CHAPTER 14

Some Special Problems

14.1 INTRODUCTION

In this chapter we deal briefly with some miscellaneous problems which
do not fit conveniently into the previous chapters. In § 14.2 some designs
are described for use when the uncontrolled variation is expected to consist
predominantly of a smooth trend. Section 14.3 mentions an important
class of problems in which a theoretical calculation is possible to find
which of a number of systems of observations will lead to estimates of
maximum precision. The next section contains an account of designs
for finding optimum conditions. The final section deals with the special
problems of assays, in particular of bioassays.

14.2 TREND-FREE SYSTEMATIC DESIGNS

Sometimes we have a small number of experimental units and a sub-
stantial part of the uncontrolled variation is expected to consist of a
smooth trend, for example a trend in space or time. In the ordinary
way this situation is dealt with by one of the methods of Chapters 3 and 4,
either (a) by randomizing the allocation of treatments and adjusting the
treatment means for the trend by the method of § 4.3, or (b) by using the
method of randomized blocks to deal with variations other than the trend,
then calculating adjusted treatment means to correct for the trend, or
(¢) by using the method of randomized blocks to control most of the
effect of the trend, putting in the first block the units occurring first in
space or time, and so on. The first two methods allow the form of the
trend to be estimated directly.

If the experiment is a moderate-sized one with, say, more than four
replicates of each treatment, these methods will usually be satisfactory.
In smaller experiments, however (particularly if the trend is curved), the
first two methods tend to give imprecise results. This is because the
randomization is quite likely to throw up an arrangement which is
markedly unbalanced with respect to the trend. The third method is
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free from this defect, but is not satisfactory if it is desired to estimate as
precisely as possible the form of the trend. ‘

We need therefore a new sort of design for such situations that will
enable both the trend and the treatment effects to be estimated simply
with maximum precision and will take advantage of our knowledge about

the expected form of the uncontrolled variatior‘}.
Example 14.1. Consider an experiment to inveétigate the effect on a textile
process of changing the relative humidity and suppose that three relative
humidities, 50, 60, and 70 per cent, are to be used.] To obtain uniform experi-
mental units a suitable quantity of raw material would be taken and thoroughly
mixed and then divided into say nine batches to form nine experlmental units.
The first batch would be processed at one relative humidity in the first period,
the second batch at a different relative humidity in the second period, and so on.
Superimposed on any treatment effects and on the random variations remaining,
is likely to be a smooth trend due to the ageing of the material. It would often
be of interest to estimate this trend explicitly, as well as to set up the experiment
so that the trend has little or no influence on the estimates of the treatment effects.
It can be shown that if the treatments are used in the systematic order

Tso Tso T Tro Too Tso qu T Teo
then

(@) any linear trend in time has no effect on the 'q'reatment comparisons;

(b) any curvature (i.e., second-degree component) in the trend has no effect
on the linear part of the treatment effect, that is, on the comparison of 70%;
relative humldlty with 509 relative humldlty,

(¢) there is some mixing of the estimate of the curvature of the trend and of
the curvature of the treatment response curve, i.e., of the mean response to
509 and 70% relative humidity minus that for 609, relative humidity.
Statistical analysis is necessary to sort these two out

To see what is meant by the first property 1m§gme that the observations
consisted of a pure linear trend, in which values 1,2, 3,...,9 are obtained.
Then the mean observation on Ty, is 3(2 + 6 + 7)[ = 5 the mean observation
on Tgyis 31 + 5 + 9) = 5, and the mean observa"cion on Ty, also is 5. That
is, this particular linear trend, and in fact any linear trend, leaves the estimates

of the treatment differences unaltered. i

It can be shown that designs chosen to have these properties of balance with '

respect to the trend simplify, and maximize the efﬁc1ency of, the estimates of
both trend and treatment effects. ‘

Cox (1951, 1952) has set out the method for selectmg a design and for
analyzing it. A few examples are given in Table 14.1. Box and Hay
(1953) have described an ingenious and flexible method of dealing with
similar experiments in which the treatments correspond to a set of at
least two quantitative factors. In such cases tl‘}ere is enough freedom in
the choice of factor levels to allow sufficient randomization to be brought
into the design. In the simpler situations considered by Cox, such as
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that of Example 14.1, there is however no randomization, other than
possibly in naming the treatments. This would be a defect in a moderate
or large sized experiment, in which randomization can be relied on to
ensure freedom from systematic error and a correct estimate of the residual
error. In a single very small experiment, absence of randomization is
much less serious, since we are in any case bound to rely to some extent

TABLE 14.1
SoME TREND-FREE DESIGNS
Units
No.of per Degree
Treat- Treat- of
ments ment Trend Design
2 3 2 T, T, T, T, T, T,
2 4 2 T, T, T, T, T, T, T, T,
3 3 2 @ Ty Ty Ty Ty Ty Ty Ty T Ty
O LT T T3 T2 TsT)
3 4 3 T\ Ty T, Ty Ty T, To T T, Ty
4 3 To Ty Ty Ty Ty Ty Ts Ty T To Ty Ty
4 4 3 T Ty Ty Ty T Ty Ty Ty T To Ty Ty T Ty Ty

* The design (4) is the one mentioned in Example 14.1 and should be used when
the comparison of T3 with T; is of particular interest, as when three equally spaced
levels of a quantitative factor are involved. In other cases design (b) should be
used.

on our prior knowledge of the uncontrolled variation when the number
of experimental units is small. Provided that the assumption that the
uncontrolled variation is formed from a trend plus random variation is
sensible, and that the design adopted is unlikely to correspond to a
pattern in the uncontrolled variation, there can be no reasonable objection
to the absence of randomization.

Similar principles can be used to pick out systematic Latin squares
that are, for example, such that the treatment effects are uninfluenced by
particular patterns of diagonal variation across the square. This is useful
when the rows and columns of the square correspond to quantitative
factors between which there may be a linear X linear component of
interaction,

14.3 OPTIMUM ALLOCATION

In this section an outline is given of recent work on a class of problems
which, although not all concerned with comparative experiments of the
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sort we have been discussing up to now, do concern the most efficient
distribution of experimental effort. The situations can be described like
this: observations may be made on a number of experimental set-ups
and the quantities so obtained are known to be expressed statistically in
terms of certain unknown parameters. Which set-ups should be observed
in order to estimate the parameters with maximum precision ?

Example 14.2. In certain experiments on alloys cast from high-purity metals,
and in other fields too, the following situation arises. The experimental units
are arranged in runs, corresponding to production runs, and within each run
they are ordered in time. Thus with each run corresponding to a 20-1b melt,
it might be possible to cast, in sequence, four 5-1b ingots. - Suppose that the
treatments for comparison are different concentrations of thé alloying elements
and that when an ingot has been cast, the concentration of an alloying element
in the remaining melt can be increased by the addition of fresh material but
cannot be decreased.

In other words, if we think of just one alloying element, the\factor level cannot
decrease as we go from unit to unit within a run. This is a severe restriction on
the type of design that can be used,-since it excludes, for example any Latin
square. For if Ty, Ty, Ty, and T, denote successively increasing concentrations
of the alloying element, any design which secures that each concentration occurs
equally frequently in each run and in each period is bound to involve reversals
of order within some runs.

Hence, if it is desired to set up a design in which run and period effects are
eliminated from the error of the treatment comparisons, something less direct
than a Latin square has to be used. Suppose for simplicity that there is just one
alloying element occurring at two levels 4_; and 4;. Then with four periods per
run, a design must consist of a mixture of sequences of the following five types:

Type 1 Ay A4 Ay A_1
It A, A, A, A
1L A4 Ay Ay A,
IV . A, Ay A, A,
v 4, Ay A4 A

The difference between treatments is mixed up | both with run and with period
differences, unless

(@) all the sequences are of Type 1II, in which case the difference between
treatments is completely identified with differences between periods, or

(b) one-half the sequences are of Type I and one-half of ‘Type V, when the
difference between treatments is completely identified with dlﬂ'erences between
runs.

Therefore if it is desired to eliminate variations between periods and between
runs, a mixture of sequences of the five types must be used.

We can now formulate the basic problem. For any desi gn formed from a
mixture of sequences, we can, in theory, adjust the estimateddifference between
treatments for the lack of balance with runs and periods, and we can also find
the standard error of the resulting adjusted estimate. For a given total number
of observations, which of the mixtures of sequences minimizes the standard
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error, i.e., leads to an estimate of the treatment effect of maximum precision ?
This is a mathematical problem and the solution can be shown to be to have
collections of eight production runs, and within each collection one run of
Types I and V and two each of the other types, i.e.,

A, Ay A, A
Ay Ay A4 A,
A A A Ay
A, Ay Ay A,
A A, A A,
A Ay Ay A,
A A Ay Ay
Ay Ay A Ay

The mathematical discussion and the extension to designs with several factors
have been given by Cox (1954).

The general comment to be made on this example is that if practical
considerations severely restrict the arrangement of treatments, it will, if
it is important to make the most economical use of the experimental
material, be necessary to evaluate theoretically the standard error of the
estimated treatment effects for all admissible arrangements and to choose
the arrangement which minimizes the standard error. Of course in
particular cases it may well be better to adopt a simpler, but less efficient,
procedure. Thus in Example 14.2 it would be possible to hold the treat-
ment constant within each run, i.e., to use a whole run as an experimental
unjt. This would avoid the complication of using a special design, but
elimination of the effect of variation from run to run would, of course,
no longer be possible.

The next two examples deal with a rather different type of situation
where, although there are no alternative treatments under comparison, a
theoretical calculation of precision is possible for different experimental
set-ups.

Example 14.3. There are a number of situations-in which it is desired to
estimate the density of particles which are distributed randomly in some medium,
for example dust partlcles in space, bacteria or blood cells in suspension, etc.
The direct method is the counting of particles in known small volumes of
medium, but this is often tedious. A neat method of avoiding direct counting
is based on the following fact. Suppose that the particles are distributed
completely randomly through the medium: this requires for example that the
proportion of the volume of medium occupied by particles should be negligible,
so that there is no “crowding,” and that the particles should be uncharged, so
that there the particles have no electrostatic effect on one another. Then the
mean number of particles in a volume v of original medium is

—2.303 log;, (proportion of a large number of
volumes v that contain no particles). 4))
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Thus if we take a large number of volumes v and observe for each whether or
not it contains particles, the density of particles can be estimated. In some
cases the determination of whether or not a particular volume contains particles
is easy; with bacteria, however, it will be necessary to assume that growth
occurs on any plate that contains at least one bacterium.

The problem of design is to decide what volume v of medium should be used
in each trial, e.g., what dilution of the original suspensmn should be taken.
If rather a large volume v is taken, nearly all the trial volumes will contain
particles, and equation (1) will lead to an estimate with very low precision; the
precision will also be low if the trial volume v is too small. It can be shown that
maximum precision of the volume v is chosen to contain on the average 1.6
particles (Fisher, 1951, p. 219; Finney, 1952, p. 573).

This result is no use as it stands, since if we knew what \“'olume contains on
the average 1.6 particles, we should know the concentration of particles and the
estimation that we are considering would be pointless. However it may be
shown that very nearly maximum precision is attained if the mean number of
particles in the test volume is between 1 and 2% and that reasonably high precision
is retained if the number is between § and 3. Thus if a prior estimate is
available correct to within a factor of 2 or 3, the method can be used.

If no such prior value is known, two procedures are available. The one
widely used is to make observations at each of a series of volumes, say
Vg, 20¢, 404, 80, . . . (Series of volumes progressing by factors of 4 or 10 are also
sometimes used), chosen to be sure of covering the optlmum value. The
disadvantage of this is that it will usually happen that the obsFrvatlons at several
of the volumes give little information about the density under estimate. The
second procedure is to do a small preliminary trial with a range of volumes in
order to estimate the single volume at which the main series of observations
should be made. Obviously this cannot be done if the whorle experiment must
be laid out at one time.

}Example 14.4. Andrews and Chernoff (1955) have discussed the following
problem connected with the estimation of the virulence of a strain of bacteria.
There are available 30 test animals and 10 ml of material contammg this strain
-of bacteria in suspension, It is thought that the -concentration of bacterial
organisms in this suspension is about four organisms pér ml and that the
probability that a dose of one organism applied to a test' animal leads to a
response is about 1/5.  This latter probability is to be estimated more accurately.

Part of the suspension must be used for a plate count to estimate the con-
centration and the remainder allocated among the test ammals to determine
virulence.

To deal with this problem it is again necessary to set up a;statlstlcal model to
represent the observations. Briefly this is that there is a certain unknown
chance « that one organism administered to a test animal will lead to a positive
response, whereas if several organisms are administered thes¢ act independently
and no response is obtained if and only if no response would have been obtained
with each organism separately. Further it is assumed th{at the numbers of
organisms in a certain nominal dose have a particular random distribution
called the Poisson distribution. From these assumptions it/ can be shown that
the probability that a nominal dose of D organisms produces a negative response
is e=*D, where e is the base of natural logarithms.
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Now if the concentration of the suspension of organisms were known and if
there were an unlimited supply of test animals and organisms, we should have a
situation mathematically the same as that of Example 14.3 and the optimum
dose would be 1.6/, where the best initial estimate, 0.2, would be used, for «,
indicating an optimum dose of 8 organisms.. We have, however, the additional
features described above, and these appreciably complicate the mathematical
solution. Andrews and Chernoff show that optimum procedure is approxi-
mately the following:

(a) Every test animal receives the same dose

(b) The fraction of the suspension given to the test animals is approximately
the smaller of 1/(1 + +/«) and 1.6s/(«d), where o is the best initial estimate of
the probability that a single organism will Iead to a positive response, s is the
number of test animals, and 4 is the best initial estimate of the total number of
organisms in the available suspension. The initial estimates of « and 2 do not
have to be very precise.

For example, with the values of 0.2 and 40 for a and 4, and with s = 30,

1/(1 + +/«) =0.69 and 1.6s/(x4) = 6, so that 69 % of the suspension should be

divided into 30 equal portions for application to the test animals and 317, of
the suspension used for a plate count. The estimation of « from the resulting
observations is straightforward.

Equivalent problems occur in estimating the unknown parameters in
theoretical relationships. For example, in a diffusion problem we might
be able to measure the concentration of diffusing solute at different
distances z into the diffusing medium and after different times ¢ from the
start of the diffusion process. Theory gives a relation between con-
centration and z, ¢ involving as unknown parameters the diffusion
coefficient and a constant defining boundary conditions. The problem
is to decide at what values of x and ¢ to observe concentration in order
to get estimates of the unknown parameters of maximum precision.

It is characteristic of these problems that a statistical model has to be
assumed to represent the situation and that the conclusions about the
optimum arrangement would be wrong if the model were seriously wrong.
For instance, in Example 14.4 the idea that all animals should receive the

‘same nominal dose would certainly not be acceptable if there were a

serious doubt about the formula e=*2 for the chance that a nominal dose
D produces a negative response. 'We can sometimes cover this possibility,
however, by including additional parameters in the model to represent
departure from the form first assumed. A second characteristic feature
is that, except in especially fortunate cases, initial estimates have to be
available for one or more of the quantities in the experiment. In the
example just discussed such estimates are needed for the quantities « and
A. Tt is a matter for investigation in each case how precise these initial
estimates need to be; if values of sufficient precision are not available,
a small part of the experimental material may be used to obtain rough
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estimates and from these a suitable method of using the remaining material
then determined. Elfving (1952) and Chernoff (1953)'Have given general
mathematical discussions of these problems, assuming that any necessary
prior estimates are available. The details of special cases are liable to be
complicated. ‘

144 SEARCH FOR OPTIMUM CQNDI'I"‘IO_NS

In the designs discussed in previous chapters it has been assumed that
the object is the estimation of the differences between alternative treat-
ments. Quite often, however, particularly in technological experiments,
the ultimate object is the selection of the treatment oriset of treatments
which are in some sense the best. It may, however, still be necessary to
estimate all relevant treatment effects, both in order to get added under-
standing of the system being in\}estigated and also because the criterion
determining the optimum conditions may be rather imprecisely defined.
Thus if there are several treatments which differ only shghtly with respect
to, say, total cost per unit yield, we may decide to use the process which
is best by some other standard, e.g., estimated long-run reliability
(assuming that no allowance for this has been included }in the calculation
of cost). To be able to do this satisfactorily, it will be necessary to
estimate, not just which is the best treatment according to the different
criteria, but also the amounts by which other treatments depart from the
optimum. Even in such cases, however, the need does arise for designs
that will select a group of treatments, or range of expenmental conditions,
for fuller investigation.

Therefore it is of interest to examine procedures where the emphasis
is on the estimation of optimum conditions, rather than' on the estimation
of treatment differences. First suppose that there is/ one quantitative
factor v that can be varied. To determine the value of » for which a
response ¥ is maximized (or minimized) it will usually l?e best to proceed
in two stages. In the first, a rough determination is made of the region
within which the maximum lies. This can be done eiqher by setting out
an experiment with, say, about six equally spaced levels covering the range
of interest or by proceeding in steps. In ome form of The latter method,
observations are taken at two levels vy, and v, + A; if the first level
gives higher response than the second, observations a“re continued at a
level vy — A; if the second gives the higher response observations are
taken at vy + A whereas if both levels give about the same response,
further observations are taken at both v, — A and u0 + A. This pro-
cedure is continued, the aim being at each step to shift the treatment into
a region in which higher response is obtained. There are clearly many
ways in which such a procedure can be formalized, but it is probably best
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to leave scope for special considerations, such as the ease with which
the treatment may be changed, the amount of random variation relative
to the slope of the response curve, and so on.

When the general form of the response curve has been established, the
second stage of the experiment consists of a three-level (or possibly four-
level) experiment centered on the suspected position of the maximum, the
lower and upper levels being chosen as far apart as possible, subject to
the response curve being reasonably parabolic in the region covered by
the three levels. A second-degree equation (§ 6.8) is then fitted to the
results of the second stage and any relevant results from the first stage,
and the maximum of the fitted equation determined by plotting or by
differentiation. A more detailed discussion is given by Hotelling
(1941).

It is assumed here that the response curve is approximately of a special
mathematical form within the range investigated in the second stage.
Kiefer and Wolfowitz (1952) have discussed a very interesting procedure
which requires only weak assumptions about the response curve; however
in most practical cases it seems likely that more precise estimates of the
position of the maximum can be obtained by judicious use of the parabolic
approximation. '

Box and Wilson (1951), see also Davies (1954), have suggested a
procedure for use when there are several quantitative factors, vy, v,, . . .,
that can be varied independently. Their idea is first to determine, by
a two-level factorial experiment, the direction near the starting point in
which the response surface rises most steeply. For example in Fig. 14.1,

va

15\

U1
Fig. 14.1.  Paths of steepest ascent.

if it is decided to start near A4, an experiment will show that changes in the
direction A4’ produce maximum increments in yield. Since this line is
at about 45° to the axes representing the two factors, equal changes in
v; and in v, should be made, and this is done in the next stage, the optimum
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position B along the line 44’ being determined. A further two-level
experiment centered at B determines the line BB’ of steepest ascent from
B and so on. When the optimum has been determmed approximately, a
three-level experiment is used to investigate the shape of the response
surface near the. optimum. A difficulty is that the d1nect1on of the line
of steepest ascent depends on the units in which v, and‘ v, are measured.
A full account, with examples, of this method is given by Box and Wilson
and by Davies.

When the different treatments are qualitative, the problems of design
are different, although stage-by-stage investigation is again likely to be
useful. Apart from the particular problems of selection in genetics
(Cochran, 1951), little work seems to have been done' on experimental
designs for such situations, although there have been a number of theo-
retical investjgations of so-called decision rules for selectirfpg best treatments.

14.5 ASSAYS

An assay is a system of observations intended to give a ﬁumber measuring
a particular property of some experimental material, for example the
potency of a drug, the strength of an insecticide, the mean fiber diameter of
a consignment of wool, and so on. All such measurement involves in the
last analysis comparison with some sort of standard. We can, however,
for practical purposes distinguish between assays in wh1ch (a) a standard
material similar to the experimental material is used and the observations
on it compared with the observations on the experlmental material and
(6) no such standard material is used directly. We have already touched
on this distinction in the discussion of Example 1.4.

For instance, in early attempts at standardizing insulin, potency was
measured directly by the amount necessary to produce a certain response
in mice, giving “animal units”” of potency. This is the second type of
assay and was found to be unsatisfactory because of variations between
different batches of mice and between different times. | In particular the
comparison of different workers’ results was unreliable. The introduction
of international standard preparations against Wthh experimental
preparations could be tested enabled this difficulty to be avoided; in
each trial, some mice receive the standard, others the experimental drug.
The set-up then has the form of a comparative experiment of the type we
have been discussing in this book, the object being to aséess the unknown
by direct comparison with the standard. Variations between batches of
mice affect unknown and standard almost equally, and reproducible
measures of potency are thereby obtained. |

As another example, consider the measurement of the mean fiber
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diameter of wool. One quick method is to form, in a controlled way, a
plug of fibers and to measure the rate of flow of air through the plug when
a fixed pressure drop is applied across it. From the rate of flow, the
pressure drop, and the mass of wool in the plug, a quantity Q can be
calculated that is closely correlated with the mean fiber diameter. In
practice a value for estimated mean fiber diameter is derived from Q by
the use of a calibration curve, obtained by testing plugs made of fibers of
known mean diameter, determined by a more laborious optical method.
This is an example of the second type of assay with no direct use of
standards. That is, the standards, the fibers of known mean diameter,
are used to construct a calibration curve, but this curve is assumed to
remain fixed and the standards are not introduced directly in each indi-
vidual determination. The calibration curve has in fact been shown to
be quite constant and this method is satisfactory.

If this were not so and the relation between Q and mean fiber diameter
tended to shift in time, the first type of assay could be used. A series of
standard lots of wool would be taken each of known mean fiber diameter,
the series covering a range of fiber diameters. To test a new batch, a
group of two or three standards would be selected whose diameters are
likely to straddle the diameter of the new batch. The experimental
quantity Q would be determined for all, and the diameter of the experi-
mental batch then estimated by an obvious graphical or statistical
technique.

These examples are typical of a wide range of procedures used both in
the physical and the biological sciences. Physical applications tend on the
whole to be like the second example, where a fixed relation can be assumed
between the quantity measured experimentally and the quantity it is
required to estimate, or where the observation obtained can be used
directly to measure the property of interest. The use of standards is
restricted to initial calibration and occasional recalibrations. Biological
applications tend on the whole to be like the first example, where it is
desirable to introduce a standard explicitly into the determination. A
very thorough and authoritative account of the statistical problems
of design and analysis connected with this sort of assay has been
given by Finney (1952), and only a few salient points will be mentioned
here.

The assay of insulin mentioned above is direct in that the observation
for each experimental unit is the quantity of drug, unknown or standard,
necessary to produce a certain response. No new problems of design
are involved in such an assay, the methods for the comparison of two or
more alternative treatments being used. Most bioassays, however, are
indirect, in that for one reason or another it is necessary to apply a
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predetermined dose to each experimental unit and to observe the resulting.

response, quantitative or qualitative, not to increase gradually the dose
until a fixed response is obtained. This raises some new problems.

The simplest design for indirect assays is the so-called symmetrical
four-point assay. Two concentrations of the standard are used, one, say,
A times the other, and two concentrations of the unknown, the one also
4 times the other. The concentrations should be adjusted so that the

observations on corresponding doses of standard and unknown are

expected to be about the same; prior knowledge is, of |course, necessary-

to do this. The ratio A between the two concentrations;should be chosen
to be as large as possible, subject to the requirement;that the relation
between observation and log dose should be linear over the whole range
of concentrations of both drugs in the assay. (C?nsiderable prior
investigation of the dose-response is assumed to have ban done in setting
up the method in the first place.)

An experiment is now arranged to compare these four treatments, if
possible increasing precision by some of the techmques discussed in
previous chapters. This experiment will in effect be a 2 x 2 factorial
experiment, one factor being the type of drug, the other|the level of dose,
high or low. From the results the relative potencies of unknown and
standard can be estimated quite easily.

Notice that we are interested not in the treatment effects in their own
right, but in using the treatment effects to estimate a special type of
relation existing between the treatments. The assumptions on which the
assay is based are two. First the relation between response and log-
dosage must be linear over the range used; this cannot:be checked from
the data. Secondly the response curves for the two preparations must
be parallel if the hypothesis that the test preparation is equivalent to an
unknown dilution of the standard is to be maintained. This can be
checked from the data.

If little reliable information is available about the shape of the response
curve, a six-point assay will be suitable, in which each preparation occurs
at three levels, equally spaced on the log-dosage scale. From the results;
tests of both linearity and parallelism are possible; this ?orresponds to an
ordinary factorial experiment with a quantitative factor, in which three
levels are necessary to get an estimate of the curvature of the response
curve. More than three levels will not normally be advisable in routine
work. ‘

Since the final experiment is set out as a comparative trial, all the
methods discussed in earlier chapters, incomplete block techniques, con-
founding, cross-over designs, etc. are from time to time found useful in
designing assays. Finney’s book should be consulted for details and
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examples, as well as for careful discussion of the various special complica-
tions that arise. .

SUMMARY

A number of unrelated special topics have been discussed briefly:

(a) Trend-free systematic designs are available that are sometimes
suitable for small experiments in which a smooth trend is superimposed
on the treatment effects;

(b) the optimum allocation of observations can sometimes be determined
when a theoretical calculation of precision is possible for each of a number
of possible set-ups, any of which may be observed;

(¢) special methods are available for determining optimum conditions,
i.e., the experimental conditions under which a suitable quantity is
maximized;

(d) a few of the problems connected with assays, particularly bioassays,
have been outlined.
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