CHAPTER 4

Further Aspects
of Planning

41 SAMPLE SIZE IN RELATION TO TESTS OF SIGNIFICANCE

Suppose that the investigator has identified two or more groups of subjects
whose mean values for some response variable.y he wishes to compare. A
decision must be made about the size of sample to be selected from each
group. Sometimes this decision is controlled largely by cost or availability
considerations. A group that is of particular interest may contain only 80
subjects, or the budget may limit the study to two samples of sizes not
exceeding 200 each. In the absence of such limitations, statistical theory
provides certain formulas ds a guide in making decisions about sample size.
Use of these formulas may present difficulties, either because the formulas
oversimplify the actual’ conditions of the survey or because the investigator
does not have certain information about the study that the formulas require.

Nevertheless, it is worth finding out what light these formulas throw on the

sample-size issue even when the size is limited by costs or availability:

Calculation of sample size in relation to a test of significance is- most
often made in exploratory studies. Suppose that there are two groups of
subjects exposed to different agents, or one group exposed to an agent and a
control group unexposed. If the study fails to fin' a significant difference
7, — 7, the investigator knows that he will have obtained an inconclusive
result. The group means have not been shown to be diffefent, but neither
have they been shown to be essentially the same, since this conclusion would
‘amount to assuming that the null hypothesis has been proved correct,”or
nearly correct:

If d = 7, — 7, and 8 is the unknown population difference between the
group means, the investigator might reason that he does not mind finding d
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iionsignifica.nt if & is small. However, if 8 is large enough to be of practical
importance, the investigator wants to have a high probability of detecting
that there is a difference by finding d significant. Such a result may
encourage later work that will estimate & more accurately. This leads to the
question: For a given § and given sample sizes from the two groups, what is
the probability of obtaining a significant 4? This probability is c;lléd the
power of the test.

This calculation is easily made if bias can be ignored and if we can
assume d normally distributed with mean & and standard deviation 8. Let
z,bea nonJiegative number such that theprobability that a normal d;viate
exceeds z, is a. For example, if z, = 0, & = 0.5 and if z_ = 1.96, then
a= 9.025, since we are considering only the right-hand tail aof the n,ormal
distribution.

We can now calculate the probability that 4 is significant. i
qne-_ta_u'led test (8 assumed > 0), since this is slig%::;;;l easie?e(;;g;n gl i:
significant if it exceeds z g7 Thus, we want to find the probability t,hat d
excge(is z,07. If d is normally distributed with mean 8 and standard
deviation o, the standard normal deviate corresponding to d is therefore
(d — 8)/0z7 Now setting d = 2,07, the threshold significant value, we com-
pute the probability that d is significant by calculating' ,

=z, - — (4.1.1)

;mdf_rea(;h’ng t(llie pro(‘;)abi]ity that a normal deviate exceeds z. If we do this
or fixed #» and a and various 8, we produce a curve called th ]
which relates power and 6. e power function
If the study is planned to have two inde
. pendent groups, each of n-
_subjects, then o7 = y2a/ Vn, where o is the standard deviation per subject
in both groups. Formula (4.1.1) then becomes

=Z—JE§
e (4.12)

_Let us consider some examples which illustrate the use of formulas in the
estimation of sample size.

Exaniple' 1. Suppose that costs limit the sample sizes to n = 100. Related
data m_dif:ate'that o is about 1. The investigator thinks-that if § is as large as
0:3, this is important enough so that he would like to obtain a significant
difference. What is the probability? In this case z, = 1.64 for a one-tailed
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test at the 5% level. Thus by (4.1.2), '

=1.64 —y50(0.3) = 1.64 — 2.12 = —0.48

The normal tables give P = 0.68 for the probability of exceeding z, a littlé

disappointing, but as good as many studies can offer.

In a two-tailed test, d can be either significantly positive or significantly

negative. In our notation the conditions are d> 2,07 00 d < =207

Note the subscript a/2; if the two-tailed probability is to be 0.05, the
one-tailed probability must be 0.025. If § > 0, a verdict that d< —2z,,07
would be & horrible mistake, since we find d significant, but in the wrong
direction. Fortunately, if the probability that d is significant in the correct
direction is at all sizable (e.g., > 0.2), the probability that d is significant in
the wrong direction is tiny and can be ignored. Hence in a two-tailed test we
can calculate the probability that d is significant and in the correct direction
by amending (4.1.1) to the probability that a normal deviate exceeds

é
z——za/z—;d_-

(4.13)

With two planned samples each of size n, we can now calculate the
needed value of n such that the probability of finding a significant 4 has any
desired value 8. Take B > 0.5, since we want the probability to be high.
Earlier, we defined z, (> 0) as a value for which the probability that a
normal deviate exceeds z, is a«. This definition restricts us to values of
a < 0.5. If B > 0.5, the value of z such that the probability 8 of exceeding
this z is —z(_g,. By the symmetry of the normal curve, the probability that
2< ag(,_ﬁ) is (1 — B), so that the probability that z > —z,_g, is B for

> 0.5. -

To summarize, if we want a one-tailed test to have probability 8 (> 0.5)
of finding a significant result at level a, we write

&
_zl-—B=za— E ‘E (4.1.4)
and solve for n, giving
2
_ 2z, + 2,_p) 07 (4.1.5)

62

If the test is two-tailed,

2(zgp t+ zl_ﬁ)zo2
n =
62
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For one- and two-tailed tests, Table 4.1.1 shows the multipliers of 02/82

for specified probabilities, from 0.5 to 0.95, of finding a significant dif-
ference.

As before, the ratio 8 /o that is of importance must be specified in order
to use Table 4.1.1. :

Example 2. A pilot study suggests that 0 may be about 6 while the
investigator would like 8 = 0.95 if d is 2 jm a two-tailed test at the 5% level.
For this, 62/8% = 9 and n = (26.6)(9) = 239 in each sample. :

. Tab_le 4.1.1 may also be used as an approximation when the response is a
binomial proportion and we are comparing independent samples from two
populations whose proportions are p, and p,. The numerical factors in
Table 4.1.1 remain the same, but 02/82 is replaced by

Pt Pag,

4.1.7
2(p—p, )2 ( )
withg =1 — p, or ¢ =100 — p'if p is expressed as a percentage. If the first
population is a control or a standard method, p, may be known fairly well
from previous studies. The value of p, has to be inserted from consideration
of the size of difference |p, — p,| that the investigator does not want to
“miss” in the sense of this test of significance.

Example 3. If'pl = 6%, p, = 3%, then q, = 94%, ¢, = 97%. To have an
80% chance of finding a significant difference in a one-tailed test, we require

Table 4.1.1. Multipliers of 62 / 52 Needed to Give n
for a Specified Probability of Finding a 5% Significant
Difference in the Correct Direction

Two-

One-Tailed "Tailed
Probability Test Test
0.5 54 8.0
0.6 72 10.2
0.7 94 12.7
0.8 12.4 16.2
0.9 17.1 215
0.95 21.6 26.6




54 FURTHER ASPECTS OF PLANNING

the size of each sample to be .

= (129[(0)(94) + (3)oN] _
. 2)(9) : 589

In this and the preceding section the sample-size formulas that involve n
assume two independent samples. Often, the samples are matched or paired
by certain characteristics of the subjects. If so, the quantity ¢2/82 in Table
4.1.1 is replaced by o%(1 — p)/82, where p is the correlation coefficient
between members of the same pair. Sometimes p can be guessed if an
estimate of o is available. Alternatively, if d;, = y,; — y,;, the difference
between the members of the jth pair, ¢ may be replaced by ¢?/2. If o7 is
being estimated from a past study, this should of course have employed the
same criteria for matching. With binomial data, a fair amount of evidence
suggests that pairing is usually only moderately effective in increasing
precision. Calculation of n by formula (4.1.6) for independent samples will
be on the conservative side, but not badly wrong.

The -method extends to cases not so simple as two samples of size n,
provided that o7 can be calculated. We give two numerical illustrations in
Example 4 and a general algebraic one in Example 5.

Example 4. The group on which a treatment acts will provide only 50
subjects. The control group is not so restricted. The investigator guesses that-
the probability of detecting his desired § will not be high if only 50 control
subjects are used. How much better does the investigator do if n is 100 or
200 for the control sample? We have ¢ = 10, § = 4. We revert to formula
(4.1.3), with z, , = 1.96 in place of z,, since a two-tailed test is desired.

z=196 — 4.
. o7

With 50 control subjects, o7 = \/5 0/ V50 =2, so that z = —0.04, giving
a probability 0.52. With 100 and 200 controls,

1 1 1 1
o;=20 %4'% = 1.732; 0;=0 %4‘2—00 = 1.581

so that z = —0.35 and —0.57, with probabilities 0.64 and 0.72, respectively. _

Example 5. In what is called a before—after study, measurements are taken
in each group both before an agent has been applied to the group and at
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some time afterwards. The quantity of interest is often
d= (5o = 715) ~ (P20 = V25)

the mean difference in the changes associated with each agent. If each
measurement has the same variance ¢2, and the correlation between before
and after measurements in the same group is p, then

Fia=Vp=4dy and = jp=d,

2 _ 2, .2 2 B
Vard, = 1—2’:’4 - 2%(1 ~ p) = Vard,

Combining this information, we find

. oz= o} + i = oV -3(1 -p)

This o7 is used in formula (4.1.1).

4.2 SAMPLE SIZE FOR ESTIMATION

Sometimes investigators prefer to look at sample-size formulas from the
viewpoint of closeness of estimation rather than of testing significance. This
is so, for instance, if there is a good deal of presumptive evidence in advance
that a treatment will produce some effect; the question is' whether our
estimates will be sufficiently accurate as a basis for action. As before, we
assume that bias is negligible and that our estimated difference d can be
taken to be normally distributed. Thus, if § is the population difference, d
should lie within the limits § + L with about 95% probability where

L =20; (42.1)
In the simplest application to two independent samples each of size n

_ 220 _ 2.82¢
Vn Vn
where o is the within-group standard deviation. Formulas (4.2.1) and (4.2.2)

can be used in a number of ways.
Let us consider examples which illustrate the use of formulas to produce

L

(42.2)

the sample-size estimate correct to a certain limit with high probability.
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Example 1. ' If 4 is desired to be correct to within specified limits of error
+ L (apart from a 1 in 20 chance), we have from (4.2.2)
802
. n= F (4.2.3)
as the size of each group.

"Example 2. Suppose that financial or other considerations limit » to 400
and that o is.thought to be about 3. From (4.2.2)

Consideration as to whether this is satisfactory will probably involve some
thought about any action to be taken. The situation might be “I feel that
action is necessary if 8 > 1 and will argue for action if d > 1, but not
otherwise.” Clearly, if we are unlucky we may find ourselves arguing for
action if 8 is only (1 — 0.423) = 0.577, or failing to argue for action when
is nearly as high as 1.423. The issue then depends on whether mistakes of
this kind are regarded as tolerable.

Example 3. If the response variable is a binomial proportion so that
d = p, — p,, then with independent samples, vZ o becomes ,/plq1 + p.q,.

Hence (4.2.2) becomes
2ypir + P24
Vn

This formula holds whether p,, p,, and L are all expressed in proportions or
percentages. In proportions, ¢; = 1 — p;; in percentages, ¢; = 100 ~ p,.

Suppose samples of n = 3600 can be run and the failure rate (response)
in the control group is 10%. The failure rate in the treatment group is not
known, but if it is as low as 5%, how well is the improvement in failure rate
estimated? With p, = 10, p, = 5,

(4.2.4)

L = %/(10)(%0) + G)O5) = 1.24%

This might seem good enough. Even if the treatment is meffectlve, D2 = 10%,
we have :

L = 2/(10)(90) + (10)(%0) = 1.41%

so that it is unlikely that p, would be estimated as more than 1.41% lower
than p,.
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Example 4. When estimating a treatment effect from two groups. of
subjects, the investigator may have some subgroups for which it. would be
informative (1) to estimate the treatment effect separately in each subgroup,
and (2) to compare the sizes of the treatment effects for different subgroups.
Unfortunately, as is well known, much larger sample sizes are needed for
case (1) and particularly for case (2) than for the estimation of an overall
treatment effect.

Suppose for illustration two subgroups contain proportions ¢ and 1 — ¢
of the subjects in each of a treatmeng~and a control population. With
male—female subgroups, ¢ might be about 0.5; with white—black subgroups,
¢ might be 0.8 or 0.9. The values of o are therefore V26/ Vn for the overall

effect, approximately V2 20/+/én and: 1/— 20/ (1 — ¢)n for the individual
subgroup effects, and 2o/ V(1 — ¢)n for the difference in effect from
one subgroup to the other. Since L = 2q, the multipliers of 02/L? required

to find » are 8, 8/¢, 8/(1 — ¢), and 8/¢(1 — ¢). These multipliers show
the relative sample sizes needed to attain the same error limit + L, and are
presented in the list below for ¢ = 0.5 and 0.9.

Overall Effect in Difference

¢ Effect Subgroup 1 Subgroup 2 in Effects
0.5 8 16 16 32
09 8 9 80 89

With subgroups of equal size, the most favorable case, estimation of effects
separately in each subgroup requires twice the sample size, while estimating
the difference in effects requires four times the size. With k equal subgroups
the multipliers are k and 2k. As the case ¢ = 0.9 illustrates, the situation is

_much worse when some subgroups are relatively small.

These results are not intended to deter an investigator from examining

- effects separately in different subgroups. But the accompanying standards

of precision are lower, and large samples are usually needed to estimate a
difference in effects from one subgroup to another.

Example 5. If the cost of sampling and measurement is much cheaper in
population 1 than in population 2, the question is occasionally asked: What
sample sizes n; and n, will provide a specified value of ¥(d) at minimum
cost? Let

2
- cost = C = ¢, + ¢yn, (¢ <c,); V= V(J)=o—1+
non
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The calculus minimum-cost solution is

N2
n, n, n ("n/g + 02»/;)
= = ; ns 4w ———mm—m———
o”/c; 02‘/LT o”/c; + 02‘/(: Vyeie,
Assuming o, and ¢, are roughly equal, we have n,/n, = ‘/3 / ‘/a . Unless

the cost-ratio.c,/c, is extreme, however, the saving over equal sample sizes
is modest, since

Coqua _ _2(e1 + ¢5)
Cain (Ver + ‘/5)2
2L+ ep/e)
(1 + e /¢y )2

Equal sample sizes cost only 3% more if ¢, /¢, = 2, 11% more if ¢, /¢, = 4,
and 27% more if ¢,/c, = 10.

4.3 THE EFFECT OF BIAS

As mentioned, the formulas in the preceding sections assume that any bias
in the estimates is negligible. The effect of bias on the accuracy of estima-
tion was discussed in Section 2.5. To cite results given there, suppose n has
been determined so that the probability is 0.95 that 4 lies in the interval
(6 — L, 8 + L) in the absence of bias. The presence of an unsuspected. bias
of amount < 0.2 L decreases the 0.95 probability only trivially. If B = 0.5L,
the 0.95 probability is reduced to 0.84 and to less than 0.50 if B/L exceeds
1.0. For given f = B/L a table can be constructed which shows the amount
n must be increased over n, in the “no bias” situation in order to keep this
probability at 0.95. Table 4.3.1 shows the ratio n/n for f = 0.2(0.1)0.9.
It is not likely that Table 4.3.1 can be used for estimating » in planning a
specific survey, because of ignorance of the value of f. If an investigator
.somehow knew f fairly well, he/she would try to adjust d in order to remove
the bias and would then face a different estimation problem. The table
helps, however, in considering a possible trade-off between reduction of bias -~
and reduction of random sources of error. For instance, if by better
planning or more-accurate measurements the value of f could be reduced
from 0.6 to 0.3, a sample size of 1.40n, would be as effective as one of
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Table 43.1. Ratio of n / n, Needed in
Order to Give 95% Probability that  is
Correct to Within § + Z When Bias of
Amount fL is Present. (Note that ngyis
the sample size in the “no bias” case.)

f=B/L n/ng
0.2 1.13
0.3 1.40
0.4 & 1.89
0.5 2.72
0.6 422
0.7 7.51
0.8 16.9
0.9 67.6

4.22n,, but would be only about one-third the size. A more expensive
method of data collection may save money if it reduces the bias sufficiently.

44 MORE COMPLEX COMPARISONS

The illustrations of sample-size problems in Sections 4.1 and 4.2 have
referred mainly to the difference between the means of two groups. In
studies with more than two groups the comparison of primary interest may
be more complex. The procedure here is to define d as the estimated
comparison of interest, with § as the population value of the comparison.
For a specified probability B (> 0.5) of “detecting” 8, we may rewrite
formula (4.1.4) more generally as '

)
T2a-m T Za T 5o ' (4.4.1)
d
If we want [d — 8| < L apart from a 1 in 20 chance, we can use (4.2.1),
L =20; (442)

From the nature of the comparison we should be able to express o;in terms
of n, the size of each group, and then solve for # from (4.4.1) or (4.4.2).
The following examples involve studies having more than two groups.

Example 1. A study has three groups, containing amounts 0, 1, and 2 or q,
a+ 1, and a + 2 of the treatment. If the response is thought to be linearly
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related to the amount of the treatment, the quantity of pnmary interest may
be the average change in response pef unit increment in amount. For this,
s B—h g
d= and o;= —

2 ¢ V2n

With four groups having amounts 0, 1, 2, and3ora,a+1,a+2, agd
a + 3 of the treatment, the corresponding estimate of the average change in
y per unit increase in amount is

D700 b ek NP £
2 Vn

d-

More generally, suppose that we have k groups having amounts.x,, X5, ..,
x,.. We use weights :

and

with variance

i Z wi20.2

V)=

- Z ¥ (x, - %)

Example 2. This example is artificial, but illustrates the way in which t.he
formulas are adapted for regression studies. A firm has several factgnes
doing similar work. Certain tasks sometimes done by the workers require a
high degreé of skill, concentration, and effort, and good performance in
these tasks is important. The management finds that one factory offers one
unit per hour of extra pay as incentive for this work, anqther factory offers
three units per hour, and a third factory offers no incentive pay. .

The management considers taking a random sample of workers in each
of these three factories and recording performance scores. It is proposed to
estimate the average change in performance per unit extra incentive pay. If
the true increase in performance per unit incentive pay is at lea-st 4%, the
management would like a 95% chance of declaring th'e est.imated increase to
be significant (5% one-tailed test). What sample size is needed in each
factory?

4.5 SAMPLES OF CLUSTERS 61

Assuming a linear effect of the incentive-pay performance, the values of
x are 0, 1, and 3, with X(x — X)*> = 14/3. Hence o;= 0y/14/3n. From
44,

nod_ ..
14 g ‘e f1-p

14 202
n= -3_(za j_ zl—ﬁ) 32_

The management wants & = 0.04u, where p is the performance level under
no incentive pay. For a one-tailed 5% test and probability 0.95, z,and z, _ P
are both 1.64, so that

n= (;;(—%igi%(%)z z.31400(%.)2.

Work performance scores are not kept routinely, but some recent data
indicate a between-workers coefficient of variation (100 ¢/u) of 15% for
nonincentive workers. Thus ¢/p = 0.15, giving n = 706.5 for the sample
from each of the three factories. This investigation may be more expensive
than the manufacturer is willing to pay. If we reduced the power from 0.95
to 0.5, the sum of the z’s would reduce to 1.64, which is half of 3.28. This
would reduce the sample sizes to 706,/4 = 176, a considerable reduction in
effort, but at a large price in ability to detect an improvement.

Some sample-size problems require distributions different from the nor-
mal; solutions are sometimes available from results in the literature. For
instance, an investigator might be primarily interested in comparing the

- amounts of variability in two groups as estimated by the sample variances.

A rough answer to this problem can be obtained from tables of the F
distribution, though this assumes normality in the original distribution of y
and the sizes have to be increased substantially if the distribution of y is
long-tailed, with positive kurtosis.

45 SAMPLES OF CLUSTERS

The illustrations in Sections 4.1 and 4.2 may be unrealistic for a second
reason, in that the structure of the sample is more complex than has been
assumed. A common case is that in which the individuals in a sample fall
naturally into subgroups or clusters, the sample being drawn by clusters.
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These clusters might be families, Boy Scout troops, Rotary Clubs, schools, .

or church congregations.

Sampling now proceeds in two stages. First, a sample of k clusters is
chosen at random; then from each chosen cluster a sample of individuals is
randomly drawn, n; of them from cluster j. Letting ¥, represent the rth
observation in the jth sampled cluster, we fix ideas by writing

k
Ye=ptyvte, |J=L2..kr=12,..,n; an=n
i=1

(45.1)

In Eq. (4.5.1), p is the population mean. Y; is the departure from p of the jth
cluster’s mean so v; is a random quantity with mean zero and a variance
* that we shall name o, the between-cluster variance. The value e;, is the
random departure of ¥;, from its own cluster mean; thus e;, also has mean
zero, and we shall use oezj‘for its variance, noting that this within-cluster
variance may be different from cluster to cluster.
With clusters of a given type, the sample-size problem is likely to be that

of choosing k, the number of clusters in the group that receives a specified

.treatment. If n = Xn, is the total number of individuals in the sample, the
average size of cluster is 7 = n/k. The most-natural estimate is usually the
sample mean per individual, j = Y ¥;;/n. Sometimes, however, it is ad-
vantageous to consider another estimate, j, = ¥ ¥,./k, the unweighted mean
of the cluster means. From (4.5.1), '

and
2 1 o2 1 G 4
= Y z: ei e
I/( c)__+— ._—(0'12+-—. ) ( .52)

if oezj = o? is a constant, where i, is the harmonic mean of the n - A

property of 7. is that the sample variance between cluster means provides an
unbiased estimate of ¥(7,), namely, '

=. )71"_;0)2 6!3
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This estimate, with (k — 1) degrees of freedom, is unbiased regardless of
whether the within-cluster variances o2 vary from cluster to cluster. Thus
the simple formulas of the preceding section may be used in estimating the
number of clusters needed, with 67 replacing o2 and k replacing the
previous n. This would of course require previous data for the same type of
cluster.

The result about ¥( 7,) also holds when the response is a 0 — 1 variate. If
the estimate is the mean j, of the cluster mean proportions P;» the quantity
(P, — P.)*/k(k — 1) is an unbiased estimate of ¥(p,), replacing the .
familiar pg/n. :

With the ordinary sample mean per person,

=1 1 1
F==X Xy, = ptoXny+—Y e,
Jj r J r
assuming ¢, constant, the variance is

- S (4.5.3)

Y n n

_. =n? 2 Y(n, - )’ 2
waﬁja+&=p+i4_l%u%

}J/nllcess the n; vary greatly, the coefficient of o.,2 is usually little larger than

Comparing V(y,) with V(7) from (4.5.2) and (4.5.3) respectively, we
note that the coefficient of o.f, the between-cluster component of variance, is
slightly smaller in ¥(j,), while that of 62 is slightly smaller in ¥(§) since
n > ki,. The differences in variance are usually only moderate unless the »
vary widely. ,

An unbiased sample estimate of V() can be constructed from an
analysis of variance of the sample data. The expected values of the mean
squares s; (between clusters) and s2 (within clusters) work out as follows,
where Y. is a cluster total:

J

2 .
YD y?

rL-L

nj n

1

sp =

P 5 E(s?) =02+ i'e?

and
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I | In}
P ”'_n‘

(usually slightly less than 7). An unbiased sample estimate of V(J) is
obtained by inserting s2 and (s7 — s2)/f’ as estimates of o7 and o’ in
(4.5.3). This method would enable us to attach an estimated standard error

to an estimate y from a completed survey.

where

In estimating k for a new survey from past data having similar clusters,

one approach is to rewrite (4.5.3) in the form

v(7)= k[ (1+—(k_1])c(CV)2)+%“2]

where (CV)? is the squa.re of the coefficient of variation* of the cluster sizes
n;. The quantities oy
a.nd the relation between V( 7) and k estimated.

Persons unfamiliar with the implications of cluster sampling might use
the estimate s2/n for V(7), where s2 is the usual variance between individu-
als in the sample. It turns out that s2/n is an underestimate, since

. 2
52\ o? 1 (k-1 ZX(n,—7)
E( n ) R an o (454)

By comparison with (4.5.3) the coefficient of 62 is correct, but that of 6?2
is too small, being less than 1/(n — 1) in E(s2/n) but greater than 1/k in
the true variance in (4.5.3). The underestimation can be serious if the
clusters are large (n/k large) or if members of a cluster give similar
responses, so that the 62 dominates 02

To illustrate, suppose k=10 clusters of sizes n; = 10,12,14, 16, 18,22,
24,26, 28, 30, giving n = 200, 7 = 20, and 7, = 17.62. We find

V(7) = 0.00562 + 0.11102

V(5.) = 0.0056702 + 0.102

*The coefficient of variation is the.standard deviation divided by the mean; here it would be
the standard deviation of the cluster sizes divided by their mean size.

?, and (CV')? could all be estimated from past data
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and
52 '
E(;) = 0.00502 + 0.00447(;1,2

The coefficient of o in E(s2/n) is.only about 5% of the correct value in
V(7). This ratio is usua.lly near 1/7 (in this example 5;).

Estimation of sample size naturally becomes more difficult in samples of
complex structure, since we have to develop the correct variance formula
and find a previous study of the same structure with the same response
variable. In agencies that regularly employ complex survey plans, a helpful
device used by some writers is the following [see Kish (1965), Section 8.2].
Keep a record of the ratio of the unbiased estimate of a quantity like V{( y),
computed from the results of the complex survey, to the elementary but
biased estimate (in this case s2/n) given by the standard formula that
assumes a random sample of individual persons. This ratio is called the
design effect (deff). For designs of the same complex structure, the deff
ratios are often found to be closely similar for related response variables y,
¥, y”, and so forth. Consequently, if a previous sample of similar structure
can be found when we are planning the size of a new sample, a knowledge
of these deff ratios helps in determining a realistic estimate of sample size.
Even if the y variable in the new survey was not measured in the previous
survey, we may be able to guess a deff ratio for this y from the ratios for
related variables in the previous survey. For example, suppose that the
elementary formula for V(7) suggests n = 500 to make V(j)= 2. If we
guess a deff ratio of around 1.3 for a sample of the intended structure, we
increase n to (500)(1.3) = 650.

4.6 PLANS FOR REDUCING NONRESPONSE

The term “nonresponse” is used to describe the situation in which, for one
reason or another, data are not obtained from a planned member of a
sample. My impression is that standards with regard to nonrespornse rates
are lax in observational studies; one can name major studies in which

-nonresponse rates of 30-40% are stated with little reported evidence of

earlier attempts to reduce these high figures.

As is well known, the primary problem created by nom'esponse is not the
consequent reduction in sample size; this could be compensated for by
planning an initial sample size larger than needed. The real problem is that
nonrespondents, if they could be persuaded to respond, might give some- k
what different answers from the respondents, so that the mean of the )
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sample of respondents is biased as an estimate of the population mea/.r) We
can think of a population as divided into two classes. Class 1, with mean Y,
consists of those who would respond to the planned sample approach. The
mean y; of the sample respondents is an unbiased estimate of Y,. Class 2,
with mean Y,, consists of those who would not respond. If W, and W, are
the population proportions of respondents and nonrespondents, the sample
estimate 7, has bias ¥, - Y=Y, - W,¥, - w,¥, = Wz(}_’1 Y,). With
this simple model the bias does not depend on the sample size, so that the
bias can dominate in large samples.

Sample evidence regardmg whether ¥, and ¥, are likely to differ much is
of course difficult to obtain, since this involves collecting information about
those who were initially nonrespondents in a sample. Such information as
has been collected indicates that (1) there is usually some nonresponse bias
of size ¥, - ¥, depending on the type of question asked and on the sample
approach, and (2) the bias is not necessarily serious, but it can be. From the
form of the bias, W,(¥, — ¥;), the danger of any serious bias can be kept
small by keeping W,, the nonresponse rate, small.

Fortunately, W, can often be materially reduced by a combination of
hard work and advance planning in anticipation-of a nonresponse problem.
The strategy adopted for reducing W, will depend on one’s concept of. the
reasons for nonresponse in a planned sample.

Consider a survey in which the approach is directly to the individual
member in the sample (€ither by mail, telephone, or household interview). A
good attitude to keep in mind is that you are asking the sample member in
effect to work for. you (nearly always without pay) and that the member is
busy. Usually the investigator opens with a brief account of the topic of the
survey, stressing its importance and the reasons why the information is
needed. It is helpful to capture the respondent’s interest, but this depends
on the topic. Additionally, the list of questions should be designed to
convince the member that you are competent and are neither wasting the
member’s time, prying unnecessarily, nor asking the member to respond to
vaguely worded questions.

Careful thought must be grven to the order in which questions are to be
asked. Early questions should be important and obviously relevant to the
topic. For instance, as a professor I receive questionnaires about teaching
practices and about attitudes or performance of the students. If the
questionnaire begins with numerous questions about my past that do not
seem relevant to what the investigator has stated he is trying to learn, the
probability increases that I will be a nonrespondent. The same is true if
there are questions such as “How would the students react if such and such
a change were made?” My reply would be “Don’t ask me, ask the students,”
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r “Don’t ask anybody—the students won’t know either.” Answers to
hypothetical questions can seldom be trusted.

Every question that the investigator proposes beyond those obviously
relevant, should be justified by considering: “Is this question essential?”
The investigator should know the specific role that the answer to this
question will play in the a.na.lys1s and how the analysis will be weakened if
this question is omitted. The nonresponse rate usually increases as the
questionnaire lengthens. If a batch of questions that are needed are likely to
seem irrelevant to the respondent, it may be worth inserting a brief
explanation as to why these questions are essential.

Devices that save the respondent’s time should be sought, for example,
indicating answers to questions by placing X’s in boxes instead of writing
answers. Using X’s is feasible only when a limited number of types of
answers to a question will cover the great majority of sample members,
leaving an “other” written category for those who do not choose one of the
boxes. With this scheme, some pilot checking is advisable to verify that the
“other” category seems small, or to add one or two additional boxes.

Give an assurance of anonymity to each sample member. Except possibly
in studies in which different questionnaires are sent to the same respondents
at intervals of time, the respondent’s name and address may not be needed
on a returned questionnaire. If not, an identifying number on a mailed
questionnaire will be necessary because you will want to know the names
and addresses of those who did not respond to the first mailing in order that
further mailings may be made to them.

In this connection, make advance plans for a definite call-back or
repeated-mailings policy on those who do not answer the first inquiry. A
minimum of up to three calls is considered advisable, while high-quality
studies may insist on as many as six calls, if necessary. At the same time the
effect of the call-back policy on the costs and the timing of the analysis and
reporting of results needs to be considered. Actually, field results show that

_if the cost of planning the sample and the cost of conducting the statistical

analysis are included, the overall cost per completed questionnaire is little
higher for a three- or even a six-call policy than for a one-call policy, but
time of analysis is affected. Comparison of results for the first and each
later call provides clues about the nature of nonresponse bias.

In some studies, for example, of schools or branches of a business, the
situation is that if the governing bodies of these establishments are con-
vinced of the importance of the study, they will assure that the question-
naires are answered, except for reasons such as illness. Success or failure of
a study may depend largely on the amount of planning, consultation, and
discussion needed in presenting the case for the study before these govern-
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ing bodies. The nonresponse problem here occurs in lumps; that is, refusal
by a governing body may mean that 10 or 20% of the sample is missing in
one decision. Persuading such a governing body to change its mind (the
analogy of a successful call-back) challenges the ingenuity of the investiga-
tor. :

4.7 RELATIONSHIP BETWEEN SAMPLED AND TARGET
POPULATIONS

At some point in the planning it is well to summarize one’s thinking about
the relationship between the sampled populations—the populations from
which our comparison groups will be drawn—and the target population to
which we hope that the inferential conclusions will apply. Availability and
convenience play a role, sometimes a determining role, in the selection of
sampled populations. On reflection these may be found to differ in some
respects from the target population. This issue is not confined to observa-
tional studies. For instance, controlled experiments in psychology may be
confined to the graduate students in some department or to volunteer

students at $5 per hour, although the investigator’s aim is to learn some-

thing about the behavior of graduate students generally or even of all young
people in this age range in the country. Airline pilots might be a convenient
source of data for an inexpensive study of men’s illnesses in the age range
40-50, but we hope that they are not typical of men, generally, in the
frequency or severity of strokes or heart attacks.

The problem is that results found in the sampled populations may differ
more or less from those that would be found in the target population. In

studies of the economics of farming, a good source is a panel of farmers who

regularly keep careful records of their economic transactions, in cooperation
with a state university. But as would be expected, there is evidence (Hopkins,
1942) that such farmers receive a higher economic réturn from capital
invested on their farms and adopt improved techniques more rapidly than
do farmers generally. :

This issue is common in program evaluation also, for example, teaching
programs or client-service programs. Owing to difficulty of taking accurate
research measurements within an operating program, it may be decided to
conduct the study outside the program, although its results are intended to
apply to the program. The change in the setting can affect the results. If the
study is conducted inside the program, workers in the program, aware that
they are being tested, may perform better in the study than they usually do
in the ordinary opération of the program. Alternatively, the study, if
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imposed as a temporary extra load of work, might result in a lower quality
of performance than is regularly attained. If a change in procedure in the
program has been decided, the old and the new procedure may both be
continued for a time in order to measure the size of the presumed benefit
from the change. In this event, the workers, aware that the old procedure is .
to be abandoned, may do only slipshod work on it during the trial period,
resulting in an overestimate of the benefit, if any, from the change.

The particular years in which the study is done may affect the results. A
comparison of public versus slum housing might give one set of results in a
period of full employment and rising ‘prosperity, during which the slum
families have the resources to move to superior private housing, but a
different set if unemployment is steady and money is scarce. A well-planned
series of experiments on the responses of sugar beet to fertilizers at the
major centers in England was conducted at about 12 stations each year.
After three years an argument arose for stopping the experiments because
effects, while profitable, had been rather modest from year to year; the
average responses to 90 lbs. nitrogen per acre were 78, 336, and 302 1bs.
sugar per acre in the three years. There seemed little more to be learned. A
decision to continue the experiments was made, however, because all three
years had unusually dry summers. In the next two years, both wet years, the
average effects of nitrogen rose to 862 and 582 Ibs. sugar per acre.

Reflection on likely differences between sampled and target populations
has occasionally caused investigators to abandon a proposed plan for a
study, because the only available locale seemed so atypical of the target
population that they doubted whether any conclusions would apply. Some-
times, the choice between two locales, otherwise about equally suitable, was _
made on this criterion. If resources permit, it might be decided to conduct
the study in each of two locales that were atypical in different respects, or to
have two or three control groups instead of only one, for instance where a
new urban-renewal program is being tried in one town, and the “control”
has to come from neighboring towns.

Supplementary analyses may help in speculating whether results obtained
in one population are likely to hold up in another population. For instance,
since different populations usually show somewhat different distributions of
ages, economic levels, sex ratio, and urban—rural ratio, a statistical examina-
tion is relevant for this problem in a study that reveals the extent to which
an estimated treatment effect varies with the level of any of these variables.
The investigator might well regard it as part of his/her responsibility to
report any aspect of the results or any feature of the sampled population
that is similarly relevant. Research data on methods of handling some
important social problems are scarce. An administrator in Washington,



70 ' FURTHER ASPECTS OF PLANNING

D.C. or in California islikely to use the results of any study that can be
found for policy guidance, for example, a study conducted on a. particular
group of people in Manhattan.

4.8 PILOT STUDIES AND PRETESTS

Early in the planning the investigator should begin to consider what can be
learned from pilot studies and pretests. Most written discussions of the role
of pilot studies deal with household-interview surveys (and to some extent
with telephone or mail surveys), in which information can be gained about
such issues as:

1. Ability of the interviéwers to find the houses.

Adequacy of the questionnaire; for example, do some questions elicit
many refusals, or many “don’t knows” that could perhaps be avoided
by a change in the form or the ordering of the questions.

3. Some indication of nonresponse rates. '

4. A check on advance estimates of time per completed questionhajre
per house and of costs of the field work. '

Trial training for the interviewers.

6. 1If the planning team is undecided in selecting alternative forms of
some questions, the effects of different question ordering, or house-
hold interviews versus telephone interviews with household interview
used only in follow-up, a proposed pilot sample can be divided into
random halves, using one alternative in each half.

W

One question is: Need the pilot sample be a random subsample of the whole
planned sample, versus one chosen for speed and convenience in an area
easily accessible to the planning headquarters? My opinion leans toward the
latter choice, provided that the chosen pilot sample is judged to be reason-
ably representative of the range of field problems; for instance, we would
obviously not want a pilot sample confined to rich person’s houses if the
questionnaire problems are likely to be relevant among the poor. If the pilot
sample were intended to estimate variability for determination of sample
siz.e, it would have to be a random subsample, but pilot samples are used for
this purpose only in planning major and expensive surveys in which
substantial time and resources for a pilot study are considered essential.

Parten (1950) and Moser (1959) provide good references to the roles of pilot
samples. in surveys.
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If an observational study is to be conducted from existing records on
individual persons, originally collected for another purpose, a pilot study of
these records is highly advisable before committing oneself to the proposed
study. Items to check include completeness, signs of gross errors, under-
standing of definitions, and signs of subtle changes in the meaning of the
terms over time—or more generally, to provide an appraisal of the quality
of the records for the intended purpose. It may be quite convenient to draw,
say, an “every kth” systematic sample with a random start for the pilot.
Time must be provided for the necessary statistical analysis of this pilot and
for attempted follow-up of signs that arouse suspicion. _

In a study to be done from state, regional, or national summary data, one
goal of pilot work is to learn as much as possible about completeness of the
data and any known or suspected biases. Useful strategies include discus-
sions with persons involved in the collection of these data, searches for
critiques of the data by outside persons, and preliminary graphical analyses
(e.g., looking for sudden departures from smooth curves) followed by
further discussion. :

Since observational studies vary widely in nature, a further listing of
possibilities will not be attempted. Try to plan any pilot work to aid a
specific decision about the conduct of the study, rather than just having a
look at how things go.

49 THE DEVIL’S ADVOCATE

When the plans for the study near completion, consider presenting a
colleague with.a fairly detailed account of the objectives of the study and
your plans for it, and ask that person to play the role of devil’s advocate by
finding the major methodological weaknesses of your plan. It may be
difficult to persuade this person to do this, since you are usually requesting
more than a trifling amount of work. On the other hand, some scientists
enjoy criticizing another’s work and are good at it.

I-stress this point because most observational studies, particularly those
of any complexity, have methodological weaknesses. Some weaknesses are
unavoidable due to the nature of an observational study or to the types of
comparison groups available to us. Some weaknesses could be removed
either by collecting data that we did not intend to collect at first or by using
a more searching statistical analysis, as is seen when the investigator tries to
reply to a slashing critique of his/her results that appears after the study
has been published. Some readers may see the critique, but may see neither
the investigator’s original study nor the rebuttal. For some weaknesses that
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cannot be removed from the study, additional data or analyses may enable
the investigator to reach a judgment regarding the strength of the objection,
which the investigator can then publish as part of the report. Published
results of studies on current social problems often rouse emotional reactions
for or against the conclusions of the investigator. The reader who is
emotionally against the investigator’s conclusions is apt to magnify any
criticism of a study that appears later. For this reason, a good practice in
reporting is to list and discuss any methodological weakness or possible
objection that has occurred to the investigator.

410 SUMMARY

Statistical theory provides formulas that aid in the estimation of the size of -

samples needed in a study. These formulas are worth using even when the
choice of sample size is dominated by considerations of cost or number of
available subjects. For exploratory studies, where the issue is whether a
given agent or treatment produces any effect, the formulas estimate the
‘sample size that will ensure a high probability of finding a statistically
significant effect of the treatment when the real effect has a specified size §.
If the objective is estimation, the formulas give the size needed to make the
estimate correct to + L with high probability. Illustrations of the uses of the
formulas in some simple problems are presented.

In observational studies the primary difficulties in using the formulas are
(1) estimates of population parameters that appear in the formulas must be
inserted, (2) biases increase the type-I errors in tests and decrease the
probability that the estimated treatment effect is correct to within the stated
limits, (3) the samples are often of more-complex structure than assumed in
the simple formulas. An example of this type is given in which the sample
consists of groups or clusters of subjects, rather than individual subjects.

The term “nonresponse”.is given to the failure to obtain some of the
planned measurements. The problem with nonresponse is not so much the
reduction in sample size, which can be compensated for by a planned
sample larger than is needed. There is, however, evidence that people
unavailable or unwilling to respond may differ systematically from those
who respond readily, so that results from the respondents are biased if
applied to the whole population. In planning, likely sources of nonresponse
need to be anticipated and plans need to be made to keep the level of
nonresponse low. Repeated call-backs are a standard device in mail and
household-interview surveys. Questionnaires should be constructed so as to
gain the respondent’s interest, respect, and confidence. Sometimes, the main

REFERENCES ' . 3

hurdle is to devise an approach that will obtain permission and support
from an administrative or governing body.

In both observational studies and controlled experiments, the population
represented by the study samples may differ from the target population to
which the investigator would like the results to apply. At some point in the
planning, the investigator should reflect on the differences between the
sampled and target populations; sometimes, supplementary analyses can be
carried out that help in judging to what extent results for the sampled
population will apply to the target population.

The reasons for a pilot study on some,aSpect of the proposed plan should
be considered. In an interview survey, pilot studies can gain information on
such matters as wording, understanding and acceptability of the questions,
the sources and nature of the nonresponse problem, the time taken, and
field costs. In a study of existing records, completeness and usability of the
records for research purposes can be checked, and, more generally, any

“uncertain aspect of the proposcd plan.

When the proposed plan nears completion, a colleaguc capable of
critiquing the plan can help by reviewing the plan, pointing out methodo-
logical weaknesses that have escaped the notice of the planners, and, if

" possible, suggesting means of remedying these weaknesses. The report of the

results should discuss weaknesses that cannot be removed from the plan,
and give the investigator’s judgment regardmg the éffects of the weaknesses
on the results.
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