CHAPTERS

Matching

5.1 CONFOUNDING VARIABLES

When we plan to compare the mean responses y in two or more groups of
subjects from populations exposed to different experiences or treatments,
the distributions of y, ideally, should be the same in all populations, except
for  any effects produced by the treatments. In fact, the values of y are
usually influenced by numerous other variables x,, x,,... which will be
called confounding variables. They may be qualitative or ordered classifica-
tions, discrete or continuous.

Confounding variables may have two effects on the comparison of the
response y in the two populations. First, since in an observational study the
investigator has limited control over his choice of populations to be studied,
the distributions of one or more of the confounding variables may differ
systematically from population to population. As a result, the distributions
of y may also differ systematically and the comparison of the sample mean
values of y may be biased. Second, even if there is no danger of bias—the
distributions of a confounding variable x being the same in different
populations—variations in x contributé to variability in y and decrease the
precision of comparisons of the sample means.

Two simple examples will be given to show how a confounding variable
may produce bias and decrease the precision of a comparison 7, — 7. The
examples also suggest the two principal techniques used in practice to
control undesirable effects of a confounding variable.

In the first example there are two samples, treated (¢) and control (c),
and y has a linear regression on a confounding variable x, of the same form
a + fx in each population. Hence

Yi=a+d8+ Bx, +e,
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and
yi=a+Bx,+e

where 8 is the effect of the treatment. As glven previously, the sample mean
difference d is »

d=y-5.=0+B(%,-%)+ (5 —-2) (5.1.1)
and o
E(d)=E(F,~7)=8+B(pm— tex) (5.12)

so that the bias is of amount B(g,, — g.,)- Further, regardless of whether
fey = Moy, We have from:(5.1.1), assuming the variances of x and e are the
same in each population, s

V(@)= V(5 - 5.) = 2(B%? + 02) = =(o? + (1 - #*)o)

It follows, as is well known, that if we could remove the effects of
variations in x, we could reduce ¥(d) from 202 /n to 2(1 — p*)o?/n. This is
the main reason for the use of the methods known as the analysis of
covariance and blocking in controlled experiments. By the random assign-
ment of subjects to treatment groups and by other precautions, the investi-
gator in a. simple controlled experiment hopes that he does not have to
worry about bias in the comparison d. It may still be worth trying to control
confounding x variables for the potential increase in the precision of d.

If the linear-regression model is correct, Eq. (5.1.1) suggests two alterna-
tive methods of removing the danger of bias and increasing the precision.
The first, used at the planning stage, is to select the treatment and control
samples so that ¥, and X, are equal, or nearly equal. In repeated samples of
this type,

d=8+ (é, —ée,) (5.1.3)

giving E(d) = 8 and V(d) = 202 /n = 20}(1 — p*)/n
The second method is applied at the analysis stage. From (5.1.1),

‘d_=8+B(ft;fc)+(éz_éc)

Hence, we compute an estimate B of 8 and estimate & by the adjusted
mean difference

d—’=d_—B(xt-—fc)=8+(ét é) (B B)( —fc)
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If B is an unbiased estimate of 8, then E(d’) = &. If the effects of sampling
errors in 8 were negligible, we would have V(d") = 202(1 — p?)/n. These
sampling errors increase this value, but only trivially in la.rge samples.

To summarize for this example, we should plan to control an x variable
either if there seems to be a danger of nonnegligible bias or if a substantial .
gain in precision may result. Using a linear regression, we do not begin to
get a substantial reduction in ¥(d) until p is at least 0.4. An x variable can
be controlled either by the way in which the samples are selected in the
planning stage or by recording the values of x and adjusting the estimate in
the analysis stage.

As a second example, suppose that x is a two class variate and y is a
proportion calculated from a 0 — 1 variate. For the treatment (z) and
control (¢) populations, the proportions and the means of y in each class are
given in the list below.

Population _
: Proportion in Population Mean of y
Sample x: Class1 Class2 x:Class1 ' Class2 x: Overall

Treatment f, 1-7f) 8&+p 8+p, d+fp+(-f)p,
Control f. a-£) . P ) 2) fpi+ (1 =f)p,

The population means of y differ in the two classes, having values p, and p,
for the control population. The true treatment effect is § in each class. Each
sample has total size n, but the expected proportions f, and f, that fall in
class 1 have been made to differ for the treatment and control samples. This
difference is the source of the trouble.

If the overall treatment and control samples are randomly drawn from
the populations composed of classes 1 and 2, the sample proportions p, and
P have means as shown in the right-most column of the list. It follows from
the list that

E(J) =E(p,—p.)=8+ (fi = £)(p, ~-p2)

Thus there is a bias of amount (f, — f.}(p, — p,). Note that a large bias
requires both a large difference in the expected proportions f, and f, in class
1-and a large difference in the means p, and p, in the two classes. This
explains why there is sometimes only a small bias in the estimated difference
P, — P, even if £, and f, differ widely.

This result also suggests: two methods of controlling bias, analogous to
the methods given in the first example. At the planning stage, we could
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draw samples subject to the restriction that f; = f,, but otherwise drawn at
random. This technique is frequently referred to as “within-class matching”
or “frequency matching.” Alternatively, without this restriction, we could
adopt a different estimate of § at the analysis stage. Let p,;, p,,, §,; and p,,
be the sample estimates of the treatment and control proportions in each
class from random samples. Any weighted estimate of the form

d = Wl(le "'Pcl) + Wz(Pzz _Pcz) (Wl + W, = 1)

is clearly an unbiased estimate of & under this model. In practice, the
particular choice of W, and W, has varied a good deal from study to study.
Some investigators choose the weights W, and W, from a standard popula-
tion that is of interest (perhaps the target population), and others choose W,
and W, to minimize the variance of d’.

In this example there is no danger of bias if either p, = p, or f, = f.. Do
the methods of controlling bias increase the precision in the “no bias”
situations, as they did in example 1? There is no increased precision if
pr=p, If p,=p, there is a possible increase in precision if we make
f. = f., but this is small unless p, and p, differ greatly. In my opinion this is
seldom worth any extra trouble in practice.

To summarize for this example, attempts to remove bias or increase
precision may be made either in the planning or the analysis stages.
However, when y is a proportion and there is no danger of bias, the increase
in precision resulting from these attempts is usually small or moderate.

In handling the problem of confounding variables, the investigator
should first list the principal confounding variables that he recognizes, in
order of their importance in influencing y, inasmuch as this can be judged.
A decision is made to exercise some control over an x variable either if the
possibility of a nonnegligible bias exists in the y comparison or if a
substantial gain in precision may result.

A second requirement about any x variable that we plan to control is that
its value should not be influenced by the treatments to be compared.
Suppose that in the first example the values of x are higher in the treatment
than in the control population because the treatment affects x, and that x
and y are positively correlated. In this case, subtracting ,B(x, %,) from d
removes part of the treatment effect on y.

This mistake is avoided when the x variables are measured before the
introduction of the treatment, but the danger exists whenever the measure-
ment is subsequent to the introduction of the treatment. For example,
Stanley (1966) cites a study intended to measure the effect of brain damage
existing at birth on the arithmetic-reasoning ability of 12-year-old boys. In .
comparing samples of brain-damaged and undamaged boys, the investigator
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might be inclined to use current measures of other kinds of ability, or
parental socioeconomic status as confounding x variables whose effects are
to be removed by matching or regression adjustment. Other kinds of ability
at age 12 might obviously be affected by the brain damage, and as Stanley
points out, even parental socioeconomic status might also be affected
because of the strain and cost of medical care for the brain-damaged child.

In the subsequent discussion of specific techniques for handling con-
founding variables, it is necessary to keep in mind the scales of measure-
ment of both x and y. With x, the principal distinction is between a
classification and a discrete or continuous variable; with y the principal
distinction is between a proportion derived from a 0 — 1 variate and a
continuous or discrete variable. This chapter discusses methods used at the
planning stage for handling confounding variables. Adjustments in analysis
are discussed in Chapter 6.

5.2 MATCHING

In matching, a confounding x variable is handled at the planning stage by
the way in which the samples for different treatment groups are constructed.
In some methods each member of a given treatment group has a match or
partner in every other treatment group, where the partners are within
defined limits in the values of all x variables included in the match. The
number of x variables matched in applications may range from 1 to as many
as 10 or 12.

From inspection of medical journals, Billewicz (1965) reports that the
numbers of variables most often matched in medical studies were two or
three. The idea of “matching” is the same as that known as “pairing” or
“blocking” in experimentation. As a rule, matching is confined to smaller
studies of simple structure—most commonly, two-group comparisons. The
more complex the plan, the more difficult it will be to find matches. What is
meant by a match? This depends on the nature of the confounding varia-
ble x.

x a Classification. A match usually means belonging to the same class.
With three classified x variables having two, four, and five classes,
respectively, a. match on all three variables is another subject in the same
cell of the 2 X 4 X 5 = 40 cells created by this three-way classification.
X Discrete or Continuous. Two procedures are common: One is to
change x into a classification variable (e.g., ages arranged in five-year
classes) and as before regard a match as someone in the same class. This
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method is common if, say, two of three x variables are already classifica-
tion variables, the third variable being originally continuous. This method
will be called within-class matching (other terms used are “stratified
matching” and “frequency matching”).

With x discrete or continuous a second method is to call two values of x a
match if their difference lies between defined limits +a. This method is
called caliper matching, a name suggested by Donald Rubin (1970). With x
continuous, within-class matching is moye’common than caliper matching,
for which it is harder to find matches.

Two advantages of matching are that the idea is easy to grasp and the
statistical analysis is simple. Perfect caliper matching on x removes any
effects of an x variable, whatever the mathematical nature of. the relation
between y and x, provided that this relation is the same in the populations
being compared. No assumption of a linear regression of y on x is required.
To verify this, suppose that for the jth subject in population 1 the relation
between y and x is of the general form

yy; =19 +f(x1j) +ey;
In population 2,

Yoj =8+ f(xy;) + ey

where f(x) has any functional form and e, ; and e, ; have means zero.
Then if x,; = x,; for all j,

d=y—-p=86-96,+¢ —¢,

and is unbiased whatever the nature of the function f(x). If matching is not
perfect but fairly tight, the hope is that for any continuous function f(x) we
will have f(x,;) = f(x,;) because x,; = X,;, and the remaining bias in
¥ — 7, will be small. _

Matching has some disadvantages. The long time taken to form matches,
may hardly seem worthwhile if under the original matching rules no
matches can be found for some members of one sample. Imperfect matching
on the chosen variables or omission of important variables on which we
failed to match can leave systematic differences between the members of a
matched pair. Billewicz cites an example by Douglas (1960), in which
children from premature births (51 Ib or less) were found to have inferior

)
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school performance at ages 8 and 11 to normal-birth children. The original
sample size was 675; samples were matched with regard to sex, mother’s
age, social class, birth rank in the family, and degree of crowding in the
home. It became evident, however, as the study progressed that despite the
matching, systematic differences remained between the parents of prema-
ture- and normal-birth children regarding (1) social level, (2) maternal care,
and. (3) interest in school progress. Each matched pair of. children was
assigned a score (from +3 to —3) according to the extent to which these
three variables favored the premature child. The mean differences in the
exam results (of 1l-year-old premature- and normal-birth children) ap-
peared as follows when subclassified by this score. (Results for the exam of
eight-year-olds were similar.)

Premature—Normal Scores

On Confounding Variables Exam Scores
+3 +6.0
+2 +04
+1 -0.6

0 -17
-1 —56
-2 —-6.7
-3 -12.0

Clearly, the original matching did not guarantee that partners were equiva-
lent on all important confounding variables, even after matching on five
variables. (Firm interpretation of this finding rests, in part, on being certain
that neither maternal care nor interest in school progress is affected by the
comparison variables—premature versus normal birth.)

With x continuous, some results for two other matching methods will be
presented later in this chaper. One method called mean matching (or
“balancing”) does not attempt to produce closely matched individual pairs,
" but instead concentrates on making X, — X, as small as possible. This
method is not new. It is of course tied to the assumption that y has the same
linear regression on x in each population. The second method, called nearest
available matching, tries to produce well-matched pairs in difficult situations
and is described later.

In studying the performance and properties of various matching proce-
dures, we shall consistently use x,, n,, 6,, and so forth, to relate to the group
of observation$ for which matching observations are being sought. They are
sought from reservoir 2, characterized by entities x,, 15, 0,, and so forth, all
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bearing the subscript “2.” This notational asymmetry is critical for correctly
interpreting tables and formulas.

53 THE CONSTRUCTION OF MATCHES

Published reports of studies using matching illustrate that the practical
difficulties in constructing matched samples vary greatly from study to
study. Numerous factors are relevant. In order to form a matched sample of
size n from two or more populations, we*Obviously need larger supplies or
reservoirs of subjects from which matches may be sought. The sizes and
accessibility of these reservoirs are important. The most difficult case is one
in which the investigator has only n subjects available from one population
and needs all of them. Unless the reservoir from a second population is
much larger than n, the investigator may be unable to find matches for all n
from population 1. '

Another factor is the planned size of the sample to be compared.
Matching is seldom used when this planned n exceeds say 500, presumably
because of the labor and time needed to match. The difficulties of finding
matches under fixed rules also mount rapidly with each increase in the
number of x variables to be matched. In Section 5.2 the Douglas example
included a reservoir of 12,000 normal births, where n = 675 with five
matched variables. :

Matching of samples from two populations becomes more difficult when
the x distributions differ markedly in the two populations—the situation in
which the risk of bias due to x is greatest. If most people in population 1 are
older than those in population 2, it may be impossible to find good matches
for the oldest members of a sample from population 1. This difficulty is
sometimes handled by omitting sample members who cannot be matched by
the original rules, rather than by relaxing the matching rules. The full
consequences of the possible alternatives have not been investigated. If the
regression of y on x is the.same function in both populations, omission may
be the better procedure, though it means that one of the samples is badly
distorted at one end.

The time taken to create matched samples depends much on the ease
with which we can locate sample members whose x values are in the desired
range. Sometimes, the available records are kept in a form that facilitates
this search, as might happen if a match for a newborn baby is as follows: a
child of the same sex, born in the same hospital during the same week with
no complications of delivery. When one has to seek matches by going
through a reservoir case by case, chance plays a major role in determining
how long the job takes. For illustration, suppose that x is a five-class



82 . MATCHING

variable and that the sample from population 1 has only » = 100 cases
available, distributed as follows:

Class l 1 2‘ 3_ 4 5 lTotal
Number | 10 25 30 25 10| 100

In population 2 the proportions falling in these five classes are assumed as
follows:

Class |1 2 3 4 5 |Tow
Proportions | 0038 0.149 0269 0326 0218 | 1.000

In classes 4 and 5, it appears that a search of less than 100 cases from
population 2 should provide the needed 25 and 10 matches, but more than
100 seem necessary, on the average, for the other three classes. The most
difficult case is class 1, where we need 10 matches but expect only 3.8 from
a sample of 100. The number of reservoir cases needed to find these 10
matches is a random variable following a simple waiting-time distribution
[Feller (1957)]. The mean number needed is 10/0.03§ = 263, or more
generally m/p, where m is the number required and p is the proportion.
This number has a large variance m(1 ~ p)/p? = 3835 in this example. The
consequence is that the upper 95% point of the waiting-time distribution
exceeds 350. Thus we might be lucky and find the 10 matches needed in
class 1 in 150 cases, or we might be unlucky and have to search over 350
cases. This uncertainty makes the case-by-case construction of matches from
random samples frustrating, particularly when there are several x variables.

For this reason, matching is inadvisable if potential sample members
from the different populations become available at the rate of only a few
per week, for example, subjects entering an agency for a service of some
kind. There may be an indefinite deJay while waiting for matches for certain
subjects. This point is discussed more fully by Billewicz (1965).

Computers should be able to perform much of the detailed labor of
finding matches if the values of the x variables in the available reservoirs are
in a form suitable for input into computers. The easiest case is within-class
matching when all the x variables, three for example, are already in
classified form. For each reservoir, simple instructions will arrange and list

" in a printout the sample in each cell of the three-way classification. We
learn, for instance, that the first reservoir has 19 cases in cell 2; the second.
reservoir has 28 cases. For any desired sample size up to 19 from this cell,
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the partners can be drawn at random by the computer from the 19 or 28
cases available. If two or three x variables to be matched are already in
classified form, while the third is a continuous variable that is to be
classified for within-class matching, the computer will perform this classifi-
cation, arrange each reservoir in cells, and list as before. :

With a single discrete or continuous x for which caliper matching is
desired, the computer can rank and list the values of x in each reservoir
from lowest to highest. From these lists caliper matches can be made
quickly if available. I do not know how best to extend this method to two or
three continuous x’s where a caliper match is needed for each. A partial
help is to have the computer classify each x into one of 2 classes by binary
splitting. Thus with three x’s and four classes per variable, the computer
arranges the trinomial distribution into 64 cells and lists. Since the values of
x are not strictly in rank order within a cell, such lists are less convenient,
but still a considerable help in searching for caliper matches on all three x’s.

In matching samples from two populations with one continuous x, the
investigator sometimes needs to use all cases in the reservoir from popula-
tion 1. A sample of at least 100 cases is needed and there are only 100 cases
from population 1. The reservoir from population 2 has say 272 cases. In
this case it is not clear that caliper matching of each case in sample 1 can be
performed with a prechosen fixed +a value. The investigator does not want
to reject any cases, since this reduces the sample size below 100. For this
problem, Donald Rubin (1970) has developed a method called nearest
available pair matching, performed entirely by computer, that attempts to
do the best job of matching subjects to the restriction that every member of
sample 1 must be matched.

The computer first arranges sample 1 in random order. For the first
member of sample 1 it picks out the member of the reservoir for sample 2
that is nearest to it and lays this pair aside as the first match. The process is
repeated for the second member of sample 1 with respect to the 271 items
remaining in the reservoir, and so forth. Thus all matches are found, though,
of course, the difference |x, ; —.%2;| will differ from pair to pair.

Two variants of this method that might be better were also examined by
Rubin. Instead of arranging sample 1 in random order the computer first
ranks the sample 1 members from lowest x, to highest X,. In variant 1 we
seek matches from reservoir 2 in the order X, Xp_y--. (high-low). In
variant 2 the order is x;, x,,... (low-high). :

In mean matching, the objective is to make %, — X, as small as possibl
for any x. If all members of sample 1 must be used, their mean X, is first
found. The computer selects from reservoir 2 the value X, nearest to X.
Then x,, is chosen such that (x,;, + x,,)/2 is nearest to X, and so forth.
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5.4 EFFECT OF WITHIN-CLASS MATCHING ON x

The problent of the effects of matching is complex, and not nearly enough is
known about it. As we have mentioned, the purposes in matching are (1) to
protect against bias in 7, — 7, that might arise from differences between the
x distributions in different populations to be compared and (2) to increase
the precision of the comparison of the y means. This section discusses the
effect of within-class matching on x. We must first consider the nature of
the x variable. There are three possibilities:

1. An “Ideal” Classification. This term is used for classifications in
which two members of the same class are identical with regard to x.
Within-class matching therefore gives perfect matching, which as previously
noted removes bias in y for any functional form of the relationship between
y and x that is the same in both populations. Unfortunately, it is not clear
how often ideal classifications occur in practice. This might be so with a
qualitative classification like the O, A, B, AB blood types in which two
subjects with the same blood type are identical with regard to any effect of
the relevant genes on-y.

Sex (male, female) might be an ideal classification for some types of
response y, but not for other types. For instance, in traits related to
behavior or attitudes, it is natural to think of some women as more feminine
than other women, and some men as more masculine than other men; then
the male—female classification would have classes of nonidentical members.

2. A CIasszfzcatzon with Any Underlying Distribution. Numerous exam-
ples can be given of classifications in which members of the same class need
not be identical with regard to the variate which x is designed to measure.
Consider an urban-rural classification. Many aspects of urban—rural living
that are likely to influence y, are themselves affected by the fact that some
people in the urban class have a more typically city environment than others
in the urban class; likewise, some people in the rural class have a more
typically country environment then others in the rural class. The same is
true, for some responses, of a classification by religion into Catholic, Jewish,
and Protestant. Seme ‘sabjects of a given religion are much more heavily
committed to religious beliefs and activities than are other subjects.

Ordered classifications such as socioeconomic level or degree of interest
(none, little, much) in some topic are a more-obvious example. One can
sense an underlying continuous x variable that has been divided into a small

number of ordered classes. Indeed, ordered classifications are often used -

when we recognize that a correctly measured x would be continuous, but
can measure only crudely, so that an ordered classification seems all that the
measuring instrument will justify.
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In examining the effect of within-class matching on bias when there is an
underlying distribution, I assume that the correct x (the value that in-
fluences y) is continuous and that the observed classified x represents a
grouping of the correct x into ordered- classes. Consider how matching
affects p, — p,, the mean of %, — x,. If p, > p, it seems plausible -that
within most classes the mean py; will exceed p,;, where j stands for the
class. This is true for common unimodal distributions such as two normals
or two ¢ variates with different means. In the matched samples the mean of
X = X IW(py; — 1y ;j)» Where W, are thie relative numbers in the classes.
Thus it seems hkely that even after matchmg, the mean of X, — ¥, will tend
to be positive, though its size should be limited by the width of the classes.

3. x Discrete or Continuous. Since we are dlscussmg within-class
matching, we assume that discrete or continuous x’s are grouped into a’
limited number of classes before matching. Consequently, mathematical
study of the effect of matching on x; — %, follows the method just indi-
cated, except that we are now interested also in the optimum choice of class
boundaries and in the effects of different numbers of classes, since these are
under our control when we create the classified x variable.

With x distributed as N(B, 1) in population 1 and as N(0, 1) in popula-
tion 2, the percent bias removed by matching was first calculated for
0 < B <1 for specified division points x,, x,..., x, (with ¢ classes). The
value B = 1 was considered a larger initial bias than would be typical in
practice. The percent bias removed is

100[1 - (I-‘l - I-‘z)m/B]

where (g, — p,),, is the mean of X, — X, from the matched samples. The
percent bias removed was found to be practically constant in the range
0 < B < 1 and therefore.could be approximated by calculus methods for B
small [Cochran (1968)].

Let the distribution of x be f(x) in population 1 and f(x — B) in
population 2, where f(x) has unit SD (standard deviation). By the calculus
method, the percent reduction in bias was found to be

100 3 [ £(3,-,) = 1] (5.4.1)

whel.'e M; is the mean value of x from f(x) in the interval (x;—15x;). In
particular, for x normal,

1 Xi o _x2
“ e = ) 1)
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where P, is the total frequency in class j. Thus, for the normal, (5.4.1) gives

2
. < ix._:)—fix,;
Percent reduction in bias = 100 Y L7, ‘)P_ 1]
j=1 J -

It happens that for the normal distribution, (5.4.2) is also the percent
reduction in the variance of X, — %, due to matching, a result that follows
immediately from results given in other cases by Ogawa (1951) and D. R.

" Cox (1957). For numbers of classes between 2 and 10, thesc? authors a.!so
determined the optimum boundaries (shown here as the optimum 'relatlve
class sizes), the corresponding maximum percent reductions in bias and
variance for x normal, and the percent reductions when the classes are made
equal in relative frequency. These values are given in Table 5.4.1.

(54.2)

With the optimum boundaries at least five classes are necessary to
remove 90% or more of an initial bias in X, — X,. Only 64% is removed with
two classes and 81% with three classes. This is disappointing because
matching with three classes is not uncommon, sometimes b.ecause only thltee
classes are given in an ordered classification. With the optimum boundaries
the central classes are larger, in terms of frequency, than the extreme classes.
It is noteworthy, however, that with equal-sized classes the percentage
reductions in bias and variance are only around 2% less than the maximum
reductions. The choice of class boundaries and resultant sizes is not critical.

For equal-sized classes, some investigations of n_onpormal distril.)utions
(Cochran, 1968) found that the percent reductions in bias agreed quite well

Table 54.1. Optimum Sizes of Classes and Percent Reductions in Bias and
Variance of ¥, — ¥, Due to Within-Class Matching (x Normal)

Percent Reductions

Number Optimum Class .
of Classes Frequencies (%)° ., Maximum Equal Classes
2 50 63.7 63.7
3 27, (46) 81.0 793
4 16, 34 882 86.1
5 11, 24, (30) : 92.0 89.7
6 7, 18,25 94.2 91.9
7 5.5, 14, 20, (21) 95.6 93.4
8 4,11, 16, 19 96.7 94.5
9 3,8,13,17,(18) 97.2 95.4
10 2,7,11,14,16 97.6 95.9

“Since the distribution is symmetrical, only the lower half ‘is shown, starting with the
lowest class. Thus for ¢ = 4, the frequencies are 16, 34, 34, 16 in percentages; for ¢ = 5,
they are 11, 24, 30, 24, 11.
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with those for the normal%running about 2% higher in some cases. In
variance, the percent reductions tended to fall below those for the normal as
skewness and kurtosis increase.

Unequal variances were also examined where x follows N(B,1) in
population 1 and N(0, 02) in population 2. For values of o} between 1 and
2, it appeared that the percent reductions in the bias of X, — X, differed
little from the values given for 62 = 1.

The effect of within-class matching on the bias of ¥, | — X, are presented
in Table 5.4.1. Results for the effects of galiper matching, nearest-neighbor
matching, and mean matching on X, — ¥, will be given in Sections 5.5-5.7;
the situation with respect to the bias of (7, — 7,) will be discussed in
Section 5.8. '

5.5 EFFECT OF CALIPER MATCHING ON x

Caliper matching is a tighter and more-efficient method than within-class
matching and can be used when x is continuous or discrete. For x continu-
ous, there is a certain inconsistency in within-class matching. For example,
when we search for a match for a subject whose true x value is 59.4, we may
reject a subject whose x value is 60.2 because this subject is in the
next-higher class, but we may accept a subject whose value is 42.1 because
this subject is in the same class.

With caliper matching to within +a, the frequency functions of x in the
two groups (populations 1 and 2) were assumed to be N(B,1) and N(0, 1).
As with within-class matching, the percent of the bias removed in X, — X, is
fairly constant for values of an initial bias B which are typical of those
values that occur in practice. For a given f(x), the percent depends
primarily on g or, more generally, on the ratio a/o.

The amount of bias removed .also depends, to some extent, on how the
caliper matching is done. One method starts with a sample from population
1 and finds matches for all its members. Thus in the matched pairs, the
members from sample 1 still represent an undistorted sample from popula-
tion 1. However, if say p; > p,, the matches selected will make the members
from population 2 a selected sample that is biased upwards. If instead we
start with ample reservoirs from both populations and search' for the
matches that can be found most quickly, we will tend to select members on
the low-bias side from population 1 and on the high-bias side from
population 2, since these are the easiest to match. An extreme form of this
approach is to assume that we start with a random sample of the differences

X1j — X2, and go through this sample selecting the pairs that are caliper-

‘matched. This approach results in smaller values of Ix1; — x,,| for matched

pairs because of the distortion of both initial samples.
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Table 5.5.1. Percent Reduction in Bias of x, — X,
with Caliper Matching to Within + a (Normal
Distribution). In (1) one Sample is Random and in
(2) Matches are Made from x,; — x;;

Percent Percent

ta Reduction (1) Reduction (2)
0.2 99 9
0.3 97 98
04 95 97
0.5 93. 96
0.6 90 94
0.7 87 92
0.8 84 90
0.9 80 87
1.0 76 84

For x normal, Table 5.5.1 shows the percent bias removed when (1) one
sample is random and (2) matches are made from r:':mdom‘ dif.ferences.
These are intended to indicate the range of performance in apphgatmps. .

By comparison with Table 5.4.1, which gives percent reductions in b}as
due to within-class matching, caliper matching to within .:t 0.9{1, which
seems quite loose, should be as good as within-class matchu_lg ‘with three
classes, and removes 80% or more of the bias. Caliper matching to within
+0.40 is as good as within-class matching with nine classes, apd removes
95% of the bias. However, the benefits of caliper match_mg have a
cost—caliper matching, in general, requires much larger reservoirs and more
time.

When there is no bias, the percent reductions in the variance of X, — X,
with caliper matching approximate the higher values for bias removed, that
is, the percent (2) values presented in Table 5.5.1. . _

With unequal variances in the two populations and x havpg f;equepcy
functions N(B, 1) in population 1 and N(0, 6}) in population 2,_ caliper
matching for a given a does a little better than the values presented in Table
5.5.1 when o2 > 1, and somewhat worse when ¢ < 1.

5.6 EFFECT OF “NEAREST AVAILABLE” MATCHING ON x

. Rubin’s (1970) results for the effects on bias will be quotec} for x normal.
[For a more extensive treatment see Rubin (1973, a,b).] It is assumed that
all n, available subjects from population 1-are to be matched, and that the
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reservoir from population 2 has N, subjects. The effect of the technique
naturally depends on the ratio N,/n,. It also depends on the size of the
initial bias B, unlike the previous methods, because with B positive (, > Ba)
and substantial, we can expect only “poor” nearest neighbors for the
highest members of sample 1. ,

Table 5.6.1 gives the percent reductions in bias of X, — X, for n, = 50,
100; N,/n, = 2, 3,4; and B/o = {, 1, 3,1, with ¢ assumed the same in both
populations. My opinion is that B/o = §, % is more representative of the
sizes of initial bias that occur in practioe”than is B /6 = 2,1, which seems
unusually large, although initial age biases for cigar and pipe smokers in the
studies on smoking (Section 2.4) were around 0.7.

The results suggest that with a reservoir in population 2 four times as
large as the sample from population 1, the method should remove nearly all
the bias for initial biases up to 3o. For moderate biases (up to 16) a 2: 1
ratio of reservoir to sample may be expected to remove around 90% of an
initial bias. _

Any difference in the population standard deviations is also relevant. The
percent-bias-removed values are higher than those shown in the table if
0, < 0, and lower if o, > ¢,, again because of the problem of matching the
highest members of sample 1.

Rubin also investigated the two variants of “nearest available” matching:
(1) High-low, in which the members of sample 1 are ranked from high to
low instead of at random—the highest member of sample 1 paired first, and
so forth. (2) Low—high, in which the pairing proceeds from the lowest to the
highest member of sample 1. For p; > p, Rubin found the “low—high”
method best, the random method second best, and the “high—low” method
third best, although the differences in performance were not great.

As with caliper matching, “nearest available” matching removed a some-
what higher percentage of the initial bias when 67 > 67 and removed a

Table 5.6.1. Percent Reduction in Bias of X, — &, with “Nearest Available”
Matching

M B_1 I 3 ]

" n, o 4 2 4
50 2 92 86 77 67
3 96 94 90 84
4 98 91 9% 89
100 2 94 89 79 68
3 98 96 92 85
4 99 98 96 91
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lower percentage when ¢} < o2. With o < 62, the matches for the highest
members of sample 1 tend to be too low, since population 1 has both a
higher mean and a higher variance than population 2.

5.7 EFFECT OF MEAN MATCHING ON x

\
Table 5.7.1, which has the same format as Table 5.6.1, shows that -the
computer method of mean matching is highly successful in removing the
bias of X; — X,, as might be expected. The results in Tables 5.6.1 and 5.7.1
were obtained by computer simulation with x normal. :

5.8 EFFECTS ON BIAS OF j, - 7,

The preceding results on the effects of different matching techniques on a

. confounding x variable were given as a step toward examining the effects of
matching on the response variable y. These effects depend on the nature of
the regression of y on x. First, consider bias with two populations. Several
cases may be distinguished:

1. Linear Regression—The Same in Both Populations. With a single x
and y continuous, the model is

yy=a+d+Bx;+e;  py=atPxy;+ey;
where the constants a and B that define the regression are the same in both

populations, and 8 represents a constant effect of the difference in treat-
ment. Since

E(7,—p)=8+B(p, —n,)

-

Tabler 5.7.1. Percent Reduction in Bias of ¥; — X, with Mean Matching

N B_1 1 3 1
™ n, ¢ 4 2 4

50 2 100 99 91 77
3 100 100 99 96
4 100 100 100 100
100 2 100 100 96 80
3 100 100 100 98
4 100 100 100 100
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it is clear that under this model the percent reduction in the bias of y equals
that in x.

Next, suppose that y has a multiple linear regression on k variables,
X1, X35+« Xy, to Which matching has been applied. In this case

k
E(5,~p)=6+ .glﬂi(”'li = p)

The ratio of the final to the initial bias in y may be written

-

Zﬁ-lﬁi(“li - I"'Zi)m
Zf:lﬂi(#li — k)

(5.8.1)

where (g; — n,;),, represents the difference in means for the ith x-variable
after matching. If the matching technique that is applied to each x produces
the same percent reduction in bias, this is also the percent reduction in bias
of y. ' ' ,

If the matching technique produces different percent reductions in bias
for different x variables, the effect on y under multiple linear regression can
be more complex. When all the terms B;(p;; — &,;) have the same sign, the
percentage of bias removed by matching lies between the least and greatest
percentages for the individual x’s, as follows from (5.8.1). However, if the
terms B,(p,; — p,;) have different signs, it is easy to construct cases in
which the initial bias in y is small, because of cancellation of signs, and is
increased by matching.

2. Nonlinear Regression—the Same in Both Populations.  If the regres-
sion of y on x is ¢(x), we are concerned with the effect of matching
methods on the mean of ¢(x, ;) — 9(x;;). Some investigation has been
made of monotone, moderately curved regressions such as €, x + ¢,x2, for
€1, €5, and x all positive and e*/2 or e~ */2,

In these cases the condition ¢, = o, (the variance of x is the same in the
two populations) becomes important. With ¢, = o, = o, consider P(x)=
¢, x + ¢c,x%, where x follows N(p + 3,1) in population 1 and N(g,1)
in population 2, with p >4 so that negative values of x are rare.
With either within-class or caliper matching, the percent reductions in
E[¢(x,,)] — E[¢(x;,)] are close to those in E(x,;) — E(x,,). These results
are also suggested by the following algebraic argument. Let

Yij=Cotaxtexl+e;  (i=1,2)
Then, apart from any treatment effect, the initial bias in d = 7, — 7, is

E(d)=c(p — p2) + o (4} + 07 — p3 — 6}) (5.8.2)
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where x;; has mean p, and variance o2. With 07 = o7 this becomes

E(d)=(m — p)er + (1) + 122)]

. The proportionate effect of matching on E(d ) will therefore equal its
effect on p, — p,, except that in (5.8. 2) the value of p, + p, is slightly
altered by matching and the variances o2, and ¢Z, will not be exactly equal
in the population created by matching.

However, when o, = g,, the percentage reduction in bias due to matching
depends on the size and sign of the term ¢, (62 — o07) in the initial bias, and
on how matching affects population variances. Taking y = x2, with g, = 4.5
and p, = 40 withjn class matching wnh two classes reduces the bias by
. 63% when o} = o} = 1; by 70% when o2 = % and o7 = %; and by only 52%
when of =% and o7 = 4. Some results for within-class matching, with
y=e%y=e*? and p, — p, = 0.5, are given in Table 5.8.1.

When o, = g,, results for the effect of within-class matching on x can
apparently be used as a rough, if slightly optimistic, guide to its effect on
monotone, moderately curved regressions. This is not so when there are
substantial differences in variances. Rubin’s results for “nearest available”
matching will be given in Chapter 6 for comparison with regression adJust-
ments.

Mean matching is highly successful in djmjnishing 1; — I, in the matched
samples and is essentially intended to cope with a linear regression of y on
x. Its performance under nonlinear regressions will depend both on the
nature of the regression and on the specific method of mean matching.
Rubin’s method, for instance, will tend to make o7 less than o7 in the
matched populations even if they are initially equal, since it chooses values
of x,; near to X;. Rubin’s method is likely to do poorly on regressions like
e*/2, even if 0, = 0, initially, and should be avoided if nonlinear regressions
are suspcctcd other matching methods are preferable to nearest available
pair matching, .

Table 5.8.1. Percent Reductions in Bias-of y for Within-Class Matclung
Wheny—xy—e am’ly—e"'/z

E(ylx) ] x ex/2 —x/2 .
‘ €Ly (1 1) %% (3,3) (1 1) ( %) C3))
Two Classes 64 6l 94 4 6l 47 - 88

Three Classes 79 76 105° 60 76 64 1104
FourClasses | 8 84 108° 69 84 731077

22
(0% 03%)

“Entry 105 denotes that remaining bias is 5% of the original bias, but of opposite
sign. Other entfies exceeding 100 are similarly interpréted.

i em——
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3. Regression—Different in the Two Populations. The concept of
matching is geared to the assumption that the regression of y on x is the
same in the populations being compared. Suppose that there are different
linear regressions in the two populations, namely,

Vo= + :Bzxzj + €y (5.8.3)
where, as usual, 8 is the effect of the difference in treatment. Then
E(7y = 7) =8+ (&) —ay) + By — By (5.8.4)

Matching will not affect the term a; — «,, which represents a constant bias.
Further, even if we succeed in making p, = p, = p, a bias (8, — B,)n

= +8+,lelj+elj;

_ remains after matching. It is best to avoid matching in this case.

Unfortunately, it is possible only in a before—after study to detect from
the data that this situation exists before deciding whether to match. In such
a study, y and x are measured in two populations before any difference in
treatment has occurred, and also after a period of exposure to the two
treatments. From the “before” data, the regressions of y on x in the two
populations can be estimated and compared at a time when the populations
have no difference in treatment. The existence of a model like (5.8.3) can
thus be detected before a decision on matching is made. In an “after only”
study, the measurement of y is usually postponed until after the samples
have been selected (i.e., the decision to match or not to match has already
been made).

In the final results in an “after only” study, the finding of different linear
regressions in the two populations has another possible interpretation.
Assuming a; = a,, from (5.8.3) it follows that for a given value of x

NW=n=8+(B—B)x+e —e (5.-8-5)

This relation might hold because the effect of the difference in treatments
is 8 + (B, — B,)x, varying with the level of x. If we have matched on x, a
linear regression of §, — 7, on x would reveal this situation. In fact, in many
studies the investigator expects the effect of the difference in treatments to
vary with x. Of course the investigator could be misled in this interpretation
if the regressions actually have different slopes in the two populations.

59 EFFECT OF MATCHING ON THE VARIANCE OF V1 -

Let us now consider how matching increases precision when there is no
danger of bias. Consider a linear regression of y on x, which is the same in
both populations, with g, = p,. For this,

V(fl = }72) = ,BZV(’?l - fz) + V(él' - éz) (5-9-1)
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Table 5.9.1. Percent Reduction ( fp?) in V( 5, - 7,) due to.-Matching in the
“No Bias” Situation (Linear Regression)

Number of P
Classes f 0.3 04 0.5 0.6 0.7 0.8 0.9
2 0.64 6 10 16 23 31 41 52
3 0.81 7 13 20 29 40 52 66
4 0.88 8 14 22 32 43 56 71,
5 0.92 8 15 23 33 45 59 75

8

1.00 9 16 25 36 49 64 81

With random (unmatched) samples of size n, the two terms on the right-hand
side can be written in terms of the correlation p between y and x.

- _ 2
V(p — )= ;[P20y2 +(1- Pz)ﬂyz]

If the fractional reduction in V(xl — X,) due to matching is £, this' reduc-
tion affects the. component p?a?, but not the residual component (1 — p )o
Hence the fractional reductlon in ¥(7, — ) due to matching is fp?, and
can be calculated for a given p from the values of f in preceding tables.
Table 5.9.1 shows the percent reductions from within-class matching for the
smaller numbers of classes.

With three or more classes, the percent reductions are determined prim-
arily by the value of p rather than by the number of classes. Matching for
increased precision when there is no danger of bias, does not begin to pay
substantial dividends until p is 0.5 or greater.

When a decision about matching is to be made, either for protection
against bias or for increased precision, an important question to consider is
“What are the alternatives to matching? The principal alternatives—adjust-
ments during the statistical analysis—are the subject of Chapter 6, which
includes comparisons with matching where available.

5.10 INTRODUCTION TO STATISTICAL ANALYSIS OF -
PAIR-MATCHED SAMPLES

In this section we introduce methods of statistical analysis for pair-matched
(caliper or “nearest available””) and mean-matched samples. For within-class
matching the methods of analysis are essentially the same as those for the
adjustment of unmatched samples, and will be discussed in Chapter 6.
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Pair Matching: y Continuous

The data form a two-way classification (treatments and pairs or matched
groups). Under the additive model

Yy=ptmtytey

with V(e;;) = 02 the usual two-way analysis of variance provides an
estimate of the standard error of any,€omparison among the treatment
means. With only two treatments, we may equivalently analyze the column

- of differences d; = y;; — y,;, between the members of a pair, in order to

estimate the standard error of d = 7, — 7,. Note that the ana.lysis with two
treatments does not require the assumption that o7 = o7. Similarly, if the
variances V(e;;) = a2 are thought to change from treatment to treatment,
valid standa.rd errors:and ¢ tests for any comparison XA, y, are obtained by
analyzing the column of ‘values LA, iYij-

The analysis of matched pairs is usually directed at estimation and
testing of the mean difference d = 7, — 7,. However, with tight matching it
is also possible to examine whether d; = y,; — y,; varies with the level of x.
One approach is to let x; = (x;; + x2 ;)/2 and compute the linear regres-
sion of d; on x;, which constitutes 1 d.f. (degree of freedom) from the
(n — 1) df. for the variation of d; from pair to pair. Higher polynomial
regression terms may be added if appropriate, or multivariate regression of
d; may be used on different x variables than were used in matching,

Pair Matching: y (0,1)

If y represents a two-way classification with. two pair-matched treatments, a
member of any pair can only have the y values O or 1. Thus the pairs have
only the four y values (1, 1), (1,0), (0, 1), and (0, 0), where the first number
refers to treatment 1 (7) and the second number to treatment 2 (7;). The
data may be summarized as follow:

T, R Number of Pairs
1 1 ny
1 0 ny
0 1 ng
0 0 - Rgg

Total ‘n
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The proportions of “ones” for the two treatments are , = (ny + ny,)/n
and p, = (ny, + ny,)/n. Thus d = (nyy — ny;)/n. As McNemar (1947) and
other investigators have shown, the null hypothesis p, = p, is tested by
regarding n,, and n, as binomial successes and failures from n,, + ny,
trials, with probability of success 1 on the null hypothesis. An exact test can
be made from the binomial tables. For an approximate test, the value of x2
corrected for continuity with 1 d.f. is

2
(mo~npl — 1)
ny + ng

Stuart (1957) gives the estimated standard error of d = p, — p, as

2\1/2

Bro + oy = (Pro — Pr)
n

Billewicz (1965) reports that in 9 out of 20 examples of matching in the field
of medicine, the analysis used was (incorrectly) that appropriate-to indepen-
dent rather than matched samples. This mistake overestimates the standard
error of d and underestimates x2. [See Cochran (1950) for an extension of
the pair-sample methods when more than two treatments are used.]

With two treatments, let p,; and p, ; be the true probabilities of success in
the jth pair. In pairing, we presumably expect the probabilities of success to
vary from pair to pair. In seeking a model that describes how p, ; and p,;
vary from pair to pair, many authors [writing g for (1 — p)]} have used the
following relations:

_: = YA, 22, (5.10.1)
where A; represents the level of the jthpair and ¢ measures the disparity

between the effects of the treatments. In model (5.10.1), the quantity that is
regarded as constant from pair to pair is ¥ = p; 792/ P2;49,;> sometimes

called the odds ratio, rather than § = p, j — P2;- The model assumes that the

effects of the treatment and the pair are additive on the scale of log( Pii/ i)
called the “logit of p,.” An additive model on the scale of p, ; itself has the
logical difficulty that p, ; must lie between 0 and 1.

With model (5.10.1) the quantity to be estimated is the odds ratio y. If
the A; are regarded as nuisance parameters, D. R. Cox (1958) has shown
that (1) an optimum estimate of y uses the (1, 0) and (0, 1) pairs only, and
that (2) the ratio n,/(n,y + ng,) is a binomial estimate of 8 = ¢ /(1 + ),
based on a sample of size n,, + n,,. This result provides an estimate of §
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and hence of Y = 8/(1 — #). Similarly, confidence limits for  can be
obtained from binomial confidence limits for 8 as shown in Hald’s (1952)
tables or the Fisher and Yates tables (1953).

5.11 ANALYSIS WITH MEAN MATCHING; y CONTINUOUS

So far as I know, analysis with mean matching is seldom used. It has merit
when the regression of y on x is linear with the same slope in both
populations. The following analysis makes these assumptions. Let

Yu=ptrtBx,tey M, =ptnt B, t+e,
Hence '
Fi=h=n-n+B(XF -X%)+e —¢&
An effective mean matching makes X; — X, so close to zero that y, — 7,
serves as the estimate of 1, — 7,, with variance
V(s - 7)) = “ie : e

In order to estimate of, and o3, and hence V(; — 7,), the effects of the
linear regression of y on x must be removed from variations in y. Let (yy),
denote £(y,, — 7,)% etc. Then

62 = () — ()’x)%/(xx)l
le n-2

with a similar expression for 62,.

A large-sample 1 — a confidence interval for 7, — =,, with effective mean
matching, where y has a linear regression on x with the same slope in both
populations is thus .

42 “2 a2 a2

ay, + 6 61, + 6
5o —le ~ 2e : 7 7 —le = "2
Yi= N~ 2ap n <"'1_"'2<Y1_)’2+Za/2V' n

5.12 SUMMARY

In an observational study systematic differences between the population_s
from which different treatment groups are drawn can have two effects on
comparisons j, — y, between the response means for samples exposed to
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different treatments. These differences may create a bias in these compari-
sons and may decrease precision of comparisons. In attempting to avoid
these consequences the first step is to list the principal variables x that
influence y and are not themselves affected by the treatments. Such varia-
bles are called "confounding variables (sometimes called “covariates” or
“control variables”). They may be classifications, or discrete or continuous
variables.

Matching is a common method of handling such confounding x variables
at the plannig stage by making the samples for different treatments
resemble each other in certain respects. The matching method used depends
on the nature of the x distributions.

If the x’s are classifications, the cells that are created by this multiple
classification. are formed. In within-class or frequency matching, each mem-
ber of any sample has a partner in. any other sample belonging to the same
cell, so that in the ith cell all samples for different treatments contain the

. same number of members »,. This method is often used with discrete or
classified x variables (e.g., number of children, age) by first grouping the
values of the variable into classes. o

With continuous or discrete x variables caliper matching requires the x
values for partners in different samples to agree within prescribed limits
ta. Mean Matching concentrates on making the means X,; for different
treatments agree as closely as possible for the ith x variable.

The idea of matching is simple to understand. Its objective is to free the
comparisons of the means y, from the effects of differences among the x
distributions in different treatment groups. Perfect matching removes from
these comparisons the effects of any shape of relationship between y and the
x’s, provided that this shape is the same in all populations being compared.
Hence the statistical analysis of matched samples is relative simple.

The primary disadvantage is the time and effort required to construct
matched samples. The degree of difficulty depends on the desired szil/nple
size, the sizes of the reservoirs available for secking matches, the number of
x’s to be matched, the tightness of the matching rules (caliper matching, in
general is more difficult than within-class matching) and the sizes of the

differences between the x distributions in different populations. A case-by-.

case search for paired matches on say four x variables can be tedious and
may require several relaxations of the original matching rules in order to
find matches. One consequence of matching whose effects are more difficult
to assess is that the sample-population relationship is disturbed. In matched
sampling every sample may be a nonrandom sample from its own popula-
tion.

In finding matches, computers should be able to take over much of the
work if the x’s in the reservoirs are in a form suitable for data entry. For
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instance, using within-class matching on three x variables having c|, c,, and
¢; classes, the computer can arrange and print the data in the.c, X ¢, X ¢,
cells from which matches are easily selected. A similar method is a consider-
able help in seeking caliper matches. o }
Sometimes an investigator needs all n cases available from one popula-

tion and has a limited reservoir from the second population. With x

continuous it is not clear whether caliper matches with a prescribed +a can
be found for all n. For this problem D. Rubin has developed a method of
computer matching, called nearest agvailable matching, that guarantees that
every case is matched.

In comparing two samples, a primary objective of matching is, of course,
to remove bias in y;, — 7, due to differences in the x distributions. If y has
the same linear regression on x in both populations, the percentage reduc-
tion in the bias of , — 7, due to matching equals the percentage reduction
in the bias of X, — X,. Consequently, the effect of matching on the bias of
X, — X, is examined first.

In within-class matching, some types of classified x’s are such that two
members of the same class are identical with regard to x. In this event,
within-class matching completely removes any initial bias in ¥, — X,. But
many classified x’s (e.g., social level, degree of aggressiveness) more nearly
represent a grouping of an underlying continuous x, as is the case when a
continuous x is deliberately grouped in order to use within-class matching,
In this situation, matching with two, three, four and five classes removes
approximately 64%, 80%, 87%, and 91% of an initial bias in X, — X,.

With x continuous, the effect of caliper matching, to within +a units,
depends primarily on the ratio a /o, and to some extent on the way in which
the caliper matches are constructed. “Loose” caliper matching to within
10.90, removes slightly more than 80% of an initial bias (as effective as
within-class matching with three classes). Caliper matching to within +0.40,
removes 95-97% of the initial bias. .

Mean matching is highly successful in removing bias in ¥, — X, even if
all n members of sample 1 must be used and the sample 2 reservoir is only
of size 2n. :

The effect of “nearest available” matching depends on the size of the
initial bias X, — X, and on the size of the reservoir in population 2. With a
reservoir of size 4n this method removes nearly all the initial bias, unless
this bias is exceptionally large. Even a reservoir of size 2n should remove
around 90% of a moderate-sized initial bias.

Suppose that the regression of y on x is the same in two populations but
is nonlinear, being monotone and moderately curved as represented by a
quadratic regression or by y = e**/2, Some evidence indicates that for
within-class and caliper ‘matching, the percent reduction in the bias of
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V1 — 7 is only shghtly less than that in the hnear case, prov1ded x has the
same variance in the two populations. When o2, and o7, are unequal this
result does not hold; the percentage reduction in bias is sometimes much

greater and sometimes much less than when 62, = 07,. Mean matching

should be avoided when the regiession of y on x is curved.
Matching methods are only partially successful to varying degrees in

removing an initial bias in y; — j, due to confounding x variables. Under a -

linear regression of y on x, removal of over 90% of an initial bias requires
five classes in within-class matching, or caliper matching to within +0.40,.
Matching is not suitable when the regression of y on x is of a different form
in the two populations. \

Matching is also used to increase the precision of the comparison y, — 7,
when the x distribution is thought to be the same in the two populations,
that is, where there is no danger of bias. For within-class and caliper
matching, the percent reduction fin V(X, — X, ) is similar to that in the bias
of ¥, — X,. Under a linear regression the percent reduction in V( 7, — j,) is
fo?, where p is the correlation between y and x. Thus the reduction in
V(7 — 7») does not become substantial until |p| exceeds 0.5.
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