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Abstract

The seminal paper by Daniel Bernoulli published in 1766 is put into a new perspective. After a short

account of smallpox inoculation and of Bernoulli’s life, the motivation for that paper and its impact are

described. It determines the age-specific equilibrium prevalence of immune individuals in an endemic po-
tentially lethal infectious disease. The gain in life expectancy after elimination of this cause of death can be

explicitly expressed in terms of the case fatality and the endemic prevalence of susceptibles. D’Alembert

developed in 1761 an alternative method for dealing with competing risks of death, which is also applicable

to non-infectious diseases. Bernoulli’s formula for the endemic prevalence of susceptibles has so far escaped

attention. It involves the lifetime risk of the infection, the force of infection and the life expectancy at birth.

A new formula for the basic reproduction number is derived which involves the average force of infection,

the average case fatality and the life expectancy at the time of infection. One can use this estimate to assess

the gain in life expectancy if only a fraction of the population is immunized.
� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

John Jacquez did not only write a major book on compartmental analysis which went to three
editions [1], he also was very successful together with his co-authors Jim Koopman, Carl Simon
and Ira Longini in applying this tool in infectious disease epidemiology, especially in the context
of HIV [2]. Since he was also very much interested in the historical developments of a scientific
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field, the authors dedicate the following article as a personal tribute to the memory of this great
scientist and charming person.

The seminal paper by Daniel Bernoulli [3] is put into a new perspective. Instead of restricting
ourselves to the derivation of a life-table in the absence of a potentially lethal infection we first
generalize Bernoulli’s model by allowing both the force of infection and the case fatality to depend
on age. Then we derive a new explicit formula, which links the gain in life expectancy to a weighted
average of the case fatality and to the endemic prevalence of susceptibles. Bernoulli’s formula for
the endemic prevalence of susceptibles has so far escaped attention. It is expressed as a ratio of
expected time spent in the susceptible state to the expectation of life at birth. Bernoulli’s model
is probably the first compartmental model. It describes the age-specific prevalence of immunes
for an endemic infection which is potentially lethal. We compare Bernoulli’s approach with
d’Alembert’s [4] alternative method for dealing with competing risks which is also applicable to
non-infectious diseases. Since the inverse of the endemic prevalence of susceptibles equals the
basic reproduction number of an infectious disease for homogeneously mixing populations, one
can use Bernoulli’s model to assess the gain in life expectancy at birth if only a fraction of the
population is immunized. We calculate the life expectancy at birth of non-immunized individuals
and of the total population as a function of the immunization coverage.

2. The method of smallpox inoculation

The natural mode of transmission of the smallpox virus is via the respiratory tract. The case
fatality (i.e. the proportion of infected individuals who die as a result of the infection) appears to
have increased over the centuries and peaked in the 18th century [5]. In China [6] and India [7]
infectious material from smallpox cases was transferred into the skin of susceptibles with the
intention to induce lifelong immunity by a mild infection with a low case fatality. In 1721 this
method was introduced from Turkey into England by the wife of the English Ambassador to
Constantinople, Lady Mary Wortley Montague. It is not widely known that inoculation was even
attempted against measles, plague and several diseases of animals (rinderpest, sheep pox, con-
tagious bovine pleuropneumonia) [8]. The practice of variolation (inoculation against smallpox)
generated heated debates about the pros and cons of this procedure. Innumerable articles and
books were written about this method. The (incomplete) bibliography of Klebs [9] contains 480
items! Right after the introduction of this method in England and later in France, the arguments
were supported by statistical reasoning. Rusnock [10] provides an excellent introduction into the
quantitative contributions to this debate in the 18th century prior to Bernoulli. It involves among
others John Arbuthnot [11], Anton Deparcieux [12], James Jurin [13], and Charles-Marie de La
Condamine [14].

3. Daniel Bernoulli’s life

The following sketch of his life is based on the MacTutor History of Mathematics archive
(http://www-history.mcs.st-andrews.ac.uk/history) where also a family tree of the Bernoullis can
be found including eight famous mathematicians in three generations (see also [42]). Daniel
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Bernoulli was born on 8 February (29 January, Julian Calendar) 1700 in Groningen, the Neth-
erlands as the second son of Johann Bernoulli who was professor of mathematics there. In 1705
the family returned to Basel where Daniel’s father took up the chair of his elder brother Jacob.
Daniel also wanted to become a mathematician, but his father urged him to take up a commercial
apprenticeship. After this failed, Daniel Bernoulli studied medicine in Heidelberg and Strasbourg
and graduated in 1721 at the University of Basel with a dissertation entitled De respiratione on the
mechanics of breathing. After some years in Venice where he studied practical medicine and
published his Mathematical exercises, he got an offer together with his elder brother Nikolaus to
take up positions at the St. Petersburg Academy in 1725. In 1727 began a very productive col-
laboration with Leonhard Euler. Daniel Bernoulli applied several times for a position in Basel but
was unsuccessful because the drawing of lots went against him. Eventually he succeeded in 1733.
He first became professor of anatomy and botany and in 1743 took on responsibility for teaching
physiology instead of botany and in 1750 he became in addition professor of physics. He was
never married and stayed in Basel until his death on 17 March 1782. His major achievements are
associated with hydrodynamics and an anticipation of the kinetic theory of gases. He won the
prize of the Paris Academy of Sciences ten times with contributions to a wide variety of topics,
some of them dealing with marine technology. Sheynin [15] summarizes his work on probability:
‘‘. . . Bernoulli was the first to use systematically differential equations for deducing a number of
formulae, one of the first to raise the problem of testing statistical hypotheses . . .’’. On the oc-
casion of his 300th birthday, the University of Basel organized a special exhibit. He is considered
to be one of the greatest scientists of the 18th century.

4. Bernoulli’s paper – its origins and impact

Bernoulli was stimulated to look into the inoculation controversy by Pierre Louis Moreau de
Maupertius (1698–1759) and Charles Marie de la Condamine (1701–1774). The latter, especially,
has written several memoranda favoring the introduction of inoculation into France [14]. In still
unpublished letters he provided Bernoulli with data about the incidence and case fatality of
smallpox and the safety of inoculation. De la Condamine acknowledges receipt of Bernoulli’s
paper and informs him that he started to read it to the Royal Academy of Sciences in Paris on 22
March 1760. According to the minutes of the Archives of the Academy and a marginal note of the
printed version of Bernoulli’s full contribution (including the mathematics), the reading was
(re)started in a non-public session by de la Condamine on 30 April 1760. It had also been read in
a public session of the Academy on 16 April 1760 by Joseph-J�eerome Lefranc�ais de la Lande
(1732–1807). Thus Bernoulli did not present the paper himself in Paris as it is sometimes claimed.
There is an independent witness for the presence of Bernoulli in Basel: count Joseph Teleki,
a student of mathematics from Hungary, writes in his diary for 16 April: ‘‘In the morning when
I attended my course, I congratulated Mr. Daniel Bernoulli on his name day, which he greatly
appreciated’’ [16].

A short version (without the mathematics) of Bernoulli’s paper was published in the June issue
of the Mercure de France [17]. The full paper finally appeared in print in 1766 which allowed
Bernoulli to add in 1765 some responses to d’Alembert who had criticized his contribution in a
public session on 12 November 1760. We shall come back to the controversy between Bernoulli
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and d’Alembert in the section about d’Alembert’s approach. For a portrait of Bernoulli as he
appeared in 1760, see Fig. 1.

As can be seen from Bernoulli’s letter to Euler (see Section 7), the paper was well received by
other readers apart from d’Alembert. This occasion was not the first time that Bernoulli and
d’Alembert exchanged heated arguments. Earlier issues were concerned with the vibrating string
[18] and the St. Petersburg game [19]. Soon after its publication, Bernoulli’s paper was followed
up by Lambert [20] who tried to generalize the method of Bernoulli taking into account age-
dependent parameters. Trembley [21,22] and Duvillard [23] also pursued the same objective.
Today Bernoulli’s paper is still quoted frequently and is praised even for results which are not
contained in it. For instance in [24] it is claimed that the first dynamic model of epidemics is due to
Bernoulli and the authors then apply epidemic modeling to the spread of ‘viruses’ in computer
networks. If they had read the paper carefully, they would have found out that the paper is only
concerned with a static state, i.e. it is assumed that the force of infection stays constant
throughout time.

The main objective of Bernoulli was to calculate the gain in life expectancy at birth if smallpox
were to be eliminated as a cause of death. Because at the time annuities were being sold, his work
on the prolongation of life expectancy at any age had immediate financial impact. Bernoulli’s
method to deal with competing risks has received considerable attention in the actuarial literature
and is better known there than in the epidemiological literature. For an appreciation of Ber-
noulli’s work in the context of competing risks, see the papers by Seal [25] and Daw [26]. The role
of Bernoulli in the epidemiology of infectious diseases was probably first recognized in the survey

Fig. 1. Daniel Bernoulli (1700–1782). (Section from a painting by Nicolaus Grooth in 1760.)
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article by Brambilla [27] which is quoted by Dietz [28]. Since the latter article, however, con-
centrated on epidemic models, the endemic models or catalytic models according to Muench [29]
were explicitly excluded from detailed description. In the second edition of Bailey’s book [30] full
tribute is given to Bernoulli’s work and since then he is frequently quoted as originator of the first
epidemiological model for an infectious disease.

5. Bernoulli’s model

For the following presentation we use modern notation and consider the general case of age-
dependent parameters such that the case of Bernoulli’s model with constant parameters can be
immediately obtained by specialization. Fig. 2 shows the structure of Bernoulli’s model. The
population is divided into susceptibles, i.e. those who have not yet been infected, and immunes,
i.e. those who have been immunized for the rest of their life after one infection. The death rate due
to all causes except due to the infection is denoted by lðaÞ. The force of infection kðaÞ is the rate
according to which susceptibles are infected. Only a fraction sðaÞ survives to become immune. The
rest cðaÞ ¼ 1� sðaÞ dies due to the infection. Traditionally, cðaÞ is called the case fatality rate.
Since it is not a rate (with dimension per unit of time) but a probability i.e. a dimensionless
quantity we will refer to it as case fatality. Let uðaÞ denote the probability for a newborn indi-
vidual to be alive and susceptible at age a. Then uðaÞ satisfies the differential equation

du
da

¼ �½kðaÞ þ lðaÞ�u; ð1Þ

with the initial condition uð0Þ ¼ 1.
The probability wðaÞ to be immune and alive is given by

dw
da

¼ ½1� cðaÞ�kðaÞuðaÞ � lðaÞw; ð2Þ

with the initial condition wð0Þ ¼ 0.
The solutions of these equations are

uðaÞ ¼ exp f � KðaÞ½ þ MðaÞ�g; ð3Þ

Fig. 2. States and transitions of Bernoulli’s epidemiological model for an immunizing infection in a cohort which is in

equilibrium with respect to time. sðaÞ ¼ probability of surviving the infection. kðaÞ ¼ force of infection; lðaÞ ¼ death-

rate due to other diseases.
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wðaÞ ¼ e�MðaÞ
Z a

0

1½ � cðsÞ�kðsÞe�KðsÞ ds; ð4Þ

where

KðaÞ ¼
Z a

0

kðsÞds ð5Þ

and

MðaÞ ¼
Z a

0

lðsÞds: ð6Þ

Let lðaÞ denote the probability to survive age a. Then,

lðaÞ ¼ uðaÞ þ wðaÞ ð7Þ
because the two states susceptible and immune are complementary to each other.

The survival function in the population without smallpox would be

l0ðaÞ ¼ e�MðaÞ: ð8Þ
The survival function in the presence of smallpox can be written as a product of l0ðaÞ and a

factor which does not depend on the natural death rate and which is only determined by the force
of infection and the case fatality. We get

lðaÞ ¼ l0ðaÞ e�KðaÞ

2
4 þ

Z a

0

1½ � cðsÞ�kðsÞe�KðsÞ ds

3
5: ð9Þ

Let xðaÞ ¼ uðaÞ=lðaÞ denote the prevalence of susceptibles at age a and zðaÞ ¼ wðaÞ=lðaÞ the
prevalence of immunes both at age a, then

zðaÞ ¼ 1� xðaÞ: ð10Þ

(Since the duration of the infection is only a matter of weeks, this time period is negligible
compared to the duration of the susceptible state and the immune state which can be years.)

By introducing the prevalence of susceptibles at age a, Bernoulli derived a differential equation
which does not involve the general mortality lðaÞ. This has the form

dx
da

¼ �kðaÞxðaÞ 1½ � cðaÞxðaÞ� ð11Þ

with the initial condition xð0Þ ¼ 1.
This equation shows that the decrease in the age-specific prevalence of susceptibles is reduced if

the case fatality is greater than zero. Jacob Bernoulli (1657–1705), the oldest uncle of Daniel
Bernoulli (also famous for his work on probability theory: Ars Conjectandi and the law of large
numbers), had solved even more general equations (now called ‘Bernoulli equation’) involving
arbitrary powers in 1696. This special Bernoulli equation has the solution

xðaÞ ¼ e�KðaÞ

e�KðaÞ þ
R a
0
1� cðsÞ½ �kðsÞe�KðsÞds

: ð12Þ
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For the case fatality Bernoulli had estimated 1=8 ¼ 12:5%, and for the force of infection
1=8 ¼ 0:125 per year. Fig. 3 shows the age-specific prevalence of immune individuals for an in-
fection without mortality ðc ¼ 0Þ and for an infection with a case fatality of 12.5%. The maximum
difference is only about 3.3% at the age of six years. In view of large sampling errors due to small
sample sizes of cross-sectional surveys, it would be impossible to detect a significant difference
between the two curves, i.e. it seems unlikely that the case fatality may be estimated simulta-
neously with the force of infection from cross-sectional data alone. Age-prevalence curves (in the
absence of infection-induced mortality) were introduced much later by Muench [31] in 1934, and
are referred to as catalytic curves.

6. The gain in life expectancy at any age after elimination of one cause of death

In order to obtain the survival function in the absence of smallpox, one has to divide the
observed survival function lðaÞ by the denominator in Eq. (12). One gets

l0ðaÞ ¼
lðaÞ

e�KðaÞ þ
R a
0
1� cðsÞ½ �kðsÞe�KðsÞds

: ð13Þ

Fig. 4 shows the life table used by Bernoulli together with the life table that would be expected if
smallpox were eliminated as a cause of death. Bernoulli provides a table with the annual values for
the two curves only up to age 25. The present curve uses the full table as given by Halley [32] on
the basis of data from Breslau. (See Hald [33] for an excellent account on the construction of
Halley’s table which, strictly speaking, is not a life table because it gives the number of persons
between age a and age aþ 1 instead of the number of persons surviving to age a.)

Integrating the survival curves over all ages one can calculate the life expectancies at birth with
and without smallpox. These numerical integrations can be replaced by analytical expressions,

Fig. 3. The age-dependent prevalence of immune individuals with constant force of infection ðk ¼ 0:125 per yearÞ and
c ¼ 0 (continuous line) and c ¼ 0:125 (broken line). For increasing case fatality the prevalence decreases.
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which allow calculating the gain in life expectancy at birth directly from the parameters of the
model as

L0 ¼ Lð1� �cc�xxÞ=ð1� �ccÞ: ð14Þ
We will explain the four new symbols one by one.
L denotes the life expectancy at birth in the presence of smallpox. Then

L ¼
Z 1

0

lðaÞda ð15Þ

and L0 is the life expectancy at birth in the absence of smallpox,

L0 ¼
Z 1

0

l0ðaÞda: ð16Þ

The endemic prevalence of susceptibles �xx is the ratio of the expected time spent in the sus-
ceptible state

Lu ¼
Z 1

0

e�KðaÞ�MðaÞ da ð17Þ

and the life expectancy L at birth. Hence

�xx ¼ Lu

L
: ð18Þ

The average case fatality �cc involves as weighting function not only the incidence of infections,
but also the remaining life expectancy at the time of infection. We therefore get

�cc ¼
R1
0

cðsÞkðsÞe�KðsÞ�MðsÞL0ðsÞdsR1
0

kðsÞe�KðsÞ�MðsÞL0ðsÞds
: ð19Þ

Fig. 4. The life table based on Halley in the state with smallpox (continuous line) and without smallpox (broken line).

The median age would increase by 14 years from about 11.5 to 25.5 years!
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Here L0ðsÞ is the remaining life expectancy for an (immune) individual infected at age s, which can
be written as

L0ðsÞ ¼
Z 1

s
e� MðaÞ�MðsÞ½ �da: ð20Þ

The denominator in (19) can be written as the product of the lifetime risk pI and the life expec-
tancy at infection Lw, two further important concepts which we now define.

pI ¼
Z 1

0

kðsÞe�KðsÞ�MðsÞds ð21Þ

is the proportion of a cohort which will ever be infected.
Lw denotes the conditional life expectancy at infection given that the individual did not die due

to the infection. We get

Lw ¼
R1
0

L0ðsÞkðsÞe�KðsÞ�MðsÞ dsR1
0

kðsÞe�KðsÞ�MðsÞds
: ð22Þ

This expression can be simplified

Lw ¼
R1
0
e�MðaÞ 1� e�KðaÞ� �

da
pI

¼ L0 � Lu

pI
:

The expression (14) can be derived starting from (9).

L ¼ Lu þ
Z 1

0

e�MðaÞ
Z a

0

1½ � cðsÞ�kðsÞe�KðsÞ dsda

¼ Lu þ
Z 1

0

ð1� cðsÞÞkðsÞe�KðsÞ�MðsÞ
Z 1

s
e� MðaÞ�MðsÞ½ � dads ¼ Lu þ ð1� �ccÞLwpI

¼ Lu þ ð1� �ccÞðL0 � LuÞ: ð23Þ
The endemic prevalence of susceptibles can be expressed as a function of the lifetime risk pI .

�xx ¼ pI
�kkL

: ð24Þ

In the denominator we have the average force of infection

�kk ¼
Z 1

0

kðaÞe�KðaÞ�MðaÞda=Lu: ð25Þ

Thus, we can rewrite Eq. (14) in terms of these quantities.

L0 ¼ Lð1� �ccpI=�kkLÞ=ð1� �ccÞ: ð26Þ
From (23) we get for the lifetime risk pI a simple expression in terms of the prevalence of immunes
�zz ¼ 1� �xx.

pI ¼
�zzL

ð1� �ccÞLw
: ð27Þ

For non-fatal infections ð�cc ¼ 0Þ the lifetime risk is smaller than the prevalence of immunes if the
life expectancy at birth is smaller than the life expectancy at infection.
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The lifetime risk of smallpox can be estimated from the observed proportion of deaths due to
smallpox pD.This quantity depends also on an average case fatality, but this time the weighting
function is different

pD ¼
Z 1

0

cðaÞkðaÞe�KðaÞ�MðaÞ da ¼ ~ccpI : ð28Þ

Here ~cc denotes the average case fatality which links the proportion of deaths due to smallpox to
the lifetime risk pI .

~cc ¼
R1
0

cðaÞkðaÞe�KðaÞ�MðaÞdaR1
0

kðaÞe�KðaÞ�MðaÞda
: ð29Þ

One can now replace the lifetime risk in Eq. (26) by the proportion of deaths due to small-
pox pD.

L0 ¼
L 1� �cc

~cc
pD
�kkL

	 

1� �cc

: ð30Þ

This equation only contains quantities which in principle can be estimated from data. The
estimates of Bernoulli are

L ¼ 26:58 ½years�; c ¼ 0:125; pD ¼ 1=13 ¼ 0:077; �kk ¼ 0:125 ½per year�: ð31Þ

If one enters these estimates into formula (30), one obtains a life expectancy at birth of 29 years
and 8 months which only differs slightly from the value given by Bernoulli who used numerical
integration. He comes up with a value of 29 years and 9 months.

The formula (14) can be generalized for all ages. Let LðaÞ denote the life expectancy of an
individual at age a in the situation of endemic smallpox. We denote by �ccðaÞ the average case
fatality according to Eq. (19) where the lower integration boundary 0 is replaced by a and let �xxðaÞ
denote the prevalence of susceptibles among individuals with minimum age a. Then

�xxðaÞ ¼
R1
a lðsÞxðsÞds

LðaÞ :

This is to be distinguished from the quantity xðaÞ which was defined earlier (Eq. (12)) which is
the prevalence of susceptibles at age a. Following the same procedure for the derivation of Eq.
(14), we get

L0ðaÞ ¼
LðaÞ 1� �ccðaÞxðaÞ�xxðaÞ

h i
1� �ccðaÞxðaÞ : ð32Þ

For a ¼ 0 Eq. (32) reduces to Eq. (14) because it is assumed that at age 0 all individuals are
susceptible.

Fig. 5 shows the two functions xðaÞ and �xxðaÞ as a function of age for the estimates given by
Bernoulli, and Fig. 6 shows the age-specific life expectancy in the population with and without
smallpox. Due to the high childhood mortality children at age five have a 14.5 years higher life
expectancy than newborns!
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7. D’Alembert’s approach

D’Alembert immediately wrote a criticism which he presented on 12 November 1760 to the
Royal Academy of Sciences and which he published in the following year in his collected works.

Fig. 6. The life expectancy of individuals who have survived a given age for Halley’s table (with smallpox (continuous

line) and without smallpox). The dotted line uses numerical integration (trapezoidal rule with yearly steps) and the

broken line uses Eq. (32).

Fig. 5. The age-specific proportion of susceptibles (continuous line) and the average proportion of susceptibles (broken

line) as a function of the minimum age. The proportion of susceptibles for the total population (minimum age zero)

equals 19% for Halley’s table.
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This means that his critique of Daniel Bernoulli appeared five years before Bernoulli’s contri-
bution eventually was published by the Academy in 1766. Bernoulli was very annoyed about the
critique of d’Alembert, which can be seen from his letter to Euler in April 1768:

Que dites vous des enormes platitudes du grand Dalembert sur les probabilit�ees; comme je me
trouve, trop souvent, injustement trait�ee dans ses ouvrages, j’ai pris la resolution depuis assez long-
temps de ne rien lire qui sorte de sa plume; j’ai pris cette resolution �aa l’occasion d’un memoire sur
l’inoculation, que j’ai envoy�ee �aa l’Acad�eemie de Paris il y a 8 ans et qui par la nouveaut�ee de l’analyse
avait �eet�ee recu avec un grand accueil; c’�eetoit, si j’ose le dire, comme une nouvelle province incor-
por�eee au corps des mathematiques; il semble que le succ�ees de cette nouvelle analyse lui fit mal au
coeur; il la critique de mille fac�ons, toutes egalement ridicules et aprez l’avoir bien critiqu�eee il se
donne pour premier auteur d’une th�eeorie qu’il n’avoit pas seulement entendu nommer. Il savoit
cependant que mon memoire ne pouvoit paroitre que dans sept ou huit ans et il ne pouvoit en
avoir connaissance qu’en qualit�ee d’academicien et �aa cet egard mon memoire devoit etre sacr�ee
jusqu’�aa ce qu’il fut rendu public. Dolus an virtus quis in hoste requirat!

(The original of this letter is in the Archives of the Russian Academy of Sciences, St. Petersburg
(Call No. f.1, op.3, Nr.51, l.150-151 R). We used a transcription of the Bernoulli Archive in Basel.
The letter will be published in about three years by the Euler edition in the original French version
and in a German translation.)

Translation: What do you say about the enormous platitudes of the great d’Alembert about the
probabilities; as I find myself too frequently unjustly treated in his publications, I have decided
already some time ago to read nothing anymore which comes from his pen; I have taken this de-
cision on the occasion of a manuscript about inoculation which I sent to the Academy in Paris
eight years ago and which was greatly appreciated because of the novelty of the analysis; it
was, I dare say, like incorporating a new province into the body of mathematics; it seems that
the success of this new analysis caused him pains of the heart; he has criticized it in a thousand
ways all equally ridiculous, and after having it well criticized, he pretends to be the first author
of a theory which he did not only hear mentioned. He, however, knew that my manuscript could
only appear after some seven or eight years, and he could only have knowledge about it in his
capacity as member of the Academy, and in this respect my manuscript should have stayed sacred
until it was made public. Dolus an virtus quis in hoste requirat!

The Latin quote is from Vergil’s Aeneid: ‘What matters whether by valour or by stratagem we
overcome the enemy?’ In passing we mention that Euler knew the Aeneid by heart.

It is true that d’Alembert made many unreasonable criticisms of Bernoulli’s paper, but if
Bernoulli had taken the effort to read the paper by d’Alembert, he would have found that
d’Alembert produced an alternative solution to this problem which nowadays one would call a
non-parametric approach in contrast to the parametric model of Bernoulli. Fig. 7 shows d’Al-
embert’s model. His approach is quite general and is not restricted to an immunizing disease. Let
ldðaÞ denote the force of death due to some disease d. The force of death due to other causes is
denoted again by lðaÞ. Let /dðaÞ denote the rate at which deaths due to the particular cause are
recorded for individuals who die at age a. Then
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udðaÞ ¼ ldðaÞlðaÞ: ð33Þ
If one knows the survival function, one can calculate the force of mortality for that particular

disease by dividing udðaÞ by lðaÞ. This allows us to find the survival function without the par-
ticular cause of death according to the following formula:

l0ðaÞ ¼ e�MðaÞ ¼ lðaÞ exp
Z a

0

ldðsÞds


 �
: ð34Þ

Karn [34] used this method to calculate life tables after eliminating a wide variety of causes of
death like cancer, tuberculosis and heart disease. If the only task is to calculate the survival
function after eliminating a particular cause of death, then the method of d’Alembert is certainly
more widely applicable than the method of Bernoulli being restricted to immunizing infections.
The method of Bernoulli, on the other hand, provides much more insight for the interpretation
of infectious disease data.

8. Estimation of age-dependence of the force of infection and the case fatality

It was already recognized by Bernoulli that his assumption of constant force of infection k and
case fatality c was not realistic but he had no data at hand to estimate these parameters as a
function of age. In 1772, Lambert [20] tried to approach this problem by using data from The
Hague which had been published for the years 1755–1769. In this period, 1455 smallpox deaths
had been recorded and the age distribution is shown in Fig. 8. For the parameterization of
Bernoulli, the age distribution of smallpox deaths is given by the equation

udðaÞ ¼ cðaÞkðaÞe�KðaÞ�MðaÞ: ð35Þ
The age distribution of deaths due to other causes is given by

ugðaÞ ¼ lðaÞlðaÞ: ð36Þ
Only data about deaths were available. One is therefore faced with the problem to estimate

three age-dependent functions on the basis of two age-dependent functions, which is in principle

Fig. 7. D’Alembert’s model. ldðaÞ denotes the death rate due to some disease d. The death rate due to other causes is

denoted by lðaÞ. The two deaths rates are assumed to act independently.
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not possible without further assumptions. Lambert recognized this problem and made the arbi-
trary and unrealistic assumption that the shape of the force of infection equals the shape of the
case fatality. Trembley [21] also used some iterative procedure for which he later excused himself:
‘‘. . . method is worth absolutely nothing and I owe some excuses to the public for having it
presented to them’’ [22]. Duvillard [23] assumed that the force of infection is constant. Then he
could estimate the case fatality and the general death rate. In order to estimate all three functions,
one would need in addition to the age-distribution of smallpox deaths and general deaths also the
age distribution of the infections, i.e.

uIðaÞ ¼ kðaÞe�KðaÞ�MðaÞ: ð37Þ

Another possibility would be to observe directly the age specific case fatality by recording the
probability of dying of all smallpox cases as a function of age. There were only scanty obser-
vations, some of which are quoted by Lambert. The following analysis is based on data from
Verona. Rutten [35] gives a comprehensive survey of the available data about case fatality. He
shows that there is great variability. Qualitatively the case fatality is U-shaped with a minimum
around 15 years of age. Fig. 9 shows the observed and the fitted case fatality. The fit is obtained by
a combination of exponential functions. If one takes this case fatality, one can estimate the force
of infection for the smallpox data from The Hague, see Fig. 10. Here it becomes obvious that
there is a strong age-dependence of the force of infection with a peak around 7 years. There is an
inverse relationship between the mean case fatality and the prevalence of immunes for high age as
has been explored by Rutten. He points out that two statements in the literature about smallpox
in the 18th century are not consistent: on the one hand ‘smallpox is a highly fatal infection’, on the
other hand ‘sooner or later everybody gets the infection’. As Fig. 11 shows, either the infection has
a low case fatality and a high maximum prevalence, or vice versa.

Fig. 8. Number of deaths due to smallpox in The Hague from 1755 to 1769 by age.

14 K. Dietz, J.A.P. Heesterbeek / Mathematical Biosciences 180 (2002) 1–21



9. The endemic prevalence of susceptibles

In April 1765, Bernoulli made some additions to his manuscript in which he responded to the
criticism by d’Alembert. On p. 21, he adds the following paragraph:

‘‘This Memoir having given a celebrated Academician the opportunity to formulate this
question: ‘Of all the people actually alive, how many are there who have not had smallpox?’, his
reasoning has led him to the following conclusion, that this number ‘is at the very most a quarter
of the total of living people’. Here is the solution of this question, according to my principles.

Let N be the total number of people alive, a the number who die each year, x the required
number who have not had smallpox. Then a=13 ¼ x=64, and x ¼ 64a=13.

Fig. 9. Observed and fitted age-specific case fatality with respect to smallpox in Verona as quoted by Rutten [35]. The

fitted function has the formula 0:51 expð�0:31aÞ þ 0:63ð1� expð�0:024aÞÞ2.

Fig. 10. Calculated age-specific force of infection for the smallpox data from The Hague.
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If we write N=a ¼ g, we have x ¼ ð64=13ÞðN=gÞ, and if we assume g ¼ 32, this will be 2N=13,
and about 107,000 for Paris, assuming the number of inhabitants to be 700,000.’’

If one replaces the numerical values in this paragraph by their symbols, one obtains Eq. (24)
where pI is replaced according to Eq. (28). Bernoulli’s g is our L, the factor 64 is 1=ð�kk~ccÞ and 1=13 is
pD. This means that Bernoulli has already derived a very general formula for the endemic prev-
alence of susceptibles in an endemic situation, which is valid for arbitrary survival functions and
for differential death. This formula involves the life expectancy at birth and the force of infection.
This remarkable finding has been announced by us recently [36]. (See also the contribution to the
discussion by Dietz to the stimulating paper by Farrington et al. [37].) In chronological order,
Eq. (24) was derived by us independently of Bernoulli’s paper. Only when this equation was
known to us did we understand the cryptic wording of Bernoulli’s insert.

In 1975, Dietz [38] had made the very special assumption that the general death rate l is
independent of age and that there is no differential mortality. Then Eq. (24) yields

�xx ¼ 1

k
k

k þ l
1

1=l
¼ l

k þ l
: ð38Þ

The inverse of k can be interpreted as the average age at infection in a cohort conditioned on
survival. If A denotes the inverse of k, then the inverse of the endemic prevalence of susceptibles is
given by

�xx�1 ¼ 1þ L=A: ð39Þ
In a homogeneously mixing population, for which k is constant, the inverse of the endemic

prevalence of susceptibles equals the basic reproduction number R0 of an infection, i.e. the number
of secondary cases which one infectious case could generate in a completely susceptible popula-
tion. It is very remarkable that Bernoulli already derived an expression for the endemic prevalence

Fig. 11. Age-specific prevalence of immunes for the force of infection shown in Fig. 10 (continuous line) and a force

of infection which is obtained when the case fatality is multiplied by a factor 1.5 (broken line) and by a factor 0.66

(dotted line).
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of susceptibles, which basically involves the ratio of the time spent in the susceptible state and the
duration of total life. He used Paris as an example for which he assumed a life expectancy at birth
of 32 years. This is higher than the 26 years and 7 months for Breslau in the 17th century. On the
basis of his other numerical estimates, he obtained an endemic prevalence of susceptibles of
around 15% which corresponds to a basic reproduction number of 6.67. Recently Gani and Leach
[39] quote our paper in the context of their attempts to estimate R0 for smallpox if it would recur.

One can express the expected time spent in the susceptible state Lu in terms of the mean age
at infection for those who get infected and the mean of those who die without getting the in-
fection.

Lu ¼ pI �AAk þ ð1� pIÞ�AAl; ð40Þ
where

�AAk ¼
R1
0
akðaÞe�KðaÞ�MðaÞ daR1

0
kðaÞe�KðaÞ�MðaÞda

ð41Þ

and

�AAl ¼
R1
0
alðaÞe�KðaÞ�MðaÞdaR1

0
lðaÞe�KðaÞ�MðaÞda

: ð42Þ

For infections where the lifetime risk is nearly 100%, formula (24) reduces to

�xx �
�AAk

L
; ð43Þ

i.e. the endemic prevalence of susceptibles is approximately equal to the ratio of the average age at
infection divided by the life expectancy at birth. The correct formula, however, involves the
lifetime risk and the average age of those that die before acquiring the infection. For Halley’s table
and the case fatality of Verona we get Lu ¼ 5:34 years. The lifetime risk pI is 0.668. �AAk equals 6.86
years and �AAl equals 2.28 years. According to formula (22) we get 38.8 years as the life expectancy
at the age of infection.

Using (23), (25) and (40) one arrives at a very simple formula for the basic reproduction
number for a homogeneously mixing population, which is given by

R0 ¼ 1þ ð1� �ccÞLw

�AAk þ 1
pI
� 1

	 

�AAl

¼ 1þ �kkð1� �ccÞLw: ð44Þ

10. Implication for partial vaccination coverage

Bernoulli calculated the life expectancy at birth assuming that smallpox was completely elim-
inated. One motivation for his contribution was to convince the public about the benefit of this
method if everybody would participate. We now know that partial coverage of protection has an
influence on the force of infection for those who are not immunized. Assuming a constant force of
infection and a case fatality as in Fig. 9, we study the life expectancy at birth for the unvaccinated
and the life expectancy at birth for the total population as a function of those that are protected.
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The model assumes that the inoculation is 100% effective and it neglects the risk of spreading the
infection from those inoculated to susceptibles. Assuming that inoculation is given at birth, one
obtains the life expectancies at birth as a function of coverage as shown in Fig. 12. When the
coverage reaches about 80%, then the infection can no longer stay endemic.

11. Concluding remarks

The present paper puts the classical Bernoulli model for competing risks in a new perspective
and shows that it provides insights, which so far have not yet been fully explored more than 200
years after its publication. (For a recent statistical book on competing risks see Crowder [40].) We
consider it most important that most of the formulas for the equilibrium state involve the lifetime
risk of the infection, i.e. involve a quantity which so far has been completely ignored in infectious
disease epidemiology. The reason for this may be that in models without case fatality and constant
general death rate, the equilibrium prevalence of immunes equals the lifetime risk. As this paper
shows, however, that is not true in general. Depending on the life table and the case fatality, the
lifetime risk can be greater or smaller than the prevalence of immunes. For the assessment of the
public health importance of an infection it appears immediately obvious that one would need to
know the proportion of a cohort which will get infected throughout life. Cross-sectional surveys
for the prevalence of immunity can only give surrogate information. We find it remarkable that
the Bernoulli model contains relationships between measurable quantities, which are still
worthwhile to be explored and applied to present day infections.

The basic underlying assumption is stationarity. The sensitivity of the conclusions with respect
to non-stationarity needs to be explored. This applies both to the demographic parameters and

Fig. 12. Life expectancy at birth as a function of the proportion immunized p. The dotted line refers to those that are

immunized, the broken line correponds to the non-immunized individuals and the continuous line represents the

weighted average of the two values where the weight is given by p.
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the epidemiological parameters. With respect to demography, the model assumes a constant birth
rate, which equals N=L, where N is the size of the population. It also assumes that the death rates
due to other diseases stay constant over time. It is still debated to what extent the great reduction
of smallpox as a cause of death in the 19th century contributed to population growth. The case
fatality of smallpox always showed large variability with respect to time and age some of which
may be due to the relative importance of variola major (high case fatality). The assumption of a
time-independent force of infection is particularly problematic in view of the great seasonal
variations, which have been observed in cities with endemic smallpox. In smaller populations
below the critical community size the present model is obviously not applicable due to isolated
outbreaks several years apart.

The present paper derives new estimating equations for Bernoulli’s model, which facilitate
sensitivity analyses with respect to the model parameters. The infection for which the model was
constructed has been eradicated. This does not mean, however, that the model is no longer ap-
plicable. Many viruses, which cause potentially fatal infections and permanent immunity in
survivors are still transmitted, especially in developing countries. Measles is among them.

Finally we would like to point out the key assumption in Bernoulli’s model: the independence
of the risk of dying due to the specific infection and the risk of dying due to other diseases. There
is recent evidence that this assumption needs modification, and further studies are urgently
needed [41].
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