CHAPTER?2

Statistical Introduction

2.1 DRAWING CONCLUSIONS FROM DATA

This chapter has two purposes. First, before considering difficulties in
. drawing inferences that are peculiar to observational studies, we will review
some difficulties present to a greater or lesser degree, in all statistical
studies, and will review standard techniques for handling them. This review
is elementary and of the type-given in introductory- courses in statistics.
Second, because of the limited amount of control that the investigator can
exercise over data, a constant danger in observational studies is that
estimates tend to be biased. Consequently, the last part of this chapter
considers the effect of bias on a standard method of inference.

As a simple example, suppose that an investigator has a group of n
persons exposed to some experience or causal force and a second group of n
comparable persons who are not exposed to this force. After a suitable
period of time, a measurement y of the response that is of interest is made
on every person. Let y,; and y, ; denote the values of y for the jth members
of the first and second groups. As a measure of the effect of the exposure,
the investigator takes d = 7, — 7., the difference between the means of the
two groups. (The dot in the subscripts of ;. indicates that we have averaged
over the values of j.)

With human beings it is almost always found that even within a specific
group, for example, the “exposed,” the values of y,; vary from person to
person because of natural human variability. Consequently, d does not
measure the effect of the exposure exactly, even in the simplest situation.
Instead, d is more or less in error because of these fluctuations in the 2T and
2;- In handling this problem, the statistical approach starts by setting up a
mathematical representation or model of the nature of the data.
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First, we postulate that the n exposed people were drawn at random from
a large population of exposed persons, and the » unexposed people from a
large population of unexposed persons. Sometimes the data were actually
obtained in this way. In comparing two types of workers A and B in a large
factory, the investigator might have obtained a list of all the workers of
types A and B in the factory. Then, with a table of random numbers, the
investigator might have selected n = 30 persons of each type. Sometimes
the data were obtained by random drawings from a small population that
the investigator hopes is representative of a larger ‘one. From a school

system with 29 junior high schools, 16 might have been selected at random

for the study, although the investigator’s aim is to draw conclusions applica-
ble to junior high schools across the nation. In many studies, however, there
is no deliberate random drawing of the 2n people from larger populations.
Some volunteering may be involved, or one of the two groups may be more

or less a captive one. Some studies on hospital patients are based on those

‘patients who are receiving treatment during the three weeks after the start of

the study; the persons studied, for example, may be graduate students in
psychology -courses given by the investigator, or pupils in a school that
agrees to cooperate with the investigator, or an unusual religious sect whose
dietary habits interest a nutritionist, :

Thus, in many studies the postulate is unrealistic that the data were
drawn at random from specific populations. Nevertheless, the standard
techniques of statistical inference, the best methods available at present for
coping with this problem of person-to-person variability, apply only to the
populations of which the data may be regarded as random samples. Conse-
quently, the investigator who has a nonrandom sample must envision the

kind of population from which the sample might be regarded as drawn at -

random. It is helpful to give a name— the sampled population—to this kind
of population and to describe the ways in which it differs from the target

; Population about which we would like to draw conclusions. From this we

may be able to form some judgment about the ways in. which these

| differences would alter the conclusions. These judgments are worth includ-

ing in published reports, though they should be clearly labeled as such. This
distinction between sampled and target populations will recur frequently
throughout this book and is discussed further in Section 4.7.

To revert to the statistical analysis of the data on exposed and unexposed

people, the simplest form of mathematical representation is as follows:
Ny=prtdte;  ypi=pte,

In this model, p is a fixed parameter representing the average level of
response in the unexposed population. The parameter § stands for the

(2.1.1)
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average effect of the exposure, therefore the mean of the f.irst population is
p + 8. The quantities e,; and e,; are called random variables; thpy vary
from one member of each population to another, and allow for the obser\{ed
fact that the y,; and the y, ; vary. It is assumed that over the respective
populations the average values of the e, ; and the e, ; are both zero. .
When we write down any mathematical model to be used as a ba§15 for
the analysis of data, it is essential to reflect on any assumptions }mphc?d by
the model about the nature of our data. Analysis is likely to be mslw@ng if
derived from a model which makes erroneous assumptioqs. The simple
model (2.1.1) implies an assumption that is at best dubious for most
observational studies in practice. If 8 is zero, it follows from (2.1.1) that y, j
and y,; are drawn from populations havin.g the. same mean p. In the
simplest types of controlled experiment, the investigator often takes a step
that is designed to ensure that this assumption holds. In. order to form two
samples of size n, one exposed and one unexposed, he fu:st draws a sample
of size 2n from a single population. He then divides this into two groups of _
size n by a process of randomization, usually from a table of }'andom
numbers. Since y,; and y,; initially come from the same population and

differ only as the result of the randomization, this should guarantee the -

stated assumption.

In observational studies, however, exposed and unexposed groups are
rarely found in this way. Nearly always, these groups are formed by forces
beyond the investigator’s control. People decide themselves whet_her to wear
seat belts or to smoke; in the case of children, their parents decide wh;ther
to send them to public or private schools. Thus for observational studies a

more realistic model is
yp=mtdteys ypmi=p,te (2.12)
with E(e;) = E(e,;) = 0 as before (where the operator E represents the
operation of taking the expected value), but p, is not assumed to be equal to
I, since the investigator has been unable to take any step to ensure this
equality. _
The simplest estimate of 8 is the difference between the means of _the tv_vo
samples; that is, d = ,.— 7, .. If (2.1.1) can be assumed, d = & + e,.— &,.

and the mean value of 4 in repeated sampling is 8. But from (2.1.2),
d=8+(p, —p)+&.— &,

and the expected value of dis 8 + (up— p,) mstead.of 8. .We say that the
. estimate d is subject to a bias of amount 1y — 1,. This indicates the reason
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for an interest in biased estimates in observational studies. Some illustra-
tions of such sources of bias will be given in Section 2.4. _

Reverting to the “no bias” situation with p, = p,, even here 4 does not
give us the correct answer 8, but an estimate of § that is subject to an error
of amount &,.— &, . The best-known aids for answering the question .“ What
can we say about 87" are two techniques called the “test of significance”
and the “construction-of confidence intervals.” The backgrounds: of both
techniques will be reviewed briefly.

2.2 TESTS OF SIGNIFICANCE

The test of significance relates to the question: Is there convincing evidegce
that exposure to the possible causal force has any effect at @? The question
is not at all specific about the actual value of J; it merely tries to d.}stmgulsh
between the verdict § = 0 and the verdict § = 0. The test requires some
additional assumptions about. the data. Suppose for simplicity that in their
populations the e,; and the e,; both have the same standard deviation o,
though a test can be made without this assumption. If the e, are assumed to
be normally and independently distributed, then theory says that d is
normally distributed with population mean 8 and standard deviation oy/2/n .
The value of o is not known, but an estimate s can be made from the pooled
within-group mean square, where

 ZOy=s )+ 0y -5
T 2(n—1)

(22.1)

Furthermore, the quantity

-8 (222)
sy2/n

follows Student’s ¢ distribution with 2(n — 1) degrees of freedom. Moderate
departures from normality in the data have little effect on this result. . -

If & were zero, we would calculate from the data the quantity ¢’ =
J/s]/Z/n , and find that (2.2.2) and the statement following it show that ¢
would follow the ¢ distribution. From the tables of the ¢ distribution for
2(n — 1) degrees of freedom, we calculate the probability P that a value of.t_
as large as or larger than our calculated value " would be obtained. If P is
small enough, we argue that if § were zero it is very unlikely that we wou_ld
get a value of ¢ as large as w: did. We conclude that § is not zero; _that is,
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there was some effect of exposure. In practice, the most common dividing

line between “small” -and “not small” values of P is taken as P = 0.05,
< although no strong logical reason lies behind this choice. There is something
to be said for reporting the actual value of P, particularly for the reader who
wishes to summarize this investigation along with others, or wishes to form
his own judgment as to whether § differs from zero. '

If P is not small, we have learned that a value of 7 as large as the
observed value would quite frequently turn up if § were zero. Such a result
fails to provide convincing evidence in favor of the argument that 8§ differs
from zero. Equally, the result by no mearis proves that 8 is zero. Faced with
the question “Is & different from zero?” this result sits on the fence.

In practice, investigators use tests of significance in different ways. In
some fields, the finding of a significant d has been regarded as necessary
evidence which an investigator must produce to verify that an agert has an
effect. This use has probably been beneficial in research. Some investigators
j with a wide fund of ideas have a fondness for making claims based on little
#  solid work. The significance-level “yardstick” encourages them to produce

firmer evidence if they want their claims to be recognized.

The finding of a nonsignificant d, on the other hand, is often regarded as
proof that § = 0. This conclusion has no logical foundation; it may have
been suggested by the jargon “we accept the null hypothesis” often used in
statistical teaching. If faced with a nonsignificant d in a test of an agent A,
the investigator may decide to act as if the effect § of A is zero or small, so
that he drops any study of A and proceeds to some other agent that looks
more promising. This decision, however, should be based on the investiga-
tor’s judgment about the alternatives available. In fact, the probability that
d is nonsignificant depends primarily on the smallness of the quantity
8/n /o, where n is the size of each sample and o the standard deviation
within- each population. If we want to form a judgment about § in the light
of a nonsignificant d, the values of # and ¢ are both relevant. Fortunately,
this judgment is aided by the construction of confidence limits for 8, as
discussed in Section 2.3. .

There are two forms of the test of significance: the two-tailed and the
one-tailed forms. In the two-tailed form, used in practice more frequently,
we calculate the absolute value of ¢’ (denoted |¢']); ignoring its sign. In the ¢
table we look up the probability of getting a value of ¢ greater than the
observed ¢’ ineither direction; that is, in' mathematical terms, the probabil-
ity that |¢] exceeds the observed |¢'|: (For the vertical bars read: “absolute
value of”.) The two-tailed test is appropriate when our initial judgment is
that the true effect & could be either positive or negative. In this event a
value of & far removed from zero can reveal itself either by making ¢’ large
and negative or by making ¢’ large and positive.

P!
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~ The one-tailed test is appropriate* only when we know in advance what
sign & must have if it does not equal zero. In a teaching program designed to
increase a child’s knowledge of a certain subject, application of a one-tailed
test implies that the program either increases the child’s knowledge or has
no effect; it cannot possibly decrease knowledge. When 4 is in the antic-
ipated direction, the values of P in a one-tailed test are exactly half those in
a two-tailed test having the same ¢'; therefore for given d a verdict that 8 is
unlikely to be zero can be reached for smaller sample sizes. When 4 is in the
wrong direction, the conscientious user of a one-tailed test does not com-
pute ¢’; rather the user concludes that the result does not justify rejection of
the idea that 8 is zero.

Some investigators misuse one-tailed tests. Before beginning the study,
they are convinced.that 8 must be positive. If 4 is positive, they apply a
" one-tailed test as planned; if d is negative they apply a two-tailed test,
having now recognized, perhaps reluctantly, that § could be negative. The
net effect is to make the actual significance probability level 1.5 times the
announced significance level; for example, if the test is announced as being
at the 5% level, it is actually at the 7.5% level.

2.3 CONFIDENCE INTERVALS

Confidence intervals relate to the question “How large is 67 We have an
estimate d, but recognize that this will be more or less in error. Once again -
the ¢ distribution is used. Let #y4,; be the two-tailed 5% level of ¢ for
2(n — 1) degrees of freedom (d.f.). We know that ¢ = (d — 8)/s/2/n
follows the 7 distribution when model (2.1.1) holds. Hence, unless our
samples are of an unusual type that turns up only once in 20 times,

d-38
—1 < < +¢,
0.025 SJZ/_H 0.025
Rearrangement gives
d — tyossy2/n < 8 < d+ ty5s5/2/n (2.2.3)

*The editors do not regard Cochran’s interpretation of the one-tailed test as the only
appropriate one. In testing composite hypotheses, the null hypothesis might include both zero =
and losses, with the alternative of interest including all possible gains. We may be looking for
gains from innovations and not be much interested in following up losses. In such circum-
stances, we think a one-tailed test is appropriate.
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Thus, apart from an unlucky 1 in 20 chance that made our samples
unusually dissimilar to the sampled populations, § lies somewhere between
the two limits in (2.2.3), called the 95% confidence limits. The width of the
interval between the lower and the upper limits, 2v2 5,55/ V1 , is a random
quantity; its distribution depends on the variability in the populations, on
the size of the samples, and on the confidence probability. The interval for
80% confidence probability is about % as wide as the 95% interval and that
for 50% probability is about § as wide. _

To summarize, our state of knowledge about the size of § may be
expressed by an estimate d and a pair of confidence limits within which 8 is
likely to lie, with an attached confidence probability indicating how likely.
This probability is verifiable experimentally by setting up normal popula-
tions whose means differ by a known 8, drawing repeated pairs of samples,
and computing the limits for a specified confidence probability, say 80%, at
each draw. The values of the limits will vary from draw to draw, but about
80% of them will be found to enclose §.

In published reports of studies, confidence limits are seldom stated
explicitly. A more common practice is to give d and its standard error, s;
= V2s/Vn. The reader may then calculate his own limits by use of a ¢
table. The number of degrees of freedom in s; should also be given, but if
they exceed 30, the 50%, 80%, and 95% limits are approximately d + 0.65s5,
d + 1.3sz and d + 25 respectively.

These confidence limits also supply a two-tailed test of significance. If
the 95% limits include 0, d is not significantly different from O at the 5%
significance level. When a value of d is not significantly different from 0, it
is worth examining the corresponding confidence limits. Sometimes, particu-
larly with large samples, both limits are close to 0. For example, suppose
that d = +0.3, with 95% limits —0.6 and +1.2. In the context of the
problem, it might be clear that even if § is as large as 1.2, this is of minor
practical importance. In this event the conclusion “exposure had no appre-
ciable effect” would be justified as a practical approximation. On the other
hand, with small samples and high variability, we might find that d = +0.3
as before, but that the limits are —3.0 and +3.6. If values. of 8 as low as
—3.0 and as high as +3.6 have important practical consequences of
different kinds, a realistic conclusion is that the study did not succeed in
delimiting the value of 8 sufficiently to determine whether exposure has an
important effect. In this event it would be risky to conclude that 8 can be
assumed to be 0.

To summarize, even under ideal conditions the information about the
size of the effect supplied by a two-group study on human subjects is not as
clear-cut as is desirable. But with the aid of techniques such as tests of
significance and confidence intervals, and with careful thought about the
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implications of the results, we should be able to avoid serious mistakes in
the conclusions. The logical ideas behind these techniques may be debated,
but the techniques serve well if regarded as a guide to, and not as a
substitute for, our thinking,

24 SYSTEMATIC DIFFERENCES BETWEEN THE POPULATIONS

When comparing samples from exposed and unexposed populations in an
observational study, a frequent source of misleading conclusions, as men-
tioned in Section 2.1, is that the two populations differ systematically with
respect to other characteristics or variables that affect the response variable
y. This section illustrates a few of the many situations that occur. The first
example comes from the large-sample studies of the relation between
smoking and death rates of men (Cochran, 1968). In these studies, informa-
tion about smoking habits (including type of smoking and amount smoked
per day) was first obtained by a mail questionnaire to a large sample of
men. The three types considered here are nonsmokers, smokers of cigarettes
only, and smokers of cigars and/or pipes (the cigar and pipe smokers were
combined because the sample numbers are smaller). After receipt of the
questionnaires the investigators were notified of any deaths that occurred
among the sample members in subsequent months. From the data supplied
to the U.S. Surgeon General’s Committee on Smoking and Health, Table
2.4.1 shows the death rates for the three groups of men in a Canadian, a
British, and a U.S. study. .

To take the figures at face value, it looks as if cigar or pipe smoking
results in a substantial increase in death rates, the differences from the
nonsmokers being statistically significant in all three studies. For cigarette
smokers, the British study shows an elevated death rate, significant at just
about the 5% level, but the Canadian.and U.S. studies show no elevations of
this magnitude.

Table 2.4.1. Death Rates per 1,000 Person-Years

Canadian British United States
Smoking Group (6 years) (5 years) (20 months)
Nonsmokers 20.2 11.3 13.5
Cigarettes only 20.5 14.1 - 135
Cigars and /or pipes 355 20.7 17.4
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We remember, however, that the groups being compared are self-selected.
Before rushing out to warn the cigar and pipe smokers we should ask
ourselves whether there are other characteristics affecting death rates or
variables in which these groups might"differ systematically. For men under-
40, I think it is correct to say that there is no such variable known to have a
major effect on death rates. For older men, age is a variable that becomes of
predominating importance. The death rate rises a lot as age increases, with a
steadily increasing steepness of slope. An obvious precaution is to examine
the mean ages of the men in each group, as shown in Table 2.4.2.

In all three studies, the cigar or pipe smokers are older on the average
than the men in the other groups. This is not surprising, since cigar and pipe
smoking are more frequent among older men. In both the Canadian and
U.S. studies, which showed death rates about the same for cigarette smokers
and nonsmqkers, the cigarette smokers are younger than the nonsmokers.
Clearly, no conclusion should be made about the relation between smoking
and death rates without taking steps to try to remove the effects of these
systematic differences in ages among the groups. The investigators who ,
directed these studies were well aware of this problem and planned from the
beginning to handle it. The available procedures for dealing with disturbing
variables of this type in the statistical analysis are discussed in Chapters 5
and 6.

The possibility of biases of this type is now widely recognized whenever
groups are self-selected. Suppose a television station has a one-hour adult
educational program and wishes to measure how much the viewers of this
program have learned from it. The station maintains a representative list of
viewers of its programs. After the program the station invites a random
sample of viewers, some of whom have seen this program and some who
have not, to take an examination intended to reveal what has been learned
from the program. Even if all those invited conscientiously take the ex-
amination, the station recognizes that the computed d almost certainly
overestimates the effect of the program, because those who chose to view
this program were probably more interested in the subject and better
informed about it from the beginning, and would do better in the examina-

Table 2.4.2. Mean Ages (in Years) of Men in Each Group

Smoking Group Canadian British United States
Nonsmokers 54.9 49.1 - 57.0
Cigarettes only 50.5 49.8 532

Cigars and /or pipes 65.9 ~ 557 59.7
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tion even if they had not viewed this program. In fact, the station would
regard the problem of circumventing this overestimation as the major
obstacle in conducting the study.

In a second example the effect of self-selection is less clear-cut. Several
studies have compared the health and well-being of families who move from
slum housing into new public housing, with those of families who remain in
slum housing. The objective is to measure the supposed beneficial effects of
public housing. However, in order to become eligible for public housing, the
parents of a family may have to possess both initiative and some determina-
tion in dealing with a bureaucracy. One might argue that these individuals
‘may already possess a desire to rise in the world that might show up in
better health and well-being when the response measurements are made.
Insofar as such effects are present, they would increase d and the unwary
investigator may attribute this to the beneficial effects of public housing.

This example illustrates another aspect of the problem. While admitting
the argument in the preceding paragraph, an investigator might retort,
“Why should this overestimation be sufficiently large to seriously distort the
conclusions? Why should this initiative and determination have much effect

on the number of colds Johnny catches next winter?” A critic might reply

that such parents have high aspirations for their children and may take
better preventive medical care of the children than do the slum parents in
this study. The point is that in many studies, sources of potential bias of this
type are either unavoidable or overlooked until too late and that we can
only guess about the size of bias that is created. In such cases our judgment
about the direction and amount of bias, even if slender, is worthwhile when
conclusions are being drawn. Incidentally, in a Baltimore public housing
study, Wilner et al. (1955) neatly attempted to avoid the bias in question by
noticing that the list of processed and eligible applicants for public housing
was much greater than the available space. Consequently, both the “public
housing” sample and the “slum housing” sample were drawn from this list.
The initial “slum” sample was made larger than the “public housing”
sample, because it was known that as housing became available some of the
“slum” families would move into public housing during the course of the
study.

Sometimes systematic differences between the exposed and unexposed
groups are introduced in the process of measuring the responses, especially
when these measurements involve an element of human judgment. A

consulting statistician soon observes that some investigators become emo-
tionally interested in the causal force they are studying and they want the _

. force to show some effects. This is not said in deprecation. It is the business
of the research worker to form pictures of what the world is like, and an
imaginative interest in one’s pictures is conducive to good research. Conse-
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quently, the investigator, when measuring the responses, may find that the
levels of measurement may change unconsciously when moving from the
unexposed to the exposed group.

This danger is widely recognized in medical studies of the progress of
patients. I once watched an expert on leprosy for an hour while he examined
a patient in meticulous detail in order to measure the patient’s progress
during the preceding two-months’ treatment in an experiment on leprosy.
The examination was complex, since bacteriological, neurological, and der-
matological symptoms are all involved. At the end of the exam, the doctor
dismissed the patient and said, “I rate this patient Much Improved ” —this
being the highest category of improvement that the scale allowed. At this
point a blabbermouth at the back of the room, who had the code sheet, said
“You'll be interested to know, doctor, that the patient was on placebo”—a
placebo being an inert drug with no bactericidal effect on leprosy, intended
only as a measure of comparison for the real treatments. The immediate
retort of the doctor was “I would never have rated that patient ‘Much
Improved’ if I had known he was on placebo. Call him back.” There was
silence for about 30 seconds; members of the planning team either stared at
the expert or the blabbermouth in mixtures of sorrow and anger, or engaged
in silent prayer. Finally, the expert said in a low voice, as if arguing with
himself: “No. Let it stand.”

For this reason a standard precaution in medical studies, as in this one, is
that the doctor who is measuring the response variable should not be
informed of the treatment the patient is receiving. In some studies no
workable precaution may occur to the investigators. In studies on the
possible inheritance of some form of cancer, cancer patients may be better
informed about cancer in their relatives than are noncancer controls, and
hence report more relatives with cancer. In a study of the inheritance of
neuroticism it was proposed to enlist both neurotic and nonneurotic sub-
jects and obtain information about the parental generation by questioning
each group of subjects about neuroticism in their parents. Bradford Hill
(1953) remarks: “What the adult neurotic thinks of his father may not
always be the truth.”

2.5 THE MODEL WHEN BIAS IS PRESENT

When systematic differences between the exposed and unexposed gfoups are
present, the simplest model appears to be

yij'—._p‘l+8+elj; Yoy =t oey
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giving
d 8+ (p,—py)+e&.~2,=8+B+e.—¢,

where B = p, — p, represents the amount of bias in the estimate d. The
change from the “no bias” situation is that d now estimates 8§ + B, While
this is obvious, it emphasizes a point that investigators or their critics
sometimes overlook. Once the presence of bias is admitted, they sometimes
take a morbid view of the situation, implying that nothing can be learned
about & from d. Actually, since we can rarely be certain in observational
studies that estimates are completely free from bias, a not unreasonable
view is that all estimates are biased to some extent in observational studies.
The problem is to keep the bias sma.ll enough so that we are not seriously
led astray in our conclusions.

We shall examine the effect of bias on the probability that 4 lies within
the interval (8 — L, § + L), in other words, that d is correct to within given
limits +L. With no bias, d is assumed approximately normally distributed
with mean § and standard deviation o;. Hence, the quantity (d — 8)/ozis a
standard normal deviate, and we calculate the probablhty o that d — 8 lies
within +L by setting z = L/o; and locating in the normal tables the
probability « that a normal deviate z lies within the limits +z, ,,.

When the mean of d is § + B, on the other hand, the normal deviate
is (d— 8 — B)/o; This equals (~L — B)/o; when d — 6 = —L, and
(L - B)/o; when d — 8§ = If B =fL, these limits become
~L(1 +f)/°d and +L(1 — f)/o7 or —z,,,(1 +f) and +2,,,(1 =~ f).

For a given probability in the “no-bias” case, z, o2 18 known; for example, -

z,,, = 1.96 for 1 — a = 0.95. Thus, given f and the “no bias” probability,
we can read from the normal tables the corresponding probability when bias
is present.

Table 2.5.1 shows the probabilities that J lies within (8 — L, § + L) for
P =0.99, 0.95, 0.90, 0.80, 0.70, and 0.60 and f = B/L running from 0.1 to
1.0, by intervals of 0.1, and also f = 1.5 and 2.0. If f is less than 0.2, the
reduction in the “no bias” probability is trivial. Even for f = 0.5, the
reduction remains moderate, for example, from 0.95 to 0.84 and from 0.80
to 0.71. When f = 1.0, however, all the probabilities are reduced to 0.5 or
less, and decrease steadily for higher f.

To put it another way, the effect of a bias of amount B cannot make the
probability that d is correct to within 4 B more than 1, no matter how large
the sample is. However, the probability that d is correct to +2B is
decreased only moderately by the bias; the probability that d is correct to
+ 5B is decreased only trivially. Some investigators prefer to express quanti-
ties like B and L as percentages of 8. In these terms, a 15% bias makes the
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probability that d is correct. to within 15% of & at most 4, but reduces only
moderately the probability that d is correct to within + 30%.

For a given value of f, we might expect that a higher “no bias”
probability will result in a correspondingly higher probability when bias is
present. Table 2.5.1 shows this happens when f< 1, but for f>'1 the
probabilities go in the opposite direction when bias is present. With f = 1.5,
for instance, a “no bias” P of 0.99 is reduced to P = 0.10, but a “no bias” P
of 0.60 is reduced only to 0.32. The explanation is that c? in the biased case
is an unbiased estimate of 8 + B, which ligs outside the limits § + L. As the
random-sampling error o decreases in this case, we are doing a better job of
estimating the wrong quantity 8 + B, but a poorer job of estimating 8. With
f=2, d is an unbiased estimate of 8§ + 2L, and can fall in the desired
interval § + L only by making a negative error of more than L in estimating
8 + 2L. Thus with f = 2, the probability that d lies in the desired interval is
(1 — P)/2, which for P = 0.95 gives 0.025.

The lessons from this example are important. Even without bias, other

* sources of variability impose a limit on the accuracy that can be attained

with high probability in observational studies. These probabilities are not
drastically reduced by bias, provided that B is substantially less than the
limit of error L that can be tolerated. If an investigator takes pains to
remove the effects of suspectéd sources of bias, the effect of undetected bias
may be to reduce a presumed 95% probability of lying within prescribed
limits to something like 60 or 70%. In such cases the deleterious effect of

Table 2.5.1. Effect of a Bias of Amount B = fL on the Probability P that 4
Lies within Limits (§ — L,8 + L)

. Probability (P)
No Bias 0.99 0.95 0.90 0.80 0.70 0.60
f=01 0.99 0.95 0.90 0.80 0.70 0.60
02 0.98 0.93 0.88 0.78 0.69 0.59
0.3 -0.96 0.91 0.86 0.77 0.68 0.58
04 0.94 0.88 08 074 0.66 0.57
0.5 0.90 0.84 0.79 0.71 0.64 0.56
0.6 0.85 0.78 0.74 0.68 0.61 0.54
0.7 - 0.78 0.72 0.69 0.64 0.58 0.52
0.8 0.70 0.65 0.63 0.59 0.55 0.50
0.9 0.60 0.58 0.56 0.54 0.52 0.48
1.0 0.50 0.50 0.50 0.49 0.48 0.45
15 0.10 0.16 0:21 0.26 0.30 0.32
20 0.005 0.025 0.05 0.10 0.15 0.20
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bias is not that it makes the results completely wrong, but that we do not
know how far the results can be trusted. The most misleading situation is
that of a relatively large bias when the samples are large. In this case d is
likely to have a small standard error, so that the 95% confidence interval is
narrow and we congratulate ourselves on our accurate results. The actual
probability that & lies within these limits may, however, be tiny, as the
results for f = 2 indicate.

This example is also relevant when we come later to study the techniques
for removing suspected bias in observational studies. There is evidence that
in many circumstances the available methods are not fully effective. They
remove some, hopefully most, of the bias, but leave a residual part. Our
hope is that for this residual part, B/q is substantially less than the value of
L which makes our results useful.

On occasion it helps to think in terms of B/§ or of B/d. Suppose we
have been unable to remove or reduce a specific source of bias, and are
making speculative calculations as to how large a bias from this source can
be. We can sometimes reach a firm judgment that even under the most
unfavorable circumstances, B/ is bound to be small. This seems to be the
situation in prospective studies of the relation between heavy cigarette

smoking and the death rate from lung cancer. Cigarette .smokers are-

self-selected, and numerous possible sources of bias in comparing them with
nonsmokers have been mentioned in the literature. But the increase in the
lung-cancer death rate for heavy cigarette smokers versus nonsmokers is so

large that estimates of the bias, often admittedly speculative, all seem to-

result in relatively small changes in the estimated 8.

The preceding discussion has dealt with the effect of bias on attempts to
estimate & correct to within limits + L. It is also worth considering the effect
of bias on a test of significance of the null hypothesis § = 0 in relation to
sample size. If we can assume, that apart from the bias, we have indepen-
dent random samples from the two populations, then ;= y2 o/ V. Con-
sider first a two-tailed test. The type:l error is the probability that d lies
outside the limits (— V2 0z, ,,/ Vn, + V2 0z, 2/ Vn'). With a bias of amount
B, this is easily found to be the probability that a normal deviate z lies
outside the limits (-z,,, ~ BVn /V20, z,,, —~ BVn /V20). Suppose that
BYn/V20 = +0.5 in a 5% test, for which Z,sy = 1.96. The limits are
(—2.46,1.46), or (—1.46,2.46), and the probability of type-I error P is
0.079. With BYn /V2¢ = +1, P = 0.170, and with BVn /Y20 = +2, P =
0.516. Regardless of the sign of the bias, the type-I error of a two-tailed test
is increased by bias. If # is large, the type-I error is so distorted that the test

.. becomes meaningless.

While I can give only an unsubstantiated opinion, things may not be this
bad in practice. Careful precautions against bias might reduce B/o to say
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0.05. For two samples of sizes 50, 100, and 200, the P’s for the type-I errors
become 0.057, 0.064, and 0.079, respectively; only for samples larger than
200 does the distortion become intolerable.

The effect of bias on a one-sided test depends of course on the direction
of the bias in relation to the direction of the one-sided test. If these

_ directions are the same, that is, if the alternative hypothesis specifies § > 0

and if B > 0, bias increases the type-I error still more rapidly than it does
for two-tailed tests. Consider a one-tailed 5% test that assumes 6 > 0, with
z, = 1.645. For BVn / V2 ¢ = 0.5, 1, and 2 (the figures given in the two-tailed
example), the P’s for the type-I errors become 0.126, 0.260, and 0.639,
respectively. On the other hand, if B is negative in this situation, the type-I
error is decreased. In fact, if we are sure that 8 > 0 and if Byn /20 is
negative and sufficiently large, we might detect the presence of bias_by
noting that our d would be significant in the wrong direction, a logical
contradiction of the notion that § > 0, unless negative bias is the explana-
tion. : _

Admitting the inevitability of bias and the difficulty of securing ra.nd<.)1?1
samples in observational studies, some writers argue that the test of signifi-
cance is useless for guidance in such studies. In large-sample studies this can
be so, only because any difference large enough to be of interest is certain to
be significant by a standard test that ignores bias. One frequently finds no
mention of tests in the discussion of the results of such studies. Tests can
also be useless if our results are subject to biases that are completely
unknown in size and direction. However, as Kish (1959) points out, such
biases would render ineffective any attempt to draw conclusions from
observational studies, not merely tests of significance.

The positive attitude toward this problem is to exercise precautions
against bias in the planning and analysis of observational studies, in the
hope that the remaining bias will not greatly disturb type-I errors or
confidence probabilities. In the interpretation of tests of significance, whether
the verdict is significant or nonsignificant, any judgment that we can form
about the direction and size of the remaining bias is clearly relevant.

2.6 SUMMARY

This chapter discusses some of the difficulties in trying to draw sound
conclusions from the results of a study. Even in the simplest type of
study—a comparison of a group of people exposed to some causal force and
a second group not so exposed—the study provides only an estimate of the
average effect of the causal force that is subject to error. In the interpre-

-

d
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tation of this estimated difference, two major statistical aids are fests of
significance and confidence limits. ‘

The test of significance relates to the question of whether there is
convincing evidence of some real effect. Confiderice limits supply estimated
upper and lower bounds to the size of the effect. The finding of a
nonsignificant difference by no means proves that there was no real effect.
It merely reports that a difference as large as that observed could have
occurred with nonnegligible probability without the presence of a real effect
different from zero. The interpretation of a nonsignificant difference is
often helped by calculating confidence limits. With small sample sizes or a
highly variable population, the confidence limits may show that the study
failed to measure the size of the effect accurately enough for competent
decisions. The soundest conclusion is that more work on the problem is
needed. _

‘Further difficulties are often present. Tests of significance and confi-
dence limits apply only to the population of which the data are a random

sample. This population—the- sampled population—is often difficult to-

describe accurately and may differ in one or more respects from the target
population to which the investigator wants his conclusions to apply. A
useful part of the investigator’s summary of results includes a statement of
known differences between sampled and target populations and a judgment
about the extent to which these differences may affect the conclusions as
they apply to the target population.

In observational studies the exposed and nonexposed populations are |

usually created by forces beyond the control of the investigator, and may
differ systematically in respects other than that of exposure. The conse-
quence is that the sample mean difference d does not estimate the real effect
. of exposure, but 8 + B, where B is a bias term caused by these other
systematic differences. The presence of bias decreases the probability that d
as an estimate of & is correct within given limits + L. This reduction in
probability is moderate if B/L is less than 0.5, as, for example, B/8 = 10%
and limits of accuracy L/8 = +20% are sufficient for our purpose. This
result is encouraging. In statistical studies it is hard to ensure that bias has
been completely eliminated, particularly in observational studies, but mea-
sures taken to control bias in planning and analysis may reduce B/L to a
value that is small enough for practical decisions.

Similarly, a bias in either direction increases the probability of a type-I
error in a two-tailed test of significance, sometimes to an extent that makes
the test meaningless in large samples. This fact emphasizes the importance
of exercising precautions against bias in.the planning and analysis of
observational studies and of using any judgments about the direction and
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size of the remaining bias in the interpretation of the results of tests of
significance.
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