are 445 for the females and 493 for the
males, a difference of 48. Using just the means misses the important fact
that high scorers, middle scorers, and low scorers differ by different
amounts. Data distributions can be complicated, and when they are, the
percentile comparison graph can reveal the complication to us.
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Figure 3.24 PERCENTILE COMPARISON GRAPH. Throughout most of the
range of the distribution, male and female scores are nearly the same, but
for the very highest percentiles, female scores are higher.
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PERCENTILE COMPARISON GRAPH. The top panel is a

percentile comparison graph of scores of males and females on the math

SAT test. The same percentiles graphed in Figure 3.20 are graphed here.

The bottom panel is a Tukey sum-difference graph of the values in the top
panel. The graph shows that for the top half of the distributions, scores of .
males are typically 55 to 60 points higher, and that for the bottom half the
difference ranges from 10 to 55 in going from the lowest percentiles to the
50th. The average scores, 445 for the females and 493 for the males, do
not convey nearly as much information about how the two distributions differ.
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3.3 ONE QUANTITATIVE VARIABLE WITH LABELS: DOT
CHARTS

Ordinary Dot Charts

We often need to display measurements of a quantitative variable in
which each value has a label associated with it. Figure 3.26 shows an
example. The data are from a survey on the amount of use of graphs in
57 scientific publications [27). For each journal, 50 articles from the
period 1980-1981 were sampled. The variable graphed in Figure 3.26 is
the fraction of space of the 50 articles devoted to graphs (not including
legends) and the labels are the journal names. Figure 3.26 is a dot chart,
a graphical method that was invented [28] in response to the standard
ways of displaying labeled data — bar charts, divided bar charts, and
pie charts — which usually convey quantitative information less well to
the viewer than dot charts. (This is demonstrated in Section 4 of
Chapter 4.)

. When there are many values in the data set, as in Figure 3.26, the
light dotted lines on the dot chart enable us to visually connect a
graphed point with its label. When the number of values is small, as in
Figure 3.27, the dotted lines can be omitted, since the visual connection
can be performed without them.

The data in Figure 3.27 are the ratios of extragalactic to galactic
energy in seven frequency bands [93), where energy is measured per
unit volume. The frequencies in the seven bands increase in going
from the top of the graph to the bottom. In five of the seven bands the
galaxies have much higher intensities than the space between galaxies.
One of these five bands is visible light; this should come as no surprise
since on a clear night on the earth we can see galactic matter in the
form of stars (or light reflected from a star by our moon) and only
blackness in between. For microwaves and x-rays there is much more
energy coming from outside the galaxies. The extragalactic microwave
radiation, discovered by Nobel prize winners Arno Penzias and Robert
Wilson of AT&T Bell Laboratories in;1965 [107], has an explanation: it is
the remnant of the big bang that gave our universe its start. But the
extragalactic x-ray radiation remains a mystery whose solution might
also tell us something fundamental about the structure of the universe.

When they appear, the dotted lines on the dot chart are made light
to keep them from being visually imposing and obscuring the large dots
that portray the data. When we visually summarize the distribution of
the data, the data dots stand out and the graph is a percentile graph,
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Figure 3.26 DOT CHART. A dot chart shows the fraction of space
devoted to graphs for 57 scientific journals. The dot chart is a graphical
method for data where each numerical value has a label. The dotted lines,
which enable us to connect each value with its label, end at the data dots
because the baseline is zero.
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provided the data are ordered from smallest to largest. When we want
to emphasize this distribution, a p-value scale can be put on the right
vertical scale line as in Figure 3.28.

The data in Figure 3.28 are the per capita state taxes (sales, income,
and fees for state services) in the 50 states of the U.S. during the fiscal
year 1980 [137, p. 116]. The graph shows that state taxes vary by a factor
of about 3. New Hampshire, the state where so many presidential
candidates have gotten their start, or their finish, is clearly a state ready
to listen to candidates who advocate lower taxes.
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Figure 3.27 DOT CHART. The dotted Ilnes are omitted because the
labels and the numerical values can be visually" connected without them.
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P — VALUE

DOT CHART. When the data are ordered from smallest to
largest, the dot chart provides a percentile graph; the p-values are shown by
the right vertical scale line. The dotted lines go all of the way across the
graph. The baseline is a number near 275, and if the dotted lines ended at
the data dots, line length would encode taxes minus a number near 275 that
has no significant meaning.
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When there is a zero on the scale of a dot chart, or some other
meaningful baseline value from.which the dotted lines emanate, then
the dotted lines can end at the data dots, as in Figure 3.26. The dotted
lines should go across the graph when the baseline value has no
particular meaning, as in Figure 3.28. Here is the reason. When the
dotted lines stop at the data dots, there are two aspects of the graphical
symbols that encode the quantitative information — the lengths of the
dotted lines and the relative positions of the data dots along the
common scale. The lengths of the dotted lines encode the magnitudes
of the deviations from the baseline. In Figure 3.26 the baseline is zero,
s0 line length encodes the fractional graph areas, which is perfectly
reasonable. However, if the baseline value has no important meaning,
the deviations have no meaning. Suppose that in Figure 3.28 the dotted
lines ended at the data dots. Then line length would encode taxes
minus a number around 275. Since this number has no significant
meaning in this application, line length would be encoding meaningless
values; changing line length would be wasted energy and might even
have the potential to mislead. By making the dotted lines go across the
graph in Figure 3.28, the portions between the left vertical scale line
and the data dots are visually de-emphasized.

The dotted lines also should go across the graph when there is a
scale break, as in Figure 3.29, which graphs speeds of animals [136]). If
we stopped the-dotted lines at the data dots in this figure, those that
were broken by the scale break would not have any meaning, even
_though the baseline is meaningful. "

Two different methods can be used to put scale breaks on dot
charts. One, shown in Figure 3.29, is to use a vertical full scale break.
A second method, shown in Figure 3.30, can be used when better
resolution is needed on one or both sections of the scale; for example,
the resolution of the scale for the slowest four animals is considerably
better in Figure 3.30 than in Figure 3.29.
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Figure 3.29 DOT CHART. A vertical full scale break is used on this dot
chart. The dotted lines go all of the way across the graph since if they
ended at the data dots, the lengths of those crossing the break would be
meaningless.
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Figure 3.30 DOT CHART. This method can be used to break the scale of
a dot chart when better resolution is needed on one or both panels formed
by a vertical full scale break.
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Two-Way, Grouped, and Multi-Valued Dot Charts

Figure 3.31 is a two-way dot chart, a method for showing labeled data
that form a two-way classification. In this case the two-way data are the
percentages of U.S. immigrants from six groups of nationalities during
four time periods [76]. (The percentages add to 100% for each time
period.) An observation is classified by the time period and the
nationality group. Each column of the graph shows the values for one
time period and each row shows one nationality. The graph portrays
clearly the data’s main event: The proportions for Europeans and
Canadians have decreased through time and those for Asians and Latin
Americans have increased. :

Another way to show two-way data is by a grouped dot chart. In
Figure 3.32 the immigration data are grouped by nationality group and
in Figure 3.33 they are grouped by time period. The first grouped dot
chart emphasizes the changes through time and the second emphasizes
the mixture of nationality groups for each time period.

1931 — 1960 1961 — 1970 . 1971 — 1980 1977 — 1979
. . L A . . .
N & W EUROPE | -voveerererienninan. o . Al e
S & E EURQPE ... o e T N - ... e
CANADA |vvevrcinne PO | . " .
ASIA |-e P T PO | e -
LATIN AMERICA [--....o. o | fe P T F @ [ [ .
OTHER r .o .o ‘.
T — T . — .
0 20 40 0 20 40 0 20 40 0 20 40
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Figure 3.31 TWO-WAY DOT CHART. The two-way dot chart can be used
to show data classified by two factors. In this example the data are the
percentages of immigrants in six nationality categories for four time periods.
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L ' . L A final way to show two-way data, provided one of the two
N & W EUROPE o groupings has a small number of categories, is the multi-valued dot chart
:ZZ: - :ng """"""""""""""""" ; """"""""""""""""""""""""" in Figure 3.34. The data are the immigration percentages for just the
1974 — 1976 o """" first and last time periods.
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Figure 3.32

group.

GROUPED DOT CHART. The immigration data are grouped by
nationality. This emphasizes the time trend in the data for each nationality

Figure 3.33 GROUPED DOT CHART. The immigration data are grouped by
time. This emphasizes the mixture of nationality groups for each time period.
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3.4 TWO QUANTITATIVE VARIABLES

Many scientific investigations are aimed at discovering how two
quantitative variables are related. An example is measurements of
caloric intake and blood sugar levels for a group of people, where the
purpose is to discover how the two variables are related. In a two-
variable study we often want to find out how one, the dependent variable,
depends on the other, the independent variable. For example, we might
want to know how blood sugar depends on caloric intake. This section
is about graphing two quantitative variables.

Overlap: Logarithms, Reslduals, Moving, Sunflowers, Jittering, and
Circles i

In Section 2 of Chapter 2 it was pointed out that a recurring
problem of graphing two variables is overlapping plotting symbols,
which is caused by graph locations of different values being identical or
very close. When overlap occurs, different plotting symbols can obscure

o 1931 — 1960 e 1977 — 1979
1 ] ] 1
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ASIA [|----ieen o T @ et
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Figure 3.38  MULTI-VALUED DOT CHART. The dot chart is multi-valued
because there is more than one value on each line.
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one another and we can lose an appreciation of the values of the data.

- Methods that help avoid a loss of visual distinguishability will now be

described.

When both scales of a two-variable graph have poor resolution,
severe overlap can occur. This is illustrated in Figure 3.35, which shows
brain weights and body weights of 27 animal species [113, p. 39]. The
values of each variable are skewed to the right, that is, most of the data
are squashed together near the origin and a few values stretch out
toward the high end of the scale. In Section 1 of this chapter and in
Section 4 of Chapter 2 we have seen that taking logarithms and
graphing residuals are two methods that can improve resolution; for this
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Figure 3.35 OVERLAP. Overlapping plotting symbols must be visually
distinguishable. If the resolution along both scales of a two-variable graph is
poor because the measurements are skewed, overlap can cause problems,
as on this graph. .
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reason these two methods can reduce or eliminate overlap. For

Figure 3.35, logarithms solve the problem; in Figure 3.36 logarithms are
graphed and now there is no overlap.

The top panel of Figure 3.37 shows data on magnetic moments and
beta decays of mirror nuclei [19]. Theory suggests that the variable on
the vertical scale is linearly related to the variable on the horizontal
scale, and the data support the theory since the points lie close to the
line on the graph, which was fitted using least squares on all but three
of the points. Plotting symbols on the graph overlap because the data
are squashed together along the line. Graphing residuals in the bottom
panel of 3.37 improves the resolution and nearly eliminates the overlap.
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Figure 3.36 LOGARITHMS. The logarithms of the data in Figure 3.35 are

graphed and now there is no overlap. Taking logs will often alleviate. the
overlap caused by skewed positive data.
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Figure 3.37 RESIDUALS. Graphing residuals is another way to reduce
overlap. The data in the top panel are squashed together along the line.
Graphing residuals in the bottom panel improves the resolution and nearly
eliminates the overlap.
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Figure 3.38 MOVING. Iif the number of overlapping plotting symbols is
small, the graph locations of the points can be altered slightly to reduce the
overlap. On this graph, symbols that just touch one another have been
moved vertically.
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Information now can be added to the graph; the numbers by the points
are mass numbers and points graphed with unfilled circles are those
omitted in the least squares fit. The two panels of Figure 3.37 show far
more about the data than the top panel alone.

Another method for fighting overlap that works well if the number
of overlapping symbols is small, is to move slightly the graph locations
of certain points. This has been done in Figure 3.38; the data are from
an experiment on the production of mutagens in drinking water [23].
Any symbol that touches another has had its actual location altered
slightly. It is, of course, important to mention this movement if the
graph is used to communicate quantitative information to others.

Sunflowers are a graphical method that can relieve exact and partial
overlap [34]. They are illustrated with geological data in Figure 3.39 [25]
and with data on graphical perception in Figure 3.40 [35]. A dot by’
itself means one point. A dot with line segments (petals) means more
than one point; the number of petals indicates the number of points.
The method is helpful when there is exact overlap or when many points
are crowded into a small region. For the data in Figure 3.40 there is
exact overlap; for Figure 3.39 the overlap is not exact, but points are
very close to one another. When there are a large number of points on
the graph there is a need for a sunflower algorithm: partition the data
region into-squares, count the number of points in each square, use
sunflowers to show the counts, and position them in the centers of the
squares.

The data in Figure 3.40 are from a perceptual experiment that will
be discussed in detail in Section 3 of Chapter 4 [35]. Subjects judged the
distances of four points — A, B, C, and D — from a line and recorded
the percents that the B, C, and D distances were of the A distance. The
true percents for B, C, and D were 52.5%, 47.5%, and 57.5% respectively.
Figure 3.40 graphs the judged percents for D against the percents for B
for 126 subjects. The graph was made to see if the judgments are
correlated, an important issue whose answer affected the way the data
were analyzed. The graph shows clearly that there is a large amount of
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Figure 3.39 SUNFLOWERS. Each symbol»\yith lines emanating from a dot
is a sunflower. The number of petals (lines). isthe number of data points at
or near the center of the sunflower; sunflowers can be used to solve the

overlap problem.
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correlation. There is substantial overlap of the graph locations because
answers tended to be multiples of 5. Figure 3.41 shows a scatterplot of
the judgments with the overlap problem ignored, and only 51 points
appear; not showing the multiplicity is misleading.

Another solution for exact overlap of graph locations is jittering:
adding a small amount of random noise to the data before graphing [21].
This is illustrated in Figure 3.42 for the perception data. Jittering is a
simpler remedy than sunflowers, but does not help, as sunflowers can,
when resolution is degraded by a large number of partially overlapping
symbols. '
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If there is only partial overlap and no exact overlap, using an
unfilled circle as the plotting synibol can improve the distinguishability
of individual points [34]. This is illustrated in Figure 3.43. Circles can
tolerate substantial partial overlap and still maintain their individuality.
(Examples outside the graph domain are the symbol of the Olympics
and the three-ring sign for Ballantine beer.) The reason is that distinct
circles intersect in regions that are visually very different from circles.
Squares, rectangles, and triangles do not share this property and
degrade more rapidly.
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Figure 3.41 OVERLAP. This graph shows the result of graphing the data

in Figure 3.40 and ignoring the overlap. Not indicating the multiplicity is
misleading.
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Box Graphs for Summarizing Distributions of Repeat Measurements of
a Dependent Variable '

Suppose the data consist of many repeat measurements of a
dependent variable, y, for each of several different levels of an
independent variable, x. One way to graph such data is illustrated in

.Figure 3.44. Each box graph portrays 25 values of the dependent

variable for each of 11 distinct values of the independent variable; the
center of the box graph is positioned horizontally at the value of the
independent variable. In a sense we are back to the setting of
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Figure 3.42 JITTERING. Another way to fight exact overlap is to add a

small amount of random noise to the data. Now all of the data from
Figure 3.41 can be seen.
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Section 3.2 on graphing distributions, since the goal is to see how the
distribution of the measurements of the dependent variable changes as
the independent variable changes.

The data in Figure 3.44 are from an interesting experiment in bin
packing [11}: k numbers, called weights, are randomly picked from the
interval zero to u, where u is a positive number less than or equal
to one; for the data in Figure 3.44, u was 0.8. There are bins of size one
and the object is to pack the weights into those bins; no overflowing is
allowed, and we can use as many bins as necessary, but the goal is to
use as few as possible. Unfortunately, to do this in an optimal manner
is an NP-complete problem, which means that for anything but very
small values of k the computation time is enormous. Fortunately, there
are heuristic algorithms which, while not optimal, do an extremely good
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Figure 3.43 CIRCLES. Unfilled circles are goéd plotting symbols since
they tend to maintain their individuality when there is partial overlap.
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job of packing. Mathematicians and computer scientists had studied the
worst-case behavior of bin packing [37] but there came a point where
many appreciated that average behavior was an important issue as well;
algorithms can be studied profitably by probing them with inputs,
sometimes randomly generated, and using graphs and statistical
methods to study the results [111. N

In Figure 3.44 the horizontal scale shows the number of weights, k,
on a log base 10 scale. k varies from 125 to 128,000 by steps of a
factor 2; that is, the first number is 125, thg second is 250, and so forth
up to 125 x 21%=128,000. There were "25 runs of the bin' packing
procedure for each value of k; for each run, k weights were chosen
randomly from thé interval 0 to 0.8 and a packing carried out. The
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Figure 3.44 BOX GRAPHS FOR REPEAT MEASUREMENTS OF A
DEPENDENT VARIABLE. The purpose of the graph is to see how the
dependent variable, the variable on the vertical axis, depends on the
independent variable, the variable on the horizontal axis. For each value of
the independent variable there are 25 measurements of the dependent
variable; the distribution of these 25 values is summarized by a box graph.
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algorithm used to do the packing was first fit decreasing: The weights are
ordered from largest to smallest and are packed in that order. For each
weight the first bin is tried; if it has room, the weight is inserted and if
not the second bin is tried; if the second bin has room, the weight is
inserted and if not, the third bin is tried; the algorithm proceeds in this
way until a bin with room, possibly a completely empty one, is found.
The vertical scale in Figure 3.44 is the logarithm base 2 of the amount of
empty space in the bins that have at least one weight. Since the bin
size is one, this amount of empty space is equal to the number of bins
used minus the sum of the weights. In this example, empty space is the
dependent variable and number of weights is the independent variable,

What does Figure 3.44 show us about bin packing? One thing is
that the first-fit-decreasing algorithm is very efficient. The amount of
empty space is never greater than 8 in these runs. For runs of size
128,000 the performance is superlative; the median empty space is
about 4 .even though the sum of the weights in this case averages
128,000 x 0.8/2 = 51,200. The figure also shows that median log empty
space grows nonlinearly with log number of weights, although the
pattern becomes linear for large numbers of weights. This latter result
is predicted by a theorem about the asymptotic behavior of empty
space [12]. Figure 3.44 also shows that for the smaller numbers of
weights there are outliers: values that are large compared to the
majority of the values.

Strip Summaries Using Box Graphs

Box graphs can be used even when there are no repeat
measurements of the dependent variable by grouping the data according
to the values of the independent variable. This grouping is illustrated
in Figure 3.45. The data have been divided into five groups by vertical
strips with as nearly an equal numiber of observations in each strip as
possible. In Figure 3.46 box graphs summarize the distributions of the y
values for the five strips. Each box graph is centered, horizontally, at
the median of the x values for its strip.

The data in this example, which were also graphed in Section 2 of
Chapter 2, are from an experiment on 144 hamsters in which' their
lifetimes and the fractions of their lifetimes they spent hibernating were
measured [89]. The objective of the experiment was to see how lifetime
depends on hibernation. Figure 3.46 shows that as fraction of lifetime
spent hibernating increases, the distribution of lifetime increases.

-
BN
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Smoothing: Lowess

One hypothesis suggested by Figure 3.46 is that hamster DNA
parcels out a fixed amount of nonhibernation hours; a hamster gets only
so much awake time, and if it hibernates longer, it lives longer by the
same amount, but otherwise there is no effect on lifetime. Suppose
£ = lifetime and p = fraction of lifetime spent hibernating. If this
hypothesis is true then (1-p)¢, the amount of time spent not
hibernating does not depend on p#¢, the amount of time spent

hibernating. ¥
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Figure 3.45 DEPENDENT-INDEPENDENT VARIABLE DATA. Age at death
is graphed against fraction of lifetime spent hibernating for 144 hamsters.
The data have been divided into five strips with nearly equal numbers of
points, in preparation for the graph in Figure 3.46.
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Figure 3.47 is a graph of time spent not hibernating against time
spent hibernating. It shows that, overall, the hypothesis is false;
increased hibernation time results in increased nonhibernation time.
But how would we describe the dependence? Is there a linear or
nonlinear dependence? With a graph of just the (x;, y;) values it is hard
to answer these questions.

We could study the dependence by strip summaries with box
graphs, but Figure 3.48 shows another method: a smooth curve put
through the points. For each point, (x;, y;), on the graph there is a
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Figure 3.46 STRIP SUMMARIES USING ‘BOX GRAPHS. The distribution of
the y values of the points in each of the five vertical strips of Figure 3.45 is
shown by a box graph. Each box graph is centered, along the horizontal
scale, at the median of the x values of the points in the strip.
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(o~ .
smoothed value, (x;, §;). J; is the fitted value at x;. The curve is graphed
by connecting successive smoothed values, moving from left to right, by
lines. The purpose of the curve is to summarize the middle of the
distribution of y for each value of x. Thus the curve is performing the
same task as the medians of the box graphs in strip summaries; if we
took a narrow vertical strip, the curve should describe the middle of the
distribution of the y values in the strip. Statistical scientists call this a
regression curve, a misnomer since there is nothing regressive about it at
all.. The method used to compute the smo?;_thed values will be discussed

later. 4
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Figure 3.47 DEPENDENT-INDEPENDENT VARIABLE DATA. The total time
spent not hibernating is graphed against the time spent hibernating for the
144 hamsters. There appears to be a dependence of y on x but it is difficult
to assess the nature of the dependence from the graph.
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The smooth curve shows that there is some truth to the hypothesis
stated earlier. While there is, overall, an increase in nonhibernation
lifetime as hibernation increases, the response is in fact constant until
the amount of hibernation is above 100 days. From 100 days and above,
the effect is nearly linear and the slope is about 1, so each minute spent
hibernating beyond 100 days produces on the average about one extra
minute of nonhibernation lifetime. We have been assuming that there
is a causal mechanism, but this is reasonable in view of current
biological information [89].

The curve in Figure 3.48 was produced by a data smoothing
procedure called robust locally weighted regression [26]; the name of the
procedure is often shortened to lowess (locally-weighted scatterplot
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Figure 3.48 LOWESS. The smooth curve; which was computed by.a
procedure called lowess, summarizes how y depends on x. For each point,
(x;, 1), on the graph, lowess produces a smoothed value, (x;, ;). The curve
is graphed by connecting successive smoothed values, moving from. left to
right, by straight lines.

TWO QUANTITATIVE VARIABLES 171

smoother). The user must choose a smoothness parameter f, which is a
number between 0 and 1. As f increases, the smooth curve becomes
smoother. In Figure 3.48 the value of f is 0.5 and in Figure 3.49 it
is 0.25. Lowess is very computing intensive, but there is a fast, efficient
computer program that carries it out [110]. '

_ Choosing f requires some judgment for each application. In most
applications an f that works well is usually between 0.5 and 0.8. The
goal is to try to choose f to be as large as possible to get as much
smoothness as possible without distorting the underlying pattern in the
data.

Residuals, useful in so many situations, can help in choosing f.
This will be illustrated with an example. Figure 3.50 is a graph of the
air pollutant ozone against wind speed for 111 days in New York City
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Figure 3.49 LOWESS. The smoothness of the lowess curve depends on a
smoothness parameter, f, which varies between 0 and 1. As fincreases the
curve becomes smoother. In Figure 3.48, f = 0.5 and in this figure, f = 0.25.
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from May 1 to September 30 of 1973. From this graph we can see that
the general pattern is for ozone to decrease as wind speed increases
because of the increased ventilation of air pollution that higher wind
speeds bring. However, it is difficult to see more precise aspects of the
pattern, for example, whether there is a linear or nonlinear decrease.

The top panel of Figure 3.51, which has a lowess curve with
f =08, suggests the decrease is nonlinear. How do we know the
lowess curve is not distorting the pattern? Since we cannot discern
easily the pattern when a lowess curve is absent we cannot expect to
assess easily how well lowess is doing. The solution is to graph y; — #;
against x;, add a lowess smoothing to this graph of residuals, and see if
there is an effect. This is illustrated in the bottom panel of Figure 3.51.
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Figure 3.50 DEPENDENT-INDEPENDENT VAﬁIAB_LE DATA. The data are
daily measurements of ozone and wind speed for 111 days. It is difficult to
see the nature of the dependence of ozone on wind speed.

TWO QUANTITATIVE VARIABLES 173

o
150 -
o
@
a 100
%
w
z
(=]
N
Q
S0
0
] 9 .
50 - ° ° L
J o L
@ 40 o o ° o ° -
o ° °
o o o
< 4 . [ o, o .
%] . o o 8 o
a 20 o -
< 8
8 o °0%00 o
b= 7 8 8 ° i
n °g
§ood e ; -
w g o “.Beg °% ¢ o
P 1 80° o oB 8 ° I
E‘ ° 0°°°4:;s Dg
o —20 ° .0 o, -
[-] o
d 008 ° L
-404 o o ° L
o
T T T T T T T
5 10 15 20

WIND SPEED (MPH)

Figure 3.51 CHECKING LOWESS. On the top panel the graph from
Figure 3.50 now has a lowess curve with f = 0.8. It is difficult to assess
visually whether lowess is correctly depicting the dependence. On the
bottom panel the residuals, y; — ¥;, are graphed against x;, and a lowess
curve is superposed; the curve suggests there is a small dependence of the
residuals on x;, which means f is too large in the smoothing of the top
panel.
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The lowess curve suggests that there is some dependence of the
residuals on x;. This should not happen; the curve should be nearly a
horizontal line since the residuals should be variation in y; not
explainable by x;. The problem is that the lowess smoothing in the top
panel has missed part of the pattern because f is too large, and this
missed part has gone into the residuals.

In Figure 3.52, f has been reduced to 0.5. The curve on the graph
of the residuals is now reasonably close to a horizontal line, so the
amount of smoothing for the curve in the top panel is not too great.

This method of graphing and smoothing residuals is a one-sided
test: it can show us when f is too large but sets off no alarm when fis
too small. One way to keep f from being too small is to increase it to
the point where the residual graph just begins to show a pattern, and
then use a slightly smaller value of f.

Lowess is quite detailed and mathematical, and a full discussion of
how it works would sidetrack us too much. In the remainder of this
section a brief description will be given; the details can be found in the
source [26] or in [21]. Suppose the x; are ordered from smallest to
largest so that x; is the smallest and x, is the largest. For each pair of
values, (x;,y;), lowess produces a fitted value, ¥;. Figure 3.53 shows how
the fitted value is computed at one x;. Look at the upper left panel.
The data, which are made up, are shown by the unfilled circles; the
value of x; at which the fitted value is to be computed is x¢, which is
marked by the vertical dotted line. The value of f is 0.5 in this
example; it is multiplied by 20, the number of observations, which gives
the number 10. We now pick from among the x; the 10th closest x; to
x¢, Which is x5. (x¢ itself is included in this count.) A vertical strip,
depicted by the solid vertical lines, is defined by putting the left
boundary of the strip at x; and the right boundary on the other side of
x¢ at the same distance from x¢ as x,. -

Look at the lower left panel. A weight function, w(x), is defined.
The points, (x;, y;) fori =1 to n, are assigned weights w(x;). Notice that
(x6,¥6) has the largest weight; moving away from x¢ the weight function
decreases and becomes zero at the boundaries of the strip.

Look at the upper right panel. A line is fitted to the points of the
graph using weighted least squares with weight w(x;) at (x;, y;). This
means that (x¢,y¢) plays the largest role in determining the line and the
role played by other points decreases as their x values increase in
distance from xs. Points on and outside the strip boundary play no role
at all. The fitted value, i, is the y-value of the line at x = xs. The
point (x4,7¢) is depicted by the filled circle.
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Figure 3.52 CHECKING LOWESS. On the top panel the value of f for
lowess has been reduced to 0.5 since Figure 3.51 suggests f= 0.8 is too
large. The bottom panel shows no dependence of the residuals on X, which
suggests the lowess curve with f= 0.5 is not distorting the pattern of the
dependence of ozone on wind speed.
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Look at the lower right panel. The result of the previous operations
is the one lowess smoothed value, (x4 ¥¢), shown by the filled circle.
The same -operations are carried out for each point, (x;,5;), on the graph.
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25

HOW LOWESS WORKS. The graphs-show how the fitted

value at xg is computed. (Top Left) f, which is 0.5, is multiplied by 20, the
number of points, which gives 10. A vertical strip is defined around xg so
that the boundary is at the 10th nearest neighbor. (Bottom Left) Weights are
defined for the points using the weight function. (Top right) A line is fitted
using weighted least squares. The value of the line at xg is the lowess fitted
value, ye. (Bottom right) The result is one.vaile of lowess, shown by the
filled circle. The computation is repeated for each point on the graph.
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. Figure 3.54 shows the sequence of operations for the rightmost point,

(x20.y20). The right boundary of the strip does.not appear in the two left
panels because it is beyond -the right extreme of the horizontal scale
line.

There is another piece to the lowess algorithm. What has been
described is the locally weighted regression part of robust locally
weighted regression. There is also a robustness part. Suppose the data
contain one or more outliers; an outlier is a point, (x;,y;), with an
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value at Xy I8 illustrated.
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The computation of the lowess fitted
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unusually large or small value of y; compared with other points in a
vertical strip around x;. The upper panel of Figure 3.55 shows an
example. - The unfilled circles are the data and one point, (x11,¥13), has a
y value that is much larger than the y values of points whose x values
are close to x;;. Carrying out lowess as described above yields the filled
circles; the outlier has distorted the fitted values in the neighborhood of
x1; SO that the general pattern of the data is no longer described.

Lowess has a robustness feature in which, after a first smoothing as
described above, outliers are identified and downweighted in a second
smoothing. This identification, downweighting, and resmoothing can
be done any number of times, although two times is almost always
sufficient. The result of the full lowess algorithm, including the
robustness part, is shown in the lower panel of Figure 3.55. Now the
smoothed values describe the behavior of the majority of the data.

Time Series: Connected, Symbol, Connected Symbol, and Vertical Line
Graphs

A time series is a set of measurements of a variable through time.
Figure 3.56 shows an example. Thedata are yearly values, from 1868 to
1967, of the aa index [96], which measures the magnitude of fluctuations
in the earth’s magnetic field. The index is the average of measurements
of geomagnetic fluctuations at observatories in Australia and England
that are roughly antipodal: at opposite ends of an earth diameter.
Figure 3.56 shows there has been an increase in the overall level of the
aa index from 1900 to 1967. The solar wind causes fluctuations in the
earth’s magnetic field, so the increase in the index suggests that the
solar wind has increased during this century [49]. Figure 3.56 also
shows the aa index has a cycle of about 11 years. This is the same as the
sunspot cycle; increased sunspots are associated with increased solar
activity and therefore an increased solar wind, but interestingly, the
sunspots do not show an increase in their overall level, as the aa index
does. '

,

. sA time series is a special case of the broader dependent-
independent variable category. Time is the independent variable. One
important property of most time series is that for each time point of the
data there is only a single value of the dependent variable; there are no
repeat measurements. Furthermore, most time series are measured at
equally-spaced or nearly equally-spaced points in time. These special
properties invite special graphical methods which, as will be illustrated
at the end of this section, are relevant for any situation with a single-
valued dependent variable and an equally-spaced independent variable.
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Figure 3.55 HOW LOWESS WORKS. Lowess has a robustness feature

that prevents outliers from distorting the smoothed values. (Top panel) The
open circles are the points of the graph; there is one outlier between x = 15
and x = 20. The smoothed values for lowess without the robustness feature,
which are shown by the filled circles, have been distorted in the
neighborhood of the outlier. (Bottom panel) The filled circles are from
lowess with the robustness feature; now the smoothed values follow the
general pattern of the data.
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There are many ways to graph a time series. Figure 3.56 is a
connected symbol graph since symbols together with lines connecting
successive points in time are used. Figure 3.57 is a symbol graph because
just the symbols are used, and Figure 3.58 is a connected graph because
just the lines are used. Figure 3.59.is called a vertical line graph for the
obvious reason.

Each of these four methods of graphing a time series has its data
sets for which it provides the best portrayal. For the aa data the best
one is the connected symbol graph. The symbol graph does not give a
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Figure 3.56 CONNECTED SYMBOL GRAPH. The time series shown on
the graph is the yearly average of the aa index: measurements of the
magnitudes of fluctuations in the earth's magnetic field. A connected symbol-
graph, which allows us to see the individual &"atq points and the ordering
through time, reveals an 11-year cycle and a trend from 1900 to 1967.
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clear portrayal of the cyclic behavior, because we cannot perceive the
order of the series over short time periods of several years, which makes
seeing the 11-year cycle difficult. In the words of spectrum analysis, we
cannot appreciate the high and middle frequency behavior of the series
on the symbol graph.

On the connected graph in Figure 3.58 the individual data points
are not unambiguously portrayed. For example, it is clear that there is
an unusual peak in the observations around 1930, but it is hard to
decide if the peak is a single outlier for ong year or is supported by a
rise and fall of a few values. On the connected symbol graph, and the
other graphs, it is clear that the peak consists of one value.
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Figure 3.57 SYMBOL GRAPH. A symbol graph of the aa data does not
reveal the 11-year cycle. -
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On the vertical line graph in Figure 3.59 there is an unfortunate
asymmetry: The peaks of the 11-year cycle stand out more clearly than
the troughs. There is also a disconcerting visual phenomenon: Our
visual system cannot simultaneously perceive the peaks and the troughs.
This is what psychophysicists call a figure-ground effect [55, pp. 10-11];
for example, there is a famous black and white drawing where if you
focus on the black, you see profiles of two faces looking at one another
and if you focus on the white, you see a vase, but both cannot be
simultaneously perceived [55, p. 11].

There is, however, a place for vertical line, connected, and symbol
graphs. A symbol graph of a time series is appropriate if what we want
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Figure 3.58 CONNECTED GRAPH. The conpected graph does not reveal
the positions of the aa measurements. It is not-possible to determine if the
peak around 1930 consists of one or many values.
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to convey is the long-term trend, that is, the low frequency behavior.
In such a case it is not necessary to perceive the exact time order over
short time intervals. Figure 3.60 is an example. The data are the daily
ozZone measurements we have seen before. One very low ozone value,
an outlier on the log scale, has been omitted in Figure 3.60. In this
example the day-to-day movement of ozone is less interesting than the
trend, so the symbol graph is used. A lowess curve with f = 0.5 is
superposed to help us see the trend.

A connected graph is appropriate when _the time series is smooth, so
that perceiving individual values is not inr};ortant. A vertical line graph
is appropriate when it is important to see individual values, when we
need to see short-term fluctuations, and when the time series has a large
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Figure 3.59 VERTICAL LINE GRAPH. On this graph the peaks stand out
more clearly than the troughs.
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number of values; the use of vertical lines allows us to pack the series
tightly along the horizontal axis. The vertical line graph, however,
usually works best when the vertical lines emanate from a horizontal
line through the center of the data and when there are no long-term
trends in the data.

Figure 3.61 is the graph of CO; and its components that was
discussed in detail in Section 2 of Chapter 1. A connected graph is used
for the two top panels because the data are smooth and seeing
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Figure 3.60 SYMBOL GRAPH. A symbol graph is appropriate for a time
series when the goal is to show the Iong-term trend in the series, but not
high frequency behavior. On this symbol - “graph a lowess curve is
superposed to help assess the trend.
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Figure 3.61 CONNEGTED AND VERTICAL LINE GRAPHS. The graph
shows the monthly average 002 concentrations from Mauna Loa and the
three components. Connected graphs are used in the top two panels since it
is not important to see individual values. Vertical line graphs are used in the
bottom two panels since it is important to see individual values and to

assess behavior over short periods of time and since each series has many
values.
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individual values was not judged important. A vertical line graph,

emanating from zero, is used for the two bottom panels because it is -

important in this application to see the individual monthly values and
to assess behavior over short time periods and because the time series is
long. . :

Time Series: Seasonal Subseries Graphs

Figure 3.62 shows a seasonal subseries graph, a graphical method that
was. invented in 1980 to study the behavior of a seasonal time series or
the seasonal component of a seasonal time series [36]. The data in
Figure 3.62 are the seasonal component of the CO, series in Figure 3.61.
In this example it is important to study how the individual monthly
subseries are changing through time; for example, we want to analyze
the behavior of the January values through time. We cannot make a
graphical assessment from Figure 3.61 since it is not possible to focus on
the values for a particular month; the graphical method in Figure 3.62
makes it possible.

In the seasonal subseries graph, the January values of the seasonal
component are graphed for successive years, then the February values
are graphed, and so forth. For each monthly subseries the mean of the
values is portrayed by a horizontal line. The individual values of the
subseries are portrayed by the vertical lines emanating from the
horizontal line. In Figure 3,62 the January subseries is the first group of
values on the left, the February subseries is the next group of values,
and so forth. The graph allows an assessment of the overall pattern of
the seasonal, as portrayed by the horizontal mean lines, and also of the

behavior of each monthly subseries. Since all of the monthly subseries .

are on the same graph we can readily see whether the change in any
subseries is large or small compared with the overall pattern of the
seasonal component. '

Figure 3.62 shows interesting features. The first is the overall
seasonal pattern, with a May maximum and an October minimum. This
pattern has long been recognized and is due to the earth’s vegetation
(See the discussion in Section 2 of Chapter 1.) The second feature is the
patterns in the individual monthly subseries. Subseries near the yearly
maximum tend to be increasing; the bi\ggest year-to-year increases occur
during the months March and April. Subseries near the yearly
minimum tend to be decreasing; the biggest year-to-year decreases occur
during the months September and October:. The net effect, of course, is
that the seasonal oscillations are increasing. '
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SEASONAL (PPM)

MONTH

Figure 3.62 SEASONAL SUBSERIES GRAPH. The seasonal component
from Figure 3.61 is graphed. First the January values are graphed for
successive years, then the February values, and so forth. For each monthly
subseries the mean of the values is portrayed by the horizontal line. The
values of each monthly subseries are portrayed by the ends of the vertical
lines. Now we can see the average seasonal change and the behavior of
the individual monthly subseries. Monthly subseries near the yearly
maximum tend to be increasing and those near the minimum tend to be
decreasing.
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An Equally-Spaced Independent Variable with a Single-Valued
Dependent Variable '

When two-variable data have a single-valued dependent variable
and equally-spaced values of the independent variable, the methods of
graphing a time series that were just discussed can be considered.
Figure 3.63 shows one example. The dependent variable is an estimate
of the spectrum of the aa index, and the independent variable is
frequency, measured in cycles per year. There are.101 estimates of the
spectrum at 101 frequencies spaced 0.005 cycles/year apart. Since the

spectrum estimate is a smooth function of frequency, a connected graph

was used.

FUNDAMENTAL
OF 11.1 YEAR HARMONICS
CYCLE T —— e cp————

ST

LOG BASE 10 SPECTRUM

FREQUENCY (CYCLES/YEAR)

Figure 3.63 SINGLE-VALUED DEPENDENT VARIABLE WITH EQUALLY-
SPACED INDEPENDENT VARIABLE. Data with a single-valued dependent
variable and an equally spaced independent variable can be graphed using
connected, symbol, connected symbol, and vertical line graphs. In this
example the dependent variable is an estimate of the spectrum of the aa
index and the independent variable is frequency.‘\ A connected graph is used
to show the data.
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The rise in the spectrum near zero frequency is just the trend
observed earlier in the graph of the series against time. Heading
toward higher frequencies, the first peak, whose frequency is marked
with a vertical reference line, provides an estimate of the average
fundamental frequency of the cycles in the aa index; the estimated
frequency is 0.09 cycles/year, which has a period of 11.1 years. The first
four harmonics (multiples) of this fundamental are also marked by
reference lines. It seems likely that the peaks in the spectrum near the
first three harmonics are also a result of the 11.1 year cycle.

The spectrum in this example was estimated by the following
procedure: subtract the mean; multiply by a full cosine taper [15, ch. 5];
compute the squared modulus of the Fourier transform; smooth with a
boxcar window with five raw spectrum values per estimate.

Step Function Graphs

A step function graph is appropriate when the dependent variable is
constant over intervals of the independent variable. Figure 3.64 is a
step-function graph that shows the weight of the Hershey Bar over a
time period of about 20 years. In his essay, “Phyletic Size Decrease in
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Figure 3.64 STEP FUNCTION GRAPH. The weight of the Hershey Bar is
graphed against time. A step function graph is appropriate when the
dependent variable is constant over intervals of the independent variable.
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Hershey Bars,” Stephen Jay Gould showed that the history from 1965
generally has been one of a decline in size of a bar with a fixed price,
followed by a sudden rise in both price and size, and then followed by
a gradual decline in size [54, pp.313-319]. This is illustrated in
Figure 3.64, which includes some additional data not available to Gould
at the time. '

With the additional data, we can now see something else quite
striking in Figure 3.64. It appears that one ounce is a reflecting barrier
below which bar weight will not drop. Maybe the barrier is
psychological. Hershey executives might see one ounce as the last line
of defense, and fear that were bar weight to drop below it, there would
be nothing to stop its ultimate extinction. But what will happen when
the United States converts to the metric system? One ounce is 28.35
grams. The human mind puts special emphasis on simple numbers, and
a new psychological barrier of 25 grams may take over.

Figure 3.64 seems to beg for a new graph using just the same data as
the old one, but graphed in a new way. The idea, which arises from the
field of economics, is that what really counts is the cost (price) per unit
of weight. In other words, how much does one bite of a Hershey Bar
cost? Figure 3.65 shows the cost per ounce through time, again using a
step function graph, which reveals the real law of nature: the
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Figure 3.65 STEP FUNCTION GRAPH. The cost per ounce of the Hershey
Bar is graphed against time. There are only two points in time when cost per
ounce decreased.
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inexorable rise in price per mouthful through time. The changing size
is just a way of helping to obey the law, and we can see a critical fact
not apparent in the first step function graph — every price increase,
except the change from the 25¢ bar to the 30¢, was in fact an increase in
cost per ounce. During the time period of this data there were only two
points in time when cost per ounce decreased — once, when the price
rose to 30¢, and once, in 1975, when the weight increased but the price
stayed constant. :

5

3.5 TWO OR MORE CATEGORIES OF MEASUREMENTS OF
TWO QUANTITATIVE VARIABLES: SUPERPOSITION
AND JUXTAPOSITION

This section is about graphical methods for two or more categories,
or groups, of measurements of two quantitative variables. We saw in
Section 2 of Chapter 2 that graphing different data sets can be a
challenge. If we superpose them in the same data region, we must be
sure that the graphical elements portraying each of the data sets can be
visually discriminated from the graphical elements showing the other
data sets. If we graph them on juxtaposed data regions we want to be
able to compare the different data sets as readily as possible. This
section discusses graphical methods for achieving these goals.

Superposed Plotting Symbols

Figure 3.66 has four superposed data sets. The measurements are
from the survey of graphs in scientific publications discussed in
Section 3.3 [27]. For a large number of scientific journals, measurements
were made of the fraction of space each journal devoted to graphs (not
including legends) and the fraction of space each journal devoted to
graph legends. Figure 3.66 is a graph of log (legend area/graph area)
against log (graph area) for 46 journals. The ratio of legend area to
graph area is a rough measure of the amount of legend explanation
given to graphs. The letters encode four journal categories:

Biological — biology, medicine
Physical — physics, chemistry, engineering, geography
Mathematical — mathematics, statistics, computer science

Social — psychology, economics, sociology, education.

One advantage of the letters is that it is easy to remember the groups,

~ and looking back and forth between the graph and the key is not
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necessary. But a serious disadvantage of the letters is that they do not
provide high visual discrimination with one another; it is hard,
compared with other encoding schemes, to perceive the points for a
particular group as a whole, mentally filtering out the points of other
groups. :

Figures 3.67 and 3.68 present two other methods for encoding the
four categories. To make the ensuing discussion about visual
discrimination more meaningful, look at each of Figures 3.66 to 3.68 and
try to see the points of each category as a unit as if the other points
were not there.
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Figure 3.66 SUPERPOSED SYMBOLS. Four categories of measurements
of two variables are graphed. The letters encoding the four categories do
not provide high visual discrimination of the four sets of points.
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The encoding scheme in Figure 3.67, commonly used in science and
technology, is different geometric shapes; the visual discrimination
appears somewhat greater than for the letters in Figure 3.66. It is
harder to remember the category associated with a shape than with a
letter, but this is a minor point. In Figure 3.68, four types of circle fill
are used to encode the categories. Theoretical and experimental
evidence from the field of visual perception suggests that different
methods of fill should provide high visual discrimination. [34]. In fact,
Figure 3.68 appears to provide better discrimination than the other two
figures.

0O BIDLOGICAL O PHYSICAL A MATHEMATICAL O SDCIAL

[ 1 1 ) | L i L 1 L
4 o |
u]
u}
A > u} -
<
n u}
< o
u]
(:JE_ 1 O ] r—
é o
)
> -3 ® © -
G
[
%
< o <o o
o e o L
=4
L o o <&
8 A o <A
_
< -4 — oo o > 00 -
™ © A 0 A
[z A A
9 ) A i
A
© o
0
-5 L
I T [ T T T T T T T
-6 -5 -4 -3 -2

LOG, GRAPH AREA (LDG FRACTION OF TOTAL)

Figure 3.67 SUPERPOSED SYMBOLS. The data of Figure 3.66 are
graphed with the categories encoded by differently shaped plotting symbols.
This provides somewhat greater visual discrimination than using the letters.
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Figure 3.68 shows two interesting phenomena: social science
journals and mathematical science journals tend to use graphs less than
the other two categories, and the biological science journals tend to have
more in the figure legends. The second phenomenon is probably due to
the tendency in biological journals to put experimental procedures in
figure legends.
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Figure 3.68 SUPERPOSED SYMBOLS. The data of Figure 3.66 are
graphed with the categories encoded by circles with different methods of fill.
This provides the highest visual discrimination of the methods shown in
Figures 3.66 to 3.68.
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The encoding scheme in Figure 3.68 works well if there is not much
overlap of the plotting symbols. When there is overlap, the solid
portions of the symbols can form uninterpretable blobs. In such a case
we must attempt to use symbols that provide ‘as much visual
discrimination as possible, subject to the constraint that the symbols
tolerate overlap. The constraint seems to restrict us to symbols
consisting of curves and lines, with no solid parts, and with a minimum
of ink. One encoding scheme that does reasonably well is shown in
Figure 3.69.
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Figure 3.69 SUPERPOSED SYMBOLS. The plotting symbols used on this
graph provide fair visual discrimination and can tolerate overlap.
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Figure 3.70 shows two sets of plotting symbols, one in each row.
The top set is to be used when there is little overlap, and the bottom set

is to be used when overlap causes problems with the top set. For each’

set, the suggestion is to use the first two symbols on the left if there are
two categories, the first three symbols on the left if there are three
categories, and so forth.

Superposed Curves in Biack and White

Sometimes superposed- data sets come in the form of superposed
curves, as in Figure 3.71. The data will be described shortly. Often, we
can make each curve solid and still have the requisite visual
discrimination. If at the intersection of two curves, the slopes of the
curves are very different, our eyes have no trouble visually tracking
each curve. For example, in Figure 3.71, 5 gt airburst and 3 gt are easy to
follow at their crossing between 100 and 150 days. But if two curves
come together with similar slopes, they can lose their identity; 5 gt and
5 gt airburst almost do this at their intersection just after 100 days.

Figure 3.70 PLOTTING SYMBOLS. The top set can be used when there
is little overlap, and the bottom can be used when overlap causes problems
with the top set. The first two symbols on the left are to be used when there
are two categories, the first three symbols are to be used when there are
three categories, and so forth. i
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If solid curves lose their identity we can switch to different curve
types, as in Figure 3.72. .The goal, as it was for symbols, is to choose
curves that have high visual discrimination. We want to see each curve
effortlessly and as a whole and not have to visually trace it out as we do
a secondary road on an automobile map. Figure 3.73 is a palette of
curve types that shows the variety possible from dots and dashes.
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Figure 3.71 SUPERPOSED CURVES. Superposed curves need to be
visually discriminated. In this case the behavior of the data is simple enough
that each curve is visually distinct.
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Juxtaposition

Sometimes the only solution for visual discrimination of different
data sets is to give up superposition and use juxtaposition of two or
more panels. This is illustrated in Figure 3.74.

Figure 3.74 shows model predictions of temperature in the
Northern Hemisphere following different types of nuclear
exchanges [127]. The temperatures following major exchanges drop
precipitously due to soot from conflagrations of cities and forests and
due to dust from soil and vaporization of earth and rock. The soot and
dust substantially reduce radiation from the sun which, in turn, causes
the temperature to drop.
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Figure 3.72 SUPERPOSED CURVES. Visual discrimination can be
increased by different curve types. N
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The temperatures are computed from physical models that describe
the creation of particles, the production of radiation, convection, and a
script for the nuclear war. The panels in Figure 3.74 are different
exchange scenarios, which are explained in Table 3.1. The total world
nuclear arsenal of strategic weapons is 17 gigatons (gt), which is roughly
equal to 10° Hiroshima bombs.

Table 3.1 NUCLEAR EXCHANGE SCENARIOS.

-
-

Code Description
10 gt 10 gt exchange.
5 gt 5 gt exchange.
5 gt air 5 gt airburst in which all weapons are detonated above
ground.
5 gt dust. 5 gt exchange with only the effects of dust included, but
not fires.
3 gt 3 gt exchange.
3 gt silo 3 gt exchange aimed only at missile silos.
1 gt 1 gt exchange.
0.1 gt city 0.1 gt exchange aimed only at major cities.

Figure 3.73 CURVE TYPES. Dots, dashes, and combinations provide a
variety of patterns for graphing curves.
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Figure 3.74 JUXTAPOSITION. Each curve shows averaged Northern
Hemisphere temperature following a nuclear war. The scenarios of the war
are different for different panels. On thisgraph the different data sets are
juxtaposed. Comparisons of the curves are enhanced by the strategically
placed reference lines: the upper horizontal reference line on each panel

shows the current average ambient Northern Hemisphere temperature, the .

fower horizontal reference line shows the minimum temperature for the 5 gt
exchange, and the vertical reference line shows™ the time of the 5 gt
temperature minimum.
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Juxtaposition is needed for this temperature data. Superposition
results in the tangle of Figure 3.75. We could attempt to improve the
graph by using different curve types, but no black and white method
appears to reduce the clutter substantially. Actually, it is not necessary
to settle for one extreme or the other; we might have attempted four
juxtaposed panels, each with two curves superposed.

When it works, superposition is better than juxtaposition because it
allows a more incisive comparison of the values of the different data
sets. For example, in Figure 3.75 we cah see very clearly that the
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Figure 3.75 SUPERPOSITION. The curves of Figure 3.74 cannot be easily
visually discriminated when they are superposed.
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minimum for each scenario occurs at about the same time and we can
effectively compare the values of the minima; the problem in this
example is that it is not easy to see which curve goes with which
scenario.

In giving up superposition for juxtaposition we decrease our ability
to compare the values of different data sets in order to increase our
ability to discriminate the data sets. However, we can employ a method
that greatly improves our ability to compare the values on different
juxtaposed panels — strategically place the same lines or curves on all panels
to serve as visual references. For example, in Figure 3.74 the lower
horizontal reference line on all panels is the value of the 5 gt minimum;
this line allows us to compare the temperature minima more effectively.
The top horizontal reference line is the Northern Hemisphere average

ambient temperature; this line helps us to judge the progress each curve.

makes in getting back to normal conditions. The vertical reference line
shows the time of the 5 gt minimum; this line provides a more effective
comparison of the times of the minima.

Figure 3.74 does a good job of showing the temperature profiles.
The major exchanges result in a rapid drop to around —25°C and then a
slow recovery lasting many months. The 0.1 gt city attack has such a
strong effect because of the tremendous concentration of combustible
materials in urban areas.

Visual references on juxtaposed panels can take many different
forms: lines, curves, or plotting symbols. We will now give two more
examples to show how varied the nature of the visual reference can be.

Figure 3.76 is a graph of brain weights and body weights for four
categories of species[40}. Juxtaposition is necessary because
superposition results in so much overlap that visual resolution of the
four groups is impossible whatever (black and white) method is tried.
The same three lines are drawn on each panel. The top line shows the
major axis of the primate point cloud, the middle line shows the major
axes of the bird and nonprimate mammal point clouds, and the lower
line is for the fish. These three lines help us to compare the relative
positions of the four point clouds. All three lines have slope 2/3,
because brain weights tend to be related to body weights to the 2/3

power; the reason for this relationship is discussed in Sectlon 3 of
Chapter 1.

In Figure 3.77 the four lines have the same slopes but the intercepts
are different. The data are the logarithms of the winning times for four
track events at the Olympics from 1900 to 1984 [22, 138, p- 833]. The
lines were fit to the data using least squares; the slope was held fixed
but the intercept was allowed to vary from one data set to the next.
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Because the number of units per cm is the same on the four vertical
scales, the lines on the four panels have the same angle with the
horizontal. In this example the lines help us to see that the decrease in
the log running times has been nearly linear and that the slopes for the
four data sets are the same. This means that the overall percent
decrease since 1900 has been about the same for the four races.
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Figure 3.76 JUXTAPOSITION. Log brain weights are graphed against log
body weights for four categories of species. The same three reference lines
are drawn on the four panels. Each line has slope 2/3; the top line
describes the primates, the middle line describes the birds and nonprimate
mammals, and the bottom line describes the fish. These strategically placed
lines enhance our ability to compare data on different panels.
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Figure 3.77 JUXTAPOSITION. The grabh shows the logarithms of the
winning times at the Olympics in four races. The vertical scales on the four
panels have the same number of log seconds pér cm. The four lines on the
panels have the same slope, determined by. a least squares fit. Since
logarithms are graphed and since the points ﬁeagly follow lines with the
same slope, we can conclude that the percent decrease in the running times
is roughly constant through time and the constant is the same for all four
races.
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Figure 3.78 shows curves used as references. The data are from an
experiment on graphical perception [33] that will be discussed in
Section 3 of Chapter 4. A group of 51 subjects judged 40 pairs of values
on bar charts and the same 40 pairs on pie charts; each judgment
consisted of studying the two values and visually judging what percent
the smaller was of the larger. The left panel of Figure 3.78 shows the 40
average judgment errors (averaged across subjects) graphed against the
true percents for the 40 pie chart judgments. The right panel shows the
same variables for the bar chart judgments. Lowess curves, described in
Section 3.4, weré fit to each of the two” data sets; both curves are
graphed on each panel and serve as visual references to help us compare
the average errors for the two types of charts.

Color

If color is available we do not as frequently need to give up
superposition and use juxtaposition. Our visual system does a
marvelous job of discriminating different colors. In Figures 3.79 and
3.80 superposition in black and white is used for two sets of data that
we have seen earlier in the chapter. We cannot effectively discriminate
the different data sets. Color is used in Plates 1 and 2, which follow
page 212, and discrimination is considerably enhanced.

PIE CHART AVERAGE ABSOLUTE ERROR
BAR CHART AVERAGE ABSDLUTE ERROR

o 20 40 60 80 100 o 20 40 60 80 100
TRUE PERCENT TRUE PERCENT

Figure 3.78 JUXTAPOSITION. The graph compares pie chart and bar
chart judgment errors of 51 subjects. Two curves show how the bar chart
errors and the pie chart errors depend on the true percent being judged.
Graphing the two curves on both panels helps us to compare the two sets of '
data.



206 GRAPHICAL METHODS

1 = 10GT 2 = 56T 3 = 5GT AIR 4 = 5GT OUST -
5 = 3GT 6 = 3GT 7 = 16T 8 = 0. 1GT CITY

SILD

, 10 —
)

8]

g

|

5

[ 0

<

14

i}

o 4

=

[}

—

[ R -

= 10

<

|

(A1} -

(]

<

&

2D —20

"

-30

Figure 3.79

T T T T T T
100 T 200 300

TIME AFTER DETONATION (DAYS)

COLOR. Color is a good mettrod for providing visual

discrimination. The eight curves are not as easy to discriminate as they are
in the color encoding in Plate 1, which follows page 212.
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Many people will find the colors in Plates 1 and 2 unesthetic,
garish, and clashing. This was done on purpose to maximize the visual
discrimination. Pleasing colors that blend well tend not to provide as
good visual discrimination.
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COLOR. The four categories of data cannot be easily
Discrimination is greatly enhanced by color encoding in
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3.6 THREE OR MORE QUANTITATIVE VARIABLES

Science and technology would be far simpler if data, like the people
of Edwin A. Abbott’s Flatland [1], always stayed in two dimensions.
Unfortunately, data can live in three, four, five or any number of
dimensions. Consider, for example, measurements of temperature,
humidity, barometric pressure, percentage cloud cover, solar radiation
intensity, and wind speed at a particular location at noon on 100
different days. The data on these six variables consist of 100 points in a
six-dimensional space. How are we to graph them to understand the
complex relationships? How are we to peer into this six-dimensional
space and see the configuration of points?

Graphs are two-dimensional. If there are only two variables — for
example, just temperature and humidity in our meteorological data set
— then the data space is two-dimensional, and a Cartesian graph of one
variable against the other shows the configuration of points. As soon as
data move to even three variables and three dimensions we must be
content with attempting to infer the multidimensional structure by a
two-dimensional medium. In this section, some methods for doing this
are described. :

Framed-Rectangle Graphé

Figure 3.81 is a framed-rectangle graph [33], which can be used to
show how one variable depends on two others. The data are the per
capita debts in dollars of the 48 continental states of the U.S. in 1980
[137, p. 116). Each value is portrayed by a solid rectangle inside a frame
that has tick marks halfway up the verticil sides. The frames are the
same size, which helps us judge the relative magnitudes of the values by
providing a common visual reference. For geographical data, such as
those in Figure 3.81, the framed-rectangle graph conveys the values far
more efficiently and accurately to the humah viewer than the very
common statistical map [97, pp. 282-288] in which the data are encoded
by shading the geographical units, which in this example are the states.
Issues of graphical perception such as this are the topic of Chapter 4.

The data in Figure 3.81 are three-dimensional; geographical location
needs two dimensions and debt is the third. Furthermore, we are in the
dependent-independent variable case because the goal is to see how
debt depends on geographical location. '

§ = 1500 § - 2000

§ = 1000

ﬂ=500
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FRAMED-RECTANGLE GRAPH. The data are the per capita debts in dollars of the 48
continental states of the United States in 1980. The frames of the framed rectangles help us to judge

the values of the data by providing a common visual reference.

Figure 3.81
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The framed-rectangle graph can be useful in any situation where
we want to see how measured values of one variable, z, depend on
values of two others, x and y. However, since the framed rectangles
cannot withstand overlap, the method is helpful only when the number

of observations is small or moderate and when there is not too much

crowding of the (x,y) values in any one region of the plane.

Figure 3.81 shows that the middle Atlantic states and New England
are the regions of the country where the states are least afraid to go into
debt. States in the South and in the West tend to be more restrained in
their indebtedness, although Oregon, with its near $2000 per capita
debt, leads the country and is a striking anomaly.

Scatterplot Malrices

An award should be given for the invention of the scatterplot matrix,
but the inventor (or inventors) is unknown — an anonymous donor to
the world’s collection’ of graphical methods. Early drafts of Graphical
Methods for Data Analysis [21] contain the first written discussion of the
idea, but it was in use before that. The inventor may not have fully
appreciated the significance of the method or may have thought the
idea too trivial to bring it forward, but its simple, elegant solution to a
difficult problem is one of the best graphical ideas around.

Suppose the multidimensional data consist of k variables, so that
the data points lie in a k-dimensional space. One way to study the data
is to graph each pair of variables; since there are k (k—1)/2 pairs, such an
approach is practical only if k is not too large. But just making the
k(k—1)/2 graphs of each variable against each other, without any
coordination, often results in a confusing collection of graphs that are
hard to integrate, both visually and cognitively.

The important idea of the scatterplot matrix is to arrange the graphs
in a matrix with shared scales. An example is shown in Figure 3.82.
There are four variables: wind speed, temperature, solar radiation, and
concentrations of the air pollutant, ozone. The data, from a study of the
dependence of ozone on meteorological conditions (18], are
measurements of the four variables on 111 days from May to September
of 1973 at sites in the New York C1ty metropolitan region. There is one
measurement of each variable on each day; so the data consist of
111 points in a four-dimensional space. (The details of the
measurements are the following: 'solar radiation is the amount from
0800 to 1200 in the frequency band 4000:77004; wind speed is the
average of values at 0700 and 1000; temperature is the daily maximum;
and ozone is the average of values from 0800 to 1200.)
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Each panel of the matrix is a scatterplot of one variable against
another. For the three graphs in the second row of Figure 3.82, the
vertical scale is ozone, and the three horizontal scales are solar
radiation, temperature, and wind speed. So the graph in position (2,1)
in the matrix — that is, the second row and first column — is a
scatterplot of ozone against solar radiation; position (2,3) is a scatterplot
of ozone against temperature; position (2,4) is a scatterplot of ozone

against wind speed.

The upper right triangle of the scatterplot matrix has all of the
k(k—1)/2 pairs of graphs, and so does the lower right triangle; thus
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Figure 3.82 SCATTERPLOT MATRIX. The data are measurements of solar
‘radiation, ozone, temperature, and wind speed on 111 days. Thus the

measurements are 111 points in a four-dimensional space. The graphical

method in this figure is a scatterplot matrix: all pairwise scatterplots of the
- variables are aligned into a matrix with shared scales.
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altogether there are k(k—1) panels and each pair of variables is graphed
twice. For example, in Figure 3.82 the (1,3) panel is a graph of solar
radiation on the vertical scale against temperature on the horizontal
scale, and the (3,1) panel has the same variables but with the scales
reversed.

The most important feature of the scatterplot matrix is that we can
visually scan a row, or a column, and see one variable graphed against
all others with the three scales for the one variable lined up along the
horizontal, or the vertical. This is the reason, despite the redundancy,
for including both the upper and lower triangles in the matrix.
Suppose that in Figure 3.82 only the lower left triangle were present.
To see temperature against everything else we would have to scan the
first two graphs in the temperature row and then turn the corner to see
wind speed against temperature; the three temperature scales would not
be lined up, which would make visual assessment more difficult.

Space and resolution quickly become a problem with the scatterplot
matrix; the method of construction in Figure 3.82 reduces the problem
somewhat. The labels of the variables are inside the main-diagonal
boxes so that the graph can expand as much as possible. The tick mark
labels for the horizontal scales, as well as for the vertical scales,
alternate sides so that labels for successive scales do not interfere with
one another. And the panels have been squeezed tightly together,
allowing just enough space to provide visual separation.

. The scatterplot matrix in Figure 3.82 reveals much about the ozon
and meteorological data. Ozone is a secondary air pollutant; it is not

emitted directly into the atmosphere but rather is a product of chemical
reactions that require solar radiation and emissions of nitric oxide and

hydrocarbons from smoke stacks and automobiles. For ozone to get to
very high levels, stagnant air conditions are also required.

It is no surprise then to see a relationship ‘between solar radiation
and ozone in panel (2,1), but the nature of the relationship is
enlightening. There is an upper envelope in the form of an
inverted “V”. For low values of solar radiation, high values of ozone
never occur. The major reason is that the photochemical reactions that
produce ozone need a minimum amount of solar radiation. The (2,1)
panel also shows that when solar radiation is between 200 and 300
Langleys, ozone can be either high or low. If we scan across the ozone
row to panels (2,3) and (2,4) it becomes clear that the high ozone days
are those with high temperatures and low wind speeds — stagnant days.
Overall, there is a strong association between wind speed and ozone
and between temperature and ozone. Both wind speed and temperature
are measures of stagnancy; as wind speed decreases or as temperature

SURFACE LAND TEMPERATURE (°C)
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Plate 1. Color provides good discrimination of the different data sets.

Compare with Figure 3.79. :
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increases, conditions become more stagnant and ozone rises. But the
(3,4) panel shows that wind speed and temperature are related and thus
are measuring stagnancy, to some extent, in the same way.

Panel (2,1) shows that for the very highest levels of solar radiation,
ozone does not get high. Panels (3,1) and (4,1) show why. For the very
highest levels of solar radiation, wind speed tends not to be low and
temperature tends not to be high. In fact, there is a type of feedback
mechanism at work here. The very highest levels of solar radiation at
ground level can occur only on the brisk days with no air pollution,
because when the pollution is present, the sun’s rays are attenuated by
particles in the air that form as part of the photochemistry.

Clearly, the scatterplot matrix has revealed much to us about the
ozone and meteorological data.

A View of the Future: High-interaction Graphicai Methods

The computer graphics revolution has brought us into a new arena
for graphing data. This does not mean simply that the ideas, methods,
and principles of this book can be implemented in powerful, yet easy-
to-use software systems, although that is surely true. It means more.
Modern computer graphics has given us a new type of methodology:
high-interaction methods. A person sitting in front of a computer screen
now can have a high degree of interaction with a graph, changing it,
even in a continuous way in real time, by using a physical device such
as a light pen, a mouse, a graphics tablet, or even a finger. This
capability gives us more than just a fast, convenient way to iterate to a
single graph, just the way we want it. The changing of the graphical
image on the screen can itself give information and be a graphical
method, and we can see in just a few seconds what amounts to dozens
of static graphs. There are many ways to change the graphical image on
the screen, and they are all graphical methods.

Brushing a scatterplot matrix is a high-interaction graphical method
that was invented in 1984 for analyzing multidimensional data [10].
Only a small part of the system will be described here; the reader
should appreciate that it is no small challenge to describe a high-
interaction computer graphical method, with dynamic elements that
change in real time, on the static pages of a book.

Brushing a scatterplot matrix, as the name suggests, is based on the
scatterplot matrix. This is illustrated in Figure 3.83 where three
variables are graphed. The data are from an industrial experiment [43,
p- 155] in which three measurements were made on each of thirty
rubber specimens; the measurements are hardness, tensile strength, and
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Figure 3.83 BRUSHING A SCATTERPLOT MATRIX: A HIGH-INTERACTION
GRAPHICAL METHOD. High-interaction computer graphics is ushering in a
new era in graphical methods for data analysis. This display appears on the
screen of a graphics terminal. The brush is the dashed rectangle on the
(2, 1) panel. Points selected by the brush are highlighted on all panels. The
brush is moved by the user moving a mouse; as the brush moves, different
points are selected and the highlighting changes instantaneously. In this
figure points with- low values of hardness are selected. The (3, 2) panel
shows that for hardness held fixed to low values, abrasion loss depends

nonlinearly on tensile strength. X
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abrasion loss, which is the amount of rubber rubbed off by an abrasive
material. The goal of the experiment was to determine how abrasion
loss depends on tensile strength and hardness, and in the original
analysis,-abrasion loss was modeled as a linear function of hardness and
tensile strength [43, ch.7). In a later analysis, using some involved
graphical statistical methods [21], it was discovered that abrasion loss
depends nonlinearly on tensile strength, although it does depend
linearly on hardness. Brushing a scatterplot matrix, however, gives us a
very simple way of seeing the nonlinearity.

The principal high-interaction object in brushing is the brush: a
rectangle on the screen, which is shown by dashed lines on the (2, 1)
panel of Figure 3.83. The user moves the brush around the screen by
moving a mouse, a physical device connected to the display terminal.
The mouse is also used to change the size and shape of the brush.

Figure 3.84 shows one hardware configuration on which the
brushing idea has been implemented. The young man in the front is
holding a three-button mouse; the user moves the mouse on the table,
which causes the brush to move on the screen. The high-interaction
graphics code runs on the terminal, a Teletype 5620, but the preliminary
data structuring is done on a supermicro, an AT&T 3B2 computer, which
is underneath the display terminal.

Figure 3.83 shows the result of brushing when the highlight
operation has been selected by a pop-up menu. The data in this
example consist of 30 points in a three-dimensional space. Each panel
in the figure is a projection of the points onto a plane. When the brush
encloses graphed values on one panel it is in a sense selecting a subset
of the points in three dimensions; the graphed values of these points are
highlighted on all panels by graphing them using filled circles. As the
brush is moved, different values are enclosed and the highlighting
changes instantaneously. For example, in Figure 3.85 the brush has
moved to the right on the (2,3) panel and different points are
highlighted.
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Let us now consider what this highlighting has shown us about the
rubber data. In Figure 3.83 the brush was positioned so that points with
low values of hardness are highlighted. Look at panel (3,2). The
highlighted points are a graph of abrasion loss against tensile strength
for low values of hardness; in other words, we see the dependence of

Figure 3.84 MOUSE, TERMINAL, AND COMPUTER. The young man in the
front is holding the mouse, the device used to control the size and shape of
the brush and to move it around the screen. The high-interaction graphics
code runs on the terminal, a Teletype 5620, but the preliminary data
structuring is done on a supermicro, an AT&T 382 computer, which is
underneath the display terminal.
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abrasion loss on tensile strength with hardness held fixed, or nearly so.
The highlighted points show that for hardness held to low values there
is a nonlinear dependence of abrasion loss on tensile strength.

In Figure 3.85 middle values of hardness are selected. On the (3,2)
panel the highlighted points show that for hardness held to middle
levels the dependence of abrasion loss on tensile strength is again
nonlinear and the pattern — a drop followed by a leveling out of the
effect — is similar to that with hardness held to low values. The pattern
emerges, although a little less crisply, in Figure 3.86, where hardness is
held to high values.
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Figure 3.85 BRUSHING. Middle values of hardness have been selected.
The highlighted values on the (3, 2) panel show that for hardness held fixed

to middle levels, the dependence of abrasion loss on tensile strength is
nonlinear.
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The brushing has let us see easily the nonlinearity in these data.
High-interaction graphical methods are now a reality. Graphical
methods for data analysis have entered a new era.

3.7 STATISTICAL VARIATION

Measurements vary. Even when all controllable variables are kept
constant, measurements vary because of uncontrollable variables or
measurement error. One of the important functions of graphs in science
and technology is to show the variation.
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Figure 3.86 BRUSHING. High values of hardness have been selected.
The highlighted values on the (3, 2) panel also suggest the nonlinearity.
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Empirical Distribution of the Data

Thete are two very different domains of showing variation. One is
to show the actual variation in the measurements, that is, to show the
values of the data. This is the empirical distribution of the data that was
discussed in Section 3.2. Figure 3.87 is an example from Section 3.4 —
the bin-packing data. For each value of the x variable, the empirical
distribution of the 25 values of the y variable is shown by a box graph.

When the goal is to convey just the empirical distribution of the
data and not to make formal statistical inferences about a population
distribution from which the data might have come, we can use the
graphical methods for showing data distributions that were discussed in
Section 3.2. The box graphs in Figure 3.87 are an example.

3 | ! 1 L | L | 8
o o
o
8 o
g 27 ] =N
o ]
S N =R
o o o »
> (&)
: el :
< 1 4 o - 2 o
o w
o o e
~N ] 7 ° L =
w <
0 u
=< 8
© g~ -1
L]
a
| ] L
° [+
[+
-1 - H 0.5
°
[+
T T T T | T
2 3 4 5

LDG BASE 1D NUMBER OF WEIGHTS

Figure 3.87 SHOWING EMPIRICAL VARIATION. For each value of log
number of weights there are 25 measurements of log empty space whose
distribution is summarized by a box graph.
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Another method for showing the variation in the data, one that is
very common in science and technology, is to use a plotting symbol and
error bars to portray the sample mean and the sample standard deviation.
Suppose the values of the data are x;,...,.x, then the sample mean is

- 1 X
x=7i§1xi

and the sample standard deviation is

1 — %
s= |- ,Pl(x, X) .
Figure 3.88 uses a filled circle and error bars to show the mean plus and
minus one sample standard deviation for each of the 11 data sets of the
bin packing example. This graph does a poor job of conveying the
variation in the data. The means show the centers of the distributions,
but the standard deviations give us no sense of the upper and lower
limits of the sample and camouflage the outliers: the unusually high
values of empty space that occur for low numbers of weights. The box
graphs in Figure 3.87 do a far better job of conveying the empirical
variation of the data.

This result — the mean and sample standard deviation doing a poor
job of conveying the distribution of the data ~— is frequently the case,
because without any other information about the data, the sample
standard deviation tells us little about where the data lie. This is
further illustrated in Figure 3.89. The top panel shows four sets of
made-up data. The four sets have the same sample size, the same
sample mean, and the same sample standard deviation, but the behavior
of the four empirical distributions is radically different. The means and
sample standard deviations in the bottom panel do not capture the
variation of the four data sets.

There is an exception to this poor performance of the sample
standard deviation. If the empirical distribution of the data is well
approximated by a normal probability distribution then we know
approximately what percentage of the data lies between the mean plus
and minus a constant times s. For example, approximately 68% lies
between X * s, approximately 50% lies between i + 0.67 s, and
approximately 95% lies between x * 1.96s. However, empirical
distributions are often not well approximated by the normal. The
normal distribution is symmetric, but real data.are often skewed to the
right. The normal distribution does not have wild observations, but real
data often do.
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One approach to showing the empirical variation in the data might
be to check how well the empirical distribution is approximated by a
normal, and then use thes mean and sample standard deviation to
summarize the distribution if the approximation is a good one. For
example, one method for checking normality is a normal probability
plot [21]. If the goal were to make inferences about the population
distribution then checking normality is a vital matter and well worth
the effort, as will be discussed shortly. But going through the trouble of
checking normality, when the only goal is to show the empirical
variation in the data, is often needless effort. The diréct, easy, and rapid
approach to showing the empirical variation in the data is to show the
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Figure 3.88 MEANS AND SAMPLE STANDARD DEVIATIONS. Showing just
means and sample standard deviations is often a poor way to convey the
variation in the data. This example shows means and sample standard
deviations for the 11 sets of data graphed in Figure 3.87. The outliers in the
data are not conveyed.
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data. This means using graphical methods such as box graphs and
percentile graphs to show the empirical distribution of the data. Thus,
after this long discussion we have been led to the following circular
advice: If the goal is to show the data, then show the data.

Sample-to-Sample Variation of a Statistic

The second domain of variation is the sample-to-sample variation of a
statistic. Let us consider a simple but common sampling situation.
Suppose we have a random sample of measurements, x; for i = 1to n,
from a population distribution. Suppose we are interested in making
inferences about the mean, u, of the population distribution. The
population mean can be estimated by the sample mean, ¥, of the data.
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Figure 3.8 FAILURE OF MEANS AND SAMPLE STANDARD DEVIATIONS.
Means and sample standard deviations cannot characterize the wide variety
" of distributions that data can have. Four sets of data are graphed in the top
panel and their means and sample standard deviations are graphed in the
bottom panel. The four distributions have the saine numbers of observations,
the same means, and the same sample standird deviations, but the
distributions are very different.
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The sample mean is a statistic, a numerical value based on the sample,
and if we took a new sample of size n, ¥ would be different; the
variation in x from one sample of size n to the next is the sample-to-
sample variation in x. '

x also has a ‘population distribution and the sample-to-sample
variation in X is characterized by it. Suppose ¢ is the standard deviation
of the population distribution of the data, then the standard deviation of
the population distribution of ¥ is 6/vn. As n gets large this standard
deviation gets small, the population distribtition of X closes in on u, and
x varies less and less from sample to sample. The standard deviation of
the mean, like g, is unknown but it can be estimated; since s, the sample
standard deviation, is an estimate of ¢, ¢/~ can be estimated by s/Nn,
which is often called the standard error of the mean, although estimated
standard deviation of the sample mean is a more complete name.

One-Standard-Error Bars

The current convention in science and technology for portraying
sample-to-sample variation of a statistic is to graph error bars to portray
plus and minus one standard error of the statistic, just the way the
sample standard deviation is used to summarize the empirical variation
of the data.

Figure 3.90 shows statistics from experiments on graphical
perception that will be discussed in more detail in the next chapter.
Subjects in the three experiments made graphical judgments that can be
grouped into seven types. The types for each experiment are described
by the labels in Figure 3.90. For each judgment type in each experiment
a statistic was computed that measures the absolute error; the statistic is
averaged across all subjects and across all judgmerits of that type made
in the experiment. The filled circles in Figure 3.90 graph the statistics.
The subjects in each experiment are thought of as a:random sample from
the population of subjects who can understand graphs. If we took new
samples of subjects, the statistics shown in Figure 3.90 would vary. The
error bars in Figure 3.90 show plus and minus one standard error of the
statistics. (The statistics in this example are not means; the standard
errors are computed from a formula that is more complicated than that

- for the standard error of the mean [35], however, we do not need to be

concerned with the formula here.)

Now the critical point is the following: A standard error of a
statistic has value only insofar as it conveys information about confidence
intervals. The standard error by itself conveys little. It is confidence
intervals that convey the sample-to-sample variation of a statistic.
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In some cases confidence intervals are formed by taking plus and
ninus a multiple of the standard error. For example, suppose the x; are
L sample from a normal population distribution, suppose the statistic is
¢, and suppose our purpose is to estimate the mean, g, of the population

\

EXPERIMENT 1
POSITION (COMMON) ~ [---+- [P PO PPN
ANGLE ST T TR R PP UOUR PR @ e e

EXPERIMENT 2
POSITION (COMMON) |-+ et et
LENGTH e @t e e e

EXPERIMENT 3

POSITION (COMMON) |- oeeeemmeee @ e
POSITION (NONALIGNED)  [-+vvvvvemveeeii T
LENGTH e O FBede et
ANGLE e e T N
SLOPE L B e
CIRCLE AREA R R TR TR E T PRI PLPRTRPPIRPED b—-.-—l .......
BLOé AREA e e P I

1 I T = I- I

4 6 8 10 12 14

ERRCR

Figure 3.90 ONE-STANDARD-ERROR, BARS TO SHOW SAMPLE-TO-
SAMPLE VARIATION. The filled circles show statistics from experiments on
graphical perception. Each error bar, conformmg to the convention in
science and technology, shows pius and minus one standard error. The
interval formed by the error bars is a 68% confidence interval, which is not a
particularly interesting interval. One standard ergor bars are probably a

naive translation of the convention for numerical reporting of sample-to-
sample variation.
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distribution. Let ts{a) be a number such that the probability between
—t;(a) and t;(a) for a t-distribution with d degrees of freedom is a.
Then the interval

f—"t,,_l(a)s/\/; to x + t,,-l(a)s/\/;

is a 100a% confidence interval for the mean. In other words, u is in the
above interval for 100a% of the samples of size n drawn from the
population distribution. This confidence interval is just the sample
mean plus and minus a constant times the standard error of the mean.
If n is about 60 or above, the ¢ distribution is very nearly a normal
distribution. This means

t,-1(0.5) = 0.68 t,_1(0.67) = 1 t,4(0.95) = 1.96 ,

so in this case ¥ % s/v/n is approximately a 68% confidence interval,
X+ 067s/vn is approximately a 50% interval, and X+ 1.96s/Vn is
approximately a 95% interval.

There are other sampling situations, however, where confidence
intervals are not based on standard errors. For example, if the x; are
from an exponential distribution, then confidence intervals for the
population mean are based on the sample mean, but they do not involve
the standard error of the mean [86, p. 103].

How did it happen that the solidly entrenched convention in
science and technology is to show one standard error on graphs? In
some cases plus and minus one standard error has no useful, easy
interpretation. True, in many cases plus and minus one standard error
is a 68% confidence interval; Figure 3.90 is one example. Is a 68%
confidence interval interesting? Are confidence intervals thought about
at all when error bars are put on graphs?

It seems likely that the one-standard-error bar of graphical
communication in science and technology is a result of the convention
for numerical communication. If we want to communicate sample-to-
sample variation numerically in cases where confidence intervals are
based on standard errors, then it is reasonable to communicate the
standard error and let the reader do some arithmetic, either mentally or
otherwise, to get confidence intervals. A reasonable conjecture is that
this numerical convention was simply brought to graphs. But the
difficulty with this translation is that we are visually locked into what is
shown by the error bars; it is hard to multiply the bars visually by some
constant to get a desired visual confidence interval on the graph.
Another difficulty, of course, is that confidence intervals are not always -
based on standard errors.
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Two-Tiered Error Bars

Figure 3.91 uses two-tiered error bars to convey sample-to-sample
variation. For each statistic the ends of the inner error bars, which are
marked by the short vertical lines, are a 50% confidence interval; the
ends of the outer error bars a 95% confidence interval. When
confidence intervals are quoted numerically in scientific writings the
level is almost always a high one such as 90%, 95%, or 99%; the outer
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Figure 3.91 TWO-TIERED ERROR BARS. The outer error bars are 95%
confidence intervals and the inner error bars are 50% confidence intervals.
The goal in this method is to show confidence i‘th(vals and not standard
errorg, although for some statistics, confidence intervals happen to be
formed from multiples of standard errors.
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interval in the two-tiered system simply reflects this practice. The inner
interval of 50% gives a middle range for the sample-to-sample variation
of the statistic that is analogous to the box of a box graph.

Two-tiered error bars are suggested as a replacement for one-
standard-error bars. The most important aspect is that the goal is. to
show . confidence intervals and not standard errors. Even when
confidence intervals are based on standard errors, the two-tiered error
bars are more sensible since they convey more cogent confidence
interval information. The details of the two-tiered system are not meant
to create dogma, but rather to encourage thought about what is shown.
Variations should occur; for example, if an interval of very high
confidence is desired, the ends of the outer bars could represent a 99.9%
interval.





