CHAPTER 3

Designs for the Reduction of Error

3.1 INTRODUCTION

In this chapter we consider some ways of reducing the effect of uncon-
trolled variations on the error of the treatment comparisons. The
general idea is the common sense one of grouping the units into sets, all
the units in a set being as alike as possible,-and then assigning the treat-
ments so that each occurs once in each set. All comparisons are then
made within sets of similar units. The success of the method in reducing
error depends on using general knowledge of the experimental material
to make an appropriate grouping of the units into sets. This method,
and various generalizations of it, will be introduced mainly by examples.

3.2 PAIRED COMPARISONS

We begin by considering experiments for the comparison of just two
treatments.

Example 3.1. Fertig and Heller (1950) have discussed an experiment for
comparing the effect on sewage of two treatments, 7; and T,. Both treatments
involved 100 per cent chlorination; with T, there was no special mixing and with
T, there was an initial 15-sec period of rapid mixing. The observation made on
each unit after processing was the logarithm of the coliform density per ml,
and it was required to estimate any additional reduction in coliform density due
to the rapid mixing in treatment 7.

The main source of uncontrolled variation, other than random sampling
errors in the determination of the coliform density, arose from variations in the
sewage before processing. Therefore to obtain pairs of units as alike as possible,
it was natural to take batches of sewage on the same day and as close together
as possible in time. This was done on several days giving a series of pairs of
similar units and it was then arranged that T, and T, both occur on each pair.
This involves a series of choices between the orders 7, 7, and 7, T;. In the
present case there was no reason for expecting a systematic difference between
the first and second units in the pairs and the appropriate procedure is then to
randomize the order of the treatments, i.e., to use an objective device such as a
table of random numbers to choose, independently for each pair, between T} T,
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possible identical observations in the absence of treatment differences.
The treatments T; and T, are then assigned in random order to each
pair. The method will give a comparison of treatments free of systematic
error whatever pairing of units is used, but the success of the method in

and T, Ty, giving each equal probability. The“ full discussion of this process of
domization is deferred to Chapter 5. N L
rax:& typical arrangement of treatments resulting li‘rom :}lch a r;g;ig:;fa;:;? (1;
i i fictitious observations. >
shown in Table 3.1 together with some fict : r each pajt of
units the difference between the observation on T, and the observ. 3

calculated. The treatment effect is estimated b)‘l d, the mee}n.of th.ese. glﬂ‘erenc:sé
and the estimated standard etror of d, and a test of thT stlattl_st1cal(scl;g(§'3l ;::cel ;52
i § istic ons R s
btained by simple standard StatlStl.(‘:al. calculations
;aHS lb)e t(;le a.mounty of tge uncontrolled variation bemgf c:.lftg?:tsecli from the
observ’ed dispersion of the differences in the lasft column of Tal 1.

\
TABLE 3.1

|
PAIRED COMPARISON E{(PERIMENT
Difference, d

Day First Unit Se?ond Unit
1 © O Ty:2.8 T3:3.2 O.g
2 T,:3.1 'Ty:3.1 8.5
3 Ty:3.4 iTy:2.9 0.5
4 T,:3.0 iT5:3.5 0.3
5 Ty:2.7 iTy:2.4 0.1
6 T,:2.9 iTy:3.0 —0.3
7 Ty:3.5 T,:3.2 0.2
8 Ty:2.6 1‘T2:2.8 ,

Mean, d = 0.262
Estimﬁted standard error = 0.078

i i i sign that the variation;‘from one day to another has no
et petinen . o e e o ey e
Ezllattl’.tl':c:::il? ) ?Tle‘:aIllitx:ninZtion in this way of the eff;‘act:lt-l :f;l ;I;;;.:st of the uncontrolled
Va;\iIagtii(::E itst;a(:fvfrzutr:;;tg?ﬁg?gﬁg: f;);l:;vg;rglbgsgrvatlignse Sw;ué:(l)l nsatraemtl'}t:‘rzxz&ie;zsl
Lc;ga;lr;hﬁséoﬁngﬁnirgglli;st; t:i/ea: svlz'rt?aﬁtl\:'gutltclla?g‘ 1oli::aill‘:gd on the same mateﬁal
wijsl: :thural objection to the (li'?dor‘nizat@orﬁh lésg;is tigoc;ibézirll'l;rggd Eﬁiegﬁriggs :2
Table 3.1 is that T, has occurred five times in he fee times It
the second, and that it would have been better. tf’ hgve afrange‘;i. fo;sizc‘:i rarty Tater,
to occur equally _oftep in each column. This; pcz)llrjl‘tegggnbies r:::ﬂ ooty cogent i

| ?l'lll«:rlenlst ?:agrx? Itlct:g:(ep:cftal.osl;flsie?ga?i(::t?i(iiﬁ?rtm:gebet\?lveen the first a>1;d second units

- . b
and this was not so in this experiment. ‘

i from many applied fields. The
This example could be parallejled [ e
general method is simply to obtain a ni‘lmber of pairs of experimen

i ' units i i ed to give as nearly as
units, where the two units in each pair are expect g

reducing error depends on a skilful grouping of units. :
The following are a few examples of methods that can be used to obtain
a suitable pairing. Often, as in Example 3.1, the general fact that

. experimental units close together in some natural arrangement in space or

time will tend to be alike suggests an appropriate pairing. Thus, plots
close together in a field tend to give yields more alike than plots far
apart, the products from one machine at two times nearer together tend
to be more alike than products at times far apart or than products from
different machines, and so on. If more explicit information is avaijlable
about differences between units, this should, of course, be used. In
experiments with rats, the pairs would probably be taken of the same sex,
of approximately the same weight, and, so far as possible, from the same
litter. In some experiments on animals it is possible to use twins,
especially identical twins, for the pairs. In other animal work it is
possible to use paired organs (kidneys, eyes, etc.) from the same animal.
A somewhat similar idea in plant experimentation has been put forward
by James (1948); he split clover plants through the middle of the tap
root and used .’ : two halves as paired units. Another device that is
sometimes valuable is the use of the same physical object as a unit twice.
This frequently happens in experimental psychology and in those clinical
experiments in which the treatments are of a comparatively minor nature,
so that each subject can be treated more than once. In such experi-
ments, it may happen, even if there are no complications due to the
overlap of treatment effects, that there is a systematic difference between
the first and second units. In this case some restriction on the randomiza-
tion is desirable to balance out the systematic difference; this will be
discussed later.

The use of inbred lines of animals or plants has often been advocated
in biological work as a method of ensuring uniform material. This-use
has been questioned, for example by Biggers and Claringbold ( 1954), who
give examples where inbred lines are not more homogeneous than
randomly bred material. They suggest that F, hybrids between inbred
lines may be more suitable than the inbred lines themselves,

A final method depends on using a supplementary observation made on
each unit before the experiment starts. For example, in an experiment
on animals, the supplementary observation could be the initial weight.
In this case the two animals with lowest weight are put in one pair, the
two with the next lowest weight in the next pair, and so on. Provided
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t.hat z.mm}als with extreme weights are omitted and that the final ob
tion 1§ hlghly correlated with initial weight, this provides a satisf:::tr oy
grouping into pairs. The methods to be used if two or more su 0lry
mentary measurements are available will be dealt with later e
.Onet general warning is necessary in connection witl; the use of
art@mally uniform material. It may, by the ‘use of such materia] k?
possible to obtain a substantial increase in precision, but sometimrels (’mle
at the cost' of getting conclusions that are not ﬁeprééé'ntative of a wide}rl
class of units (see also §9.2). What should be done in such cases depends
on the Purpose of the investigation; for examplei if it is desired to oli)tairj
90n9]usmns of immediate practjcal applicability in industry or agricult
1t will be desirable to use representative material. sriewture.

3.3 RANDOMIZED BLOCKS
(i) Introduction and Example

If we have more than two treatments to be corﬁpared the method just
descr1be.d can be extended in a straightforward way.’ If there af'e t
altern.atlve treatments, we group the units into sets of 7, the units in each
set being expected to give as nearly as possible the:same’observation if th
treatments are equivalent in their effect. It is usual to call each set 0?

‘unitsa block. The order of treatments is then indi‘ependently randomized

so far as treatment comparisons are concerned.
. Ahn experiment in yvhich block differences are removed from the error
In the way just described is said to be arranged in randomized blocks

i .

Example 3.2, In an experiment dis
cussed by Cochran and Cox*
§4(.i2:]$), the treatments were five levels of applicatiyon of: potashn36 S(zlx 72('1?(5);
:II; d a44 Ib K,0 }Jer afre applied to a cotton crop.  One ob rvation analyzed
measure of single-fiber strength in arbitrary units | i
of ;hnumber of l:ests on the cottongfrom each rployt‘unlts, ebtained as an e
ere were three blocks each containing five “‘ i
' r plots.; The observat
tgrlg:gn mtthe .at?.ove reference but not full particulars [of the arralrge;gggta;;
cat ign slw1t_m blocks, etc. In accordance with the general principle for
tgl:e u}; - gnlzrc;tﬁ ;éltsab!ggks, tfhe five lplots in a block shoul(r:i be chosen to minimize
) Tiation from plot to plot within block: d this i
achieved by arranging the pi ithi i ompact appr
; plots within a block in a compact approxi
:?alg'isrt? :.lrea. This and the randomization of treatments wli)thin ggcizlr;?éaz
Ical assessment of uncontrolled variation in the results arising from
|

. * This book i.s referred to frequently. Section rather than
ecause the section numbering is the same in both editions,

|

1

page numbers are given
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variation between plots. But this is certainly not the only way error can arise;
three other possible sources of erratic variation are associated with

(@) the cultivation and harvesting of the crop;
(b) the selection of fibers for test;
(¢) the strength testing;

and these will be discussed briefly.

Variations connected with the order in which the plots are cultivated or
harvested would ordinarily be assumed negligible; however, if for instance the
harvesting takes more than one day a useful precaution would be to harvest all
the plots in one block on the same day. In this way constant differences
between days become identified with block differences and do not contribute to
the error of the experiment.

Only a minute proportion of the fibers on a plot are used in the strength
testing; the use of a reliable method of sampling in selecting the fibers is a vital
part of the method of testing but will not be discussed here.

There may be uncontrolled variations, connected with the behavior of the
testing machine, with the temperature or humidity of the testing room, and with
the testing operative. The best procedure here is usually to test the cotton from
one block in random order in as short a time period as possible. If several
operatives or several testing machines are used in the whole experiment it is
usually desirable that the results for each block should be obtained by one
operative on one machine, i.e., possible differences within blocks that could arise
from operative or machine differences should be elimihated.

To sum up, at each stage of the experiment, from the initial planting to the
final testing, sources of uncontrolled variations are either identified with blocks
and in effect eliminated from the treatment comparisons, or randomized, or
possibly assumed negligible. The last course is avoided as far as possible, since,
as discussed in Chapter 1, it is usually best to avoid assumptions about the nature
of the uncontrolled variation.

The observations are given in Table 3.2(2); the five treatments have been
denoted in order of increasing amount of K,O, T3,...,T; (The detailed
arrangement of treatments within blocks as shown has been obtained by
randomizing the values given in Cochran and Cox and is presumably not the
order actually used in the experiment.) '

To analyze the observations* they are first rearranged as in Table 3.2(b)
and the totals and means for each treatment (and block) calculated. Thus for
the first treatment 7.62 + 8.00 + 7.93 = 23.55, and this divided by 3 gives the
treatment mean of 7.85. The differences between treatment means are the best

- estimates of the true treatment differences, provided that the basic assumption of

Chapter 2 holds and that the amount of the uncontrolled variation does not vary

appreciably from block to block.
To estimate the precision of these estimates we use formula (1) of § 1.2, i.e.,

standard error of

difference of two
means of 3

‘\observations each

= ; x standard deviation. )

* The following account of the analysis may be omitted at a first reading.
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TABLE 3.2

ExampLE oF RANDOMIZED BLock EXPERIMENT
(a) Original Design and Observations i

Block I 7;:7.46 Ty:7.17 7,:7.62  T,:8.14

: : T5:7.76
g}ocllzz 7,:8.15 7,:8.00 T5:7.68 | T,:7.57 T::7.73
ock 3 T,:7.74 T,:7.87 7,:7.93 | T,:7.80 T,:7.21
b) Rearranged Observations ‘
T, T, T, T, T T
otal
Block 176 814 776 717 71456 38.15 I\;IZH
Block 2 800 815 773 757 76 39.13 783
Block 3 793 787 774 780 7921 3855 771
Total 2355 2416 2323 2254 ‘ .
. . ) 2235 | 115.83 7.
Mean 785 805 774 7.5 7".’45 7.72 ”

(©) Residuals : :
T T, T, T, T,
Block 1 014 018 011 —025 0110
Block2 004 -001 -012 —005 o2
Block3 009 -017 001 o030 -0.23

Estimate of standard deviation =

Standard error of difference betw
0.171

Estimated increase in streng
error 0.025]1 .

v/(0.3496/8) = 02090 (8 degrees of freedom)
een two treatment means = 0.2090v/(2/3) =

th per 18 1b X,0 increment is —0.090 with standard
We have first to estimate the standard deviation, that is the amount of uncon-

trolled variation from unit to unit. This is (

L _ unit. usually done by an ele; i

galleq ana_lysrs of variance; its application to tﬁe pr'ese¥1t probgl:rr:‘lt tl?::l nl;ql'le
escribed in full by Cochran and Cox and general acc [ be

_ ounts of i
found in any textbook on statistical methods, : the method will be

It is, however, worth indicating briefly an equivalenit method for estimating

itﬁgicit;ng]a:; h;;:yialtil;)n _ “;'hiChl',l while rather inconvenient numerically, does
ical basis for the estimate. We re uiré ¢
the variation that is not due toreal t Fand that comere that ot
: reatment effects and that cann tb

as systematic variation between blocks Th it i TSt (0 e
_ ' . erefore it is natural first to e

sach qbservatxon as a difference from the overall mean‘:and then to remozsrt;s:

ariation accounted for by block differences, This is done by subtracting

(mean observation for) overall
the particular block /| ~ (mean )

Next the variation accounted for by treatments is removed by subtracting

( mean qbservation for ) overall} .
the particular treatment/ — (meaﬁ ) :

1
|
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At the end of this process we get, corresponding to each original observation,
a residual, which may be defined directly as .o

mean observation mean observation
observation — for the - for the +
" particular block particular treatment

These are given in Table 3.2(¢). Thus for the first observation we have that
7.62 —7.63 — 7.85+ 7.72 = —0.14. Except for rounding-off errors, the residuals
add up to zero for each block and for each treatment.

The standard deviation measures the magnitude of the residuals and is
calculated by finding the average of the squared residuals and then square-
rooting the answer. However, in averaging the squared residuals it turns out to
be appropriate to divide not by the number of residuals (15) but by what are called
the residual degrees of freedom, (number of blocks — 1) x (number of treatments
—1), which in this case is 8. The reason for this is essentially that if the 8
residuals in the upper left hand section of Table 3.2(c) were assigned arbitrarily,
the condition that the row and column sums must be zero would determine the
remaining residuals uniquely; i.e., effectively there are 8 independent residuals.
Thus, the required estimate of standard deviation is

V{H(=0.142 + (0.18) + - - - + (—0.23)%]} = 0.2090,

and is said to have 8 degrees of freedom. This is exactly the value that is given
more quickly by the analysis of variance; the detailed table of residuals is,
however, very useful if it is required to check the assumptions underlying the
analysis. For example the occurrence of a single very large residual suggests
that the corresponding observation may be suspect, whereas the distribution of
the residuals gives information about the frequency distribution of error. It
may sometimes happen that some blocks are much more variable than others
and in extreme cases this too can be detected from the residuals, although
considerable caution is needed in doing this. Important work on the examina-
tion of residuals has been done by F. J. Anscombe and J. W. Tukey; their work
had not been published when this book went to press.

We now use formula (1) to obtain the estimated standard error of the mean as
0.2090 x +/(2/3) =0.171. In accordance with the account of the standard
error given in § 1.2, the interpretation of this figure is that, for example, there is
only a chance of about 1 in 20 that the estimate of a single preselected effect is in
error by more than +2 x 0.171 = +0.342. However, as explained in § 1.2,
this interpretation needs some modification when the standard deviation is itself
only estimated from a small number of observations, and in fact the residual
degrees of freedom determine what this modification should be. The 1 in 20
limits for 8 degrees of freedom are increased to 2.31 x standard error, i.e., to
plus or minus 0.395. This increase from 2 to 2.31 to allow for the uncertainty
in the estimate of error is explained in textbooks on statistics and is an example
of the use of what is known as “Student’s” ¢ distribution. = Further modification
of the multipliers is needed if they are applied solely to differences suggested by
the data, such as to the difference between the treatments with highest and lowest
mean responses.

The essential general points in this calculation are first the estimation of the
treatment effects by a straightforward process of averaging, and second the
estimation of the variation of the observations when treatment and block
differences are removed. The important principle here, which applies also to

overall) .

mean
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more complicated cases, is that when the effect of a source of variation, for example

In this particular experiment the five treatments bear a special relation to one
another in that they represent different levels of a'continuous quantity, the
amount of K,O per acre. It is, therefore, natural, to consider not uzé the
dlﬁ‘z?rences between different treatments, but also the curve of mean ~itrength
against the amount of K,0 and, in particular, to see whether this curve is
effectively a straight line. Standard statistical methods of regression analysis
(Goulden, 1952, p- 102) can be used to show that the curve does not degart

significantly from a straight line representing a decrease in st

181b K0 per acre increment. Tlllje standafd‘ error of the sl(r);l::gitsh 0?35)5.(1)90 Pt
Finally it is often worth examining the block means, even though they do not

bear d1rectl_y on the estimation of treatment effects, First, it is possible to assess

from the magnitude of the differences between blocks whether the grouping of the

useful in planning similar experiments in th ‘ i i
' _ e future.! Second, articularly in
experiments with more blocks than the present one, a detailed exan}:ination oty the

block differences may be very helpful: ~ For exam i i
y : : ple, if two operatives had been
uss:d in the strength testing, a comparison of block meahs to sge whether there is

evidence of a systematic difference between operatn‘/es might be interesting,

general knowledge of the experimental material,
(ii) Missing Values ‘

The relatively simple analysis just described dgpends in an essential
way on the balanced nature of the randomized block!\design. For example
1t 1s only because each treatment occurs the same number of times within’
each block that the mean observations on the treatments can be used to
compare treatments in a way unaffected by constant block differences.
If, for instance, treatment T, did not occur in thel first block and if the
first block happened to give systematically high results, the mean for T,
yvould be depressed relative to the means for the treatments that did occu;
in the first block, so that the treatment means wéuld no longer give a
fair basis for comparing treatments, free of block effects.

It can happen, particularly in experiments with\ many units, that the
resul‘ts On one or more units are lost, do not become available c;r have to
be discarded. For instance, if the units are animals, some m;y die from
causes unconnected with the treatments, This ﬂoss will destroy the

property of balance, i.e., the pattern of observations/will no |
of a randomized block design. oneer be that
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A special case of a general principle, called the method of least squares,
can be used for the efficient-analysis of observations grouped into blocks
and subject to treatments arranged in an unbalanced scheme, but the
calculations tend to be complicated. Fortunately a very simple method
is available when observations are missing for only one unit. This is to
calculate a so-called estimated missing value by the formula

(kB + T — G)/[(k — 1)(t — 1)],

where k is the number of blocks, ¢ is the number of treatments, B is the
total of all remaining observations in the block containing the missing
observation, T is the total of observations on the missing treatment, and
G is the grand total.

Then we analyze by the straightforward method, just as if the estimated
missing value is a genuine observation. A small modification is that the
degrees of freedom for residual are reduced by one. This procedure
gives the same estimated treatment effects as the method of least squares
and also the same estimated standard error for comparing two treatments
for which no observations are missing. The correct standard error for
comparisons involving the missing treatment is slightly greater and is
closely approximated by using formula (2) of Chapter 1, allotting the
treatment with the gap one fewer observations than the other treatments.

The importance for experimental design of the missing-value formula is
that it would have been a serious drawback to the use of randomized
blocks, and of course also of more complex designs, had the analysis and
interpretation been greatly complicated whenever an observation is lost,
or more generally whenever it proves impossible to get-data in exactly the
form intended. The existence of the formula means that the randomized
blocks design can safely be adopted even when the occurrence of occasional
missing values is expected.

“Extensions of the method can be used if there are several missing
observations; it is then necessary to solve a set of simultaneous linear
equations, the number of equations being equal to the number of missing
values. Similar methods are available if by accident the treatments are
not applied exactly according to plan and the pattern of treatments departs
somewhat from the randomized blocks form.

Analogous formulas are available for the other designs described in the
present book (see Cochran and Cox, 1957; Goulden, 1952).

(iii) Further Examples .
Example3.3. Another application of randomized blocks is in laboratory work
with animals such as mice or rats., Suppose for definiteness that there are five
treatments under comparison, theit nature depending on the particular field of
application, but being, for example, different diets, different amounts and types
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of drug, different diets fed to rats during pregnancy, etc. The final observations
might be of the amount of a certain substance in an organ of the animal at the
end of the experimental period or, for the last case, some characteristic of the
offspring.

To make successful use of the idea of randomized blocks, we begin by grouping
the animals into sets of five in such a Wway that the final observation that would be
obtained under uniform treatment is expected to be as nearly as possible constant
withineachset. Any special knowledge of the animals, such as their performance
in previous experiments, can be used.  In the absence of special knowledge it is
common to rely either on the correlation that often’ exists between the final
observations and a suitable, easily measured, initial property of the experimental

" animal, such as body weight, or on the general fact that animals from the same
litter tend to respond similarly. !

To use the last property, five suitable animals are taken from a number of

litters of five or more animals, numbering the animals in each litter 1,...,5
in-any convenient way. The order of treatments is then randomized within each
block to give some arrangement such as

Litter 1. Animal 1, Ty: . 2, Ty: 3,75 14, Ty 5,7,

Litter 2. Animall,7,: 2, Ts: 3,Ty: 4,T,: 5, T,
etc. :

To use a quantitative property, such as body weight, to form blocks, the
animals are numbered in order of increasing body weight, say, 1 through 20 if
four blocks are required. Animals 1 through 5 form the'first block, 6 through 10
the second block, and so on, the order of treatments again being randomized
independently within each block. The effect of this is that the animals within
any one block have approximately the same body weight; It sometimes happens
that the first or last blocks contain one or more animals with very extreme body
weights, so that there is appreciable variation of body weight within these blocks.
If practicable, this is best avoided, for example, by starting with a few more
arumals than it is intended to use and discarding those with very extreme weights,

The results from such a design can be analyzed by the method of Example 3.2,
the value of initial body weight being ignored once the g’rouping into blocks has
been determined. In the next chapter we shall considen; an alternative method
of using the initial quantitative variable, in which the actual value is used in the
analysis. ‘

Example 3.4. 1In certain textile investigations it is required to test a number of
modifications in a process for producing a thin web éf parallel fibers. One
important property of the web is the number of fiber entanglements, say per mg
of web, and this is measured by passing a section of web slowly over an illiminated
strip, when individual entanglements can be noted and theﬂtotal found. However
it is difficult to define precisely what constitutes an entanglement so that, whereas
one observer can get reasonably reproducible counts over a short period of time,
there are liable to be large systematic differences between! observers and between
the same observer’s counts on different days. This example is typical of an
important class of experiments in technology in which the properties under
investigation are either rather difficult to define precisely and so are subject to
personal errors of measurement, or, in extreme cases, are essentially matters of
subjective judgement.
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in planning this sort of experiment is to take all reasonable
pre’l;:git?ézts Stfpelimililate th% sources of sys?ematic \fariation, for exa'm};lie:l bl;y
displaying in front of the observer photographs or slides showing typica Thr
arrangements, some to be counted as entanglements and some _no(ti. ol li
remaining systematic variations can then be reduced by the randomized bloc

inciple, as follows: )

prlsnlfll}}))ose for definiteness that we have si'x different batches Wy, ..., W, o(i' weg
to be compared. Let us assume to begin with that they have been pﬁotuoe
by six different processes under highly controlled conditions, so that any

TABLE 34
PLAN FOR COMPARING SIX WEBS FOR ENTANGLEMENTS
Order of Measurement

1 2 3 4 5 6

Block I  Observer 1

First period W, Wy W, Wy We W,
Block 2 Observer 2

First period W We W, W, W, W,
Block 3  Observer 1

Second period W, We W, A W, /A
Block 4  Observer 2

Second period W, W, W, W We W,
Block §  Observer 1

Third period We W, W, Wy /4 W,
Block 6  Observer 2

Third period W, Wy A W, Wy W,
Block 7  Observer 1

Fourth period W, W, Wy w, W Wy
Block 8  Observer 2 _

Fourth period W, W w, Wy Ws W

difference between W, ..., W, can be confidently attributed to the effect of

processes. A similar point arose in connection Wwith the preceding example a_nc!
this is of course just the sort of assumption that it is so often desirable to avoid;
this can be done by having several batches from each process, produced and
tested independently. )

esIn each t}:lock the};e will be observations on all six webs and we want it to be
possible to complete the observations in a block within a fairly short time, so that
time differences are eliminated. Therefore, we take as units srr!all sections of
web that can each be examined for entanglements in say 10-15 min, the s.ectlons
being selected by a random-sampling procedure. The number of sections of
each web that it would be desirable to measure depends on the final precision
required and on the regularity with which the entanglements are distributed,
and they would have to be determined from previous work or from the results of
a preliminary experiment. Suppose that eight sections are judged adequate and
that two observers are available, each measuring four times. Then an arrange-
ment in raindomized blocks is shown in Table 3.4. .
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The order of webs is randomized independently within each block. Subjective
biases of measurement are minimized by concealing from the observer the
identity of the section under analysis. In analyzing results it would be desirable
to check the consistency of the observers in their comp‘arison of the 6 webs, It
is not necessary to randomize the allotment of observers to blocks, because the
object of the experiment is not the comparison of obsérvers; the only purpose
that would be served by randomizing observers over blocks would be that of
ensuring the absence of systematic differences in the external conditions during
the two observers’ measurements. Note that if the primary object had been an
examination of the difference between observers, it wou%d have been advisable to
have had each section of web measured by both observers. However when the
object is the comparison of webs, the more distinct sections that are taken from
each web the better, provided that the main cost of the experiment is in the
counting of entanglements and not in the selection of sections or in the cost of
the material that is in effect destroyed in sampling the web, *

In this example the randomized block principle has be/‘en used to eliminate the
effect of systematic variations arising in the actual measurement, rather than
variations arising from the experimental material itself. ' There are other ways of
achieving this end. For example we may insert into each series of sections of
experimental webs, a section of standard web, which has been counted many
times and may be considered to have a known number .of entanglements. The
observation actually recorded on the standard section is then used to adjust the
remaining observations. Another possibility, which may well be the best if
large observer and time differences seem unavoidable, is to abandon the idea of
directly counting entanglements and instead to measure the amount of entangle-
ment either by assigning a score to each section after a subjective comparison
of it with standard sections showing varying degrees of entanglement, or alterna-
tively by direct ranking of a series of sections in order of increasing apparent
degree of entanglement. The discussion of the relative advantages of these
procedures raises difficult general questions; they are idealt with briefly later
(§9.4).

We have now had several examples of the use of randomized blocks.
The grouping of the material into blocks eliminates the effect of constant
differences between blocks and the randomization allows us to treat the
remaining variation between units as random variation, so far as assessing
treatment comparisons is concerned. The success of the method depends
on a good grouping of the units into blocks. The general idea of grouping
into blocks is of fundamental importance and is not only frequently used
in simple experiments but also forms the basis for most of the more
complicated designs. |

Sometimes a generalized form of the randomized block design is useful.
It may be required to make some treatment comparisons more precisely

* For example, if only a very limited quantity of each web is produced and it is
required to leave as much as possible for further processing,!it might be advisable to
measure each section more than once. If the magnitudes of the different components
of variation can be estimated and if the relative costs of the various stages of the
experiment can be measured, the optimum distribution of effort can be determined.
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than others. For example, we may have a control treatment C and.a
number of other treatments 73, Ty, . .. and the main interest ‘may be in
comparing T, Ty, ... individually with C rather than in comparing T,
T,, ... among themselves. In such a case it is proper to devote more
units to C than to each T treatment. The block principle can St‘lll be
used with a simple analysis, provided that the number of times'a particular
treatment occurs in a block is the same for all blocks. Thus, in the aboye
example C might occur four times in each block and Ty, Ty, . . - once in
each block. The difference between two treatment means is again
unaffected by constant differences between blocks.

3.4 ELIMINATION OF ERROR BY SEVERAL
GROUPINGS OF THE UNITS

(i) Latin Squares ‘

In the preceding section we have seen how a single grouping of the 1'1mts
into- blocks can be used to reduce the error of an experiment. Sometlfnes
two or more systems of grouping suggest themselves and it may be de31ref1
to use them simultaneously. For instance in a paired comparison experi-
ment, like Example 3.1, it might happen that there is reason to expect' a
systematic difference between the first unit and the secon.d unit in the pair.
Then we should have two systems of grouping, into pairs and into order
within pairs, and we would wish to balance out both the assoc.:lated types
of systematic variation. A discussion of this example. would involve one
or two special points, and it is convenient instead to introduce the basic
design, the Latin square, with a somewhat different problem.

Example 3.5. Consider an industrial experiment in which four processes are
under comparison and in which it is suspected that there will be systematic
changes in external conditions from day to day and also between different times
of day, e.g., observations on material processed in the early morning may on
the whole be lower than on material processed in the afternoon, etc. - Suppose
that the number of units that can be dealt with on one day is limited and that four
is a convenient number, say two in the mprning and two in the after.noon.
Suppose also to begin with that four observations on each process are conmder;d
likely to give sufficient precision. The sixteen experimental units can t‘l‘len e
set out in the square array shown in Table 3.5(a). If we preferred to use days’
.as blocks in a randomized block design, we should arrange that each process is
used once on each day, the arrangement otherwise being random. If we preferred
to use “times of day” as blocks in a randomized block design, we should arrange
that each process is used once at each time of day. Therefore if we wish to
eliminate both sources of variation simultaneously we must arrange the four
processes Py, Py, Py, P, in the 4 X 4 square of Table 3.5(a) so that each letter
occurs once in each row and once in each column.



36 DESIGNS FOR THE REDUCTION OF ERROR

One such arrangement is shown in Table 3.5(b) and is an example of a 4 x 4

Latin square. In general an n x n Latin square is an arrangement of » letters
in lau n x nsquare, such that each letter occurs once inieach row and once ineach
column. ‘

The particular Latin square given in Table 3.5(1;) has been obtained by'ﬂ'

randomization in a way to be described in Chapter 10. The procedures to be
used if it is required to have more experimental units, for example to have eight

units for each treatment, will be discussed later. |

TABLE 3.5

A LATIN SQUARE DESIGN |

(a) General Arrangement of Experimental Units

Time of Day| ,
Time 1 Time 2 Time 3 Time 4
Day 1 — — [ —
Day 2 — — — —_
Day 3 - — L -
Day 4 — — — —
(b) A Latin Square : \
_ Time 1 Time 2 Time 3 Time 4
‘Day 1 P, P, Py P,
Day 2 Py P, Py Py
Day 3 Py Py P, Py
Day 4 P, P, By Py

The analysis of the observations from a Latin squarelis done by a procedure
exactly analogous to that for the randomized blocks design. The treatment
effects are estimated by comparing the average observations for the different
treatments, and the estimate of the error standard dévi;]ation is obtained either
from the appropriate analysis of variance or by calculating residuals. In
accqrdance with the principle stated in § 3.3, every source of variation balanced
out in the design of the experiment must be removed in'the analysis before the
standard deviation is estimated. The definition of the residual corresponding
to a given observation is thus ‘

) mean

mean mean
' observation | observation |\! observation
observation - onthe | - on the - on the
corresponding corresponding | corresponding
treatment - row ‘ column

+ twice the overall ‘mean,

and the estimate of the standard deviation is

1 §
A/ {(_n——l)(n——Z) X sum of squares of the residuals},
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forann x nsquare. The divisor (n — 1)(n — 2), the residual degrees of freedom
for the Latin square, is the number of independent residuals, The estimated

standard error of the difference in mean observation is*

estimate of % 2
standard deviation no. of observations per treatment /"

Full details of the procedure of analysis are given in textbooks on statistical
methods.

The example just discussed shows that the Latin square arrangement is
a simple and natural extension of the randomized block design. The
example is of wide applicability, since there are many types of work in
which the rate at which experimental material can be dealt with is limited
and in which it is worth balancing out certain time variations. Another
common possibility arises when there are a number of observers or sets
of apparatus or machinery, which can be used simultaneously. The
Latin square arrangement can then be used with the rows standing for
different times, and the columns for the different sets of apparatus, etc.
In this way systematic time differences and systematic differences between
sets of apparatus, etc., are eliminated.

A restriction, which clearly limits the use of the Latin square in its
simple form, is that the number of rows, the number of columns, and the
number of treatments must all be equal. Arrangements not restricted
like this are discussed in Chapter 11. It is convenient now to consider
some more examples of the use of the Latin square.

Example 3.6. In an agricultural field trial to compare a fairly small number
of varieties or treatments, the best arrangement of plots depends in part on the
shape of the plots, which is largely dictated by technical considerations. For
example in a variety trial, particularly if it is required to have small plots, the
plots would be long and narrow, only a few drills wide. In this case a natural
grouping of plots for the use of a randomized block design is that shown for six
varieties in Table 3.6(a), in which the blocks are approximately square and are,
if possible, oriented to minimize the effect of the predominant fertility variations,
if the best direction for doing this is known from previous experience of the field.
If, on the other hand, the plots are more nearly square, a compact arrangement,
such as that illustrated in Table 3.6(b), would usually be better. The exception
is when it is confidently expected that fertility variations in one direction will be
much larger than variations in the perpendicular direction; in this case the
arrangement corresponding to Table 3.6(a) is likely to be successful. The
objection to this design would ordinarily be that with wide plots, the whole block
is of considerable extent and is therefore likely to contain excessive variation;
all the variation of fertility between plots within the long block would contribute
to the error. The design would be particularly bad if the predominant direction
of fertility variation was misjudged and happened to lie parallel to the length of
the block.

* In fact this formula, or its generalization (Chapter 1, Eq. (2)) applies for all designs
in which the treatment effects are estimated by simple treatment means. .
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TABLE 3.6

AGRICULTURAL FIELD TRIALS

Predominant
RN v, V. v v. |. direction of
¢ 5 2 ! 5 3 * .| fertility variation
(if known)
(a)

|
V3 Vi V]_ ’}‘
No predominant
direction of
Vs Vs Ve fertility variation
(%)
V2 V]_ VG V'4 V3 V5
V1 V5 Ve V3 i VG i
V4 V3 V1 VG V5 VZ
V3 Va V4 V5 1’6 Vl
VG V4 V5 VZ Vl V3
Vs Ve Vs Vi Ve V,
(c)

e,
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Consider, however, the Latin square arrangement shown in Table 3.6(c).
Here we are eliminating fertility variations in two directions and so there is a
good chance that one or other, if not both, of the groupings will account for an
appreciable portion of uncontrolled variation. Much depends on the particular
circumstances and on special information that may be available in particular
cases, but it seems that for many types of field experiment with approximately
square plots and with not more than about ten to twelve treatments, the Latin
square is a good design, and is to be preferred to randomized blocks, provided
that it is reasonable to have the number of plots per treatment equal to, or a
simple multiple of, the number of treatments. Exceptions to this have, however,
been reported in the literature.

Example 3.7. The Latin square principle is employed frequently in experi-
ments in which the same object or person is used several times. Thus for the
cattle experiment discussed in Example 2.7, suppose that interference between
different two-week periods can be ignored. ' Then we have two types of systematic
error to try to eliminate, arising from variations between animals and from the
common time trend between periods. Therefore the Latin square design is
indicated. For each group of three similar animalsa 3 x 3 Latin square is used,
as shown in Table 3.7; the randomization of each 3 x 3 square is dore
independently.

TABLE 3.7
ANmMAL FeEeDING TrIAL

Two-week Period

1 2 3
Cow 1 C A B
Cow 2 B C A
Cow 3 - A B C

The diets under comparison are denoted by 4, B, C.

The three animals in a square should be chosen so that they are likely to have
similar lactation curves and to be at corresponding points on the curve at the
start of the experiment. The reason for this is that the balancing of columns in
the Latin square removes the effect of a common trend in milk yield, but that if
the trends are appreciably different for the three animals, the error of the
treatment comparisons is inflated. The whole experiment will consist of several
squares of the above type. It does not matter if the trends are different in the
different squares; what is important is that as far as possible any trends that do
exist should be the same for the three animals in any one square. If this state of
affairs is not attained the randomized Latin square arrangement is, of course,
still a perfectly valid experiment, giving treatment comparisons of measurable
precision and free of systematic error. The point is that precision is lost.

The straightforward use of the Latin square applies when there is no
carry-over of the treatment effect from one period to another. We shall
see later that a special sort of Latin square is the design to use when there
is a carry-over of treatment effect.

Example 3.7 could be paralleled from many applied fields. For
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example in some experiments on the fuel consumption of buses, described
t?y Menzler (1954), four vehicles were used to q‘ompare four different
tire pressures, four different tread thicknesses, or four different methods of
operation, the experiment being repeated on four days. There are two
types of systematic variation to be balanced out, that between days and
that between vehicles, and a 4 x 4 Latin square i§ appropriate, with the
rows representing vehicles and the columns, days. .

Example 3.8. The following case of the misuse of the Latin square, quote
Babington Smith (1951), illustrates the importance of consiccilering, (%he bc:l:iz
assumptions of Qhapter 2. Four backward readers, Tom, Dick, Harry, and
George undergo in succession four trainings in spelling, denoted by 4, B, C, D
the treatments being arranged in a Latin square as in Table 3.8. An observation

TABLE 3.8
COMPARISON OF TRAINING METHODS
Period 1 Period 2 Period 3 Period 4
Tom B A D C
Dick C B y D
Harry A D C B
George D C B A

is made on each subject at the end of i i
speliing tot. j of each period, usnjng a standard type of
_The justification for using the Latin square is that it ‘gaims at balancing out
dlﬂ‘erences_ between subjects, and also any systematic effects accounted for by
the order in which the methods of training are applied. | However, we have an
untenable assumption, namely that the observation obtained, say with method D
for Tom in the third period, is unaffected by the particular choice of treatments
for Tom in the preceding periods. The observation obtained on a subject in a
particular period is likely to depend, probably in rather a complicated way
on all the training received up to that point. Tt is not difficult to conceive of
situations in which the comparison of methods of traix;iné by a simple averagin
of observations would give quite misleading results},/ ! &

A list of standard Latin squares, from which designs can be constructed
by randomization, is given in Chapter 10, where there is also a discussion
qf more complicated designs based on the Latin square principle. Two
simple extensions of the Latin square design will be discussed briefly
here; the first is that several Latin squares may be used simultaneously
and the second is that instead of two sources of systematic variation to be
dealt with, there may be three or even more. |

(ii) Combined Latin Squares

In any experiment of the type we have been considering, for which an
n X n Latin square is appropriate, it may well happFn that more than »n
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units are required for each treatment to get estimates of adequate precision.
This situation can be dealt with simply if one of the sides of the square,
say the rows, represents extension in space .or time, and if a multiple of
n? units can be used.

Example 3.9. Consider again Example 3.5, where the rows of the square
represent different days, the columns times of the day. If we want to extend the
experiment over twelve days instead of four, two procedures are available and are
illustrated in Table 3.9(a) and (b).

In the first design, Table 3.9(a), we have three independently randomized Latin
squares placed underneath one another. In the second design, Table 3.9(b),
we have completely randomized the rows of the previous design, so that, for
example, the first four rows by themselves no longer necessarily form a Latin
square.

the difference in practice between the designs is best seen by considering what

types of systematic variation are eliminated from the error by the two designs.
In both cases constant differences between days have no effect on the treatment
comparisons. In the second design, the effect of constant differences between
times of the day persisting throughout the whole experiment is likewise eliminated.
In the first design, however, not only is this done, but also time of day effects are
eliminated separately from each set of four days. This would be particularly
useful if, as might be convenient, there is a considerable gap in time between the
sets of four days, or if it were desired to introduce some external change in
conditions, either of which things might mean that time of day effects would not
be the same in all parts of the experiment.

Therefore in general we prefer the design (@) because it achieves all that (b)
does and more. There are, however, two considerations which prevent (a)
always being better than (b), although neither consideration is likely to be of any
importance in the present case. First we would usually need to estimate the
error standard deviation from the results of the experiment itself and, as we have
seen above, the accuracy with which we do this, measured by the degrees of
freedom for residual, affects somewhat the effective precision of the experiment.
Now the residual degrees of freedom for the design in Table 3.9(a) may be shown
to be 24 and the corresponding value for Table 3.9() is 30. In accordance with
the full discussion in Chapter 8, this means that if the true standard deviations
corresponding to the two designs were equal, the effective standard deviation for
Table 3.9(b) would be about 1 per cent less than that for Table 3.9(a). This gain
is negligible, but in smaller experiments the corresponding gain may be enough
to justify the use of the design analogous to Table 3.9(b), in a case where there is
good reason to expect any column effects to be constant throughout the experi-
ment,

The second consideration, which is of merely academic interest in the present

* case, is that with very special patterns of uncontrolled variation Table 3.9(b)

may give the more precise design, even apart from the consideration of the
residual degrees of freedom.  Suppose, to take the extreme case, the observations
in the absence of treatment effects were of the form in Table 3.9(c), with only two
possible values =, y distributed in the pattern shown. Notice that the systematic
variation between days is zero, since for each day the observations add up to
2(x + y). Likewise if the columns are taken in sets 1-4, 5-8, 9-12 there is no
systematic variation between columns. Of course, if it were known or suspected
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TABLE 3.9

() Separate Latin Squares

Day 1
2
3
4

0 3N W

9
10
1
12

() Intermixed Latin Squares

Day 1
2

3
4
5

Time of Day
Time 1 Time 2 Time 3
Py Py Py
P, Py P,
P, Py Py
Py P, Py
P4 Pl P2
P3 P4 Pl
P, Py P,
Py Py Py
P, P, Py
Py Py P,
P, Py Py
Py Py P,
Time 1 Time 2 Time 3
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, P, P,
P, Py P,
P, P, P,
(c) A Very Special Pattern of Uncontrolled Variation
Time 1 Time 2 Time 3
x x y
z z y
y y z
Yy y @
z z y
and so on up to
Yy Yy z

EXTENDED LATIN SQUARE DESIqNs

Time 4

LY

< 8 8w

8

Replicate
1

Replicate
2

Replicate
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that the uncontrolled variation was of this form, neither of the designs we are
considering would be at all appropriate. However, if the pattern of variation
in Table 3.9(c) did occur, the standard deviation for design (@) can be shown to be
+/(33/27) = 1.11 times that for design (). This, the largest factor in favor of
(b) that can occur, does not represent a large change in precision and in any case
only arises in the exceptional circumstances of Table 3.9(c). :

We can formulate an important general rule for experiments of this type;
that it is better to keep separate the sections, e.g., Latin squares, from which the
whole design is built, except possibly when the experiment is a small one with few
degrees of freedom available for the estimation of error, or when very special
patterns of uncontrolled variation may arise.

All the arrangements that we have considered so far give equal precision for the
comparison of every pair of treatments. If, however, it is required, say, to have
two observations on A4 for each observation on B, C, etc. this can be done most
simply by takinga 5 x 5 Latin square for treatments 4, B, C, D, Eand applying
the treatment 4 every time the letters 4 or E occur. If the conditions of the
experiment do not allow the use of five units in one day, the more complicated
“unbalanced” arrangements of Chapter 11 must be used, if the additional
observations on A4 are to be obtained.

Example 3.10.  As a final example of the simple two-way elimination of error,
consider the paired comparison experiment, Example 3.1, in which it is required
to compare two treatments T, Ty, eliminating from the effective error not only the
variation between pairs of units, but also any systematic variation associated with
the order in which the units are arranged within pairs.

If we look back at Table 3.1, which shows a particular arrangement of treat-
ments with one-way grouping of the units, we see that T'; occurs three times in the
first position and five times in the second. What we want, if it is expected that
the observation on the first unit in a pair will tend to be larger (or smaller) than
the observation on the second unit in the pair, is that each treatment should occur
four times in each position.  This raises essentially the same problems as Example
3.9. The key design in the 2 x 2 Latin square:

I, T, or T, T,
T, T T, T,
and we want four of these to build up the requisite number of observations.
There are three different arrangements that merit consideration. First we might
consider taking four Latin squares kept separate, analogous to the arrangement
in Table 3.9(a). It can be shown that this design has only three degrees of
freedom for residual and this would ordinarily be insufficient (see § 8.3), so that
this arrangement would be used only in very special circumstances. The second
arrangement, analogous to Table 3.9(3), is obtained by choosing completely at
random four pairs to receive the order T, T; and assigning the order 7, T to the
remaining four pairs. This may be shown to leave 6 degrees of freedom for
residual, and is the arrangement that would normally be used. The third method
is an intermediate arrangement, which is worth considering when the pairs fall
naturally into two equal sets in which the order effects are quite possibly different.
In this design the treatments are randomized separately within each set, so that
T, T, and T, T; both occur twice in each set. This leaves 5 degrees of freedom
for residual. The reader should write out examples of the three methods and
consider carefully the types of systematic variation balanced out by each.
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In experiments like this in which the degrees of ffeedom for residual are
inevitably small, it will be worth considering whether useful information about
the error standard deviation can be derived from the results of previous similar
experiments. i

(iii) Graeco-Latin Squares

The randomized block design is useful when the experimental units
are grouped in one way. The Latin square design is useful when the units
are simultaneously grouped in two ways. It is natural to consider what can
be done if the units are grouped in three (or even n{mre) ways.

Example 3.11. Consider again Example 3.5 used to illustrate the idea of a
Latin square. Suppose that the observations are madé by four observers and
that each experimental unit is to be measured by one observer. Then, unless the
absence of systematic observer differences can conﬁdehtly be assumed, which
would not be often, each observer should measure one unit of each process.

This could be done by a further application of the randomized block principle.
One unit could be selected at random from each process for observer 1, a further
set for observer 2, and so on. However, it would normally be an advantage to be
able, in the analysis, to separate out differences between observers, between days
and between times of day. Although this separation jis not essential for the
immediate purpose of comparing the processes, it may give information about
the uncontrolled variation, of value both in attaining a gi:neral understanding of
the experimental set-up and in designing future experiments.

Therefore we want to superimpose on the Latin squ‘are in Table 3.5(b) the
symbols Oy, O, Oy, O, for four observers in such a way that

(a) each observer occurs once in combination with each process;
(b) each observer measures once on each day and once at each time of day.

The second condition is satisfied if the O’s, consideredfby themselves, form a
Latin square. |
One such arrangement, after randomization, is shown in Table 3.10(a@). The

TABLE 3.10 ‘
EXPERIMENT IN A GRAECO-LATIN SQI}‘JARE

(@) Arrangement of Processes and Observers ;
Time 1 Time2 Time!3 Time 4

Day 1 P,0, P,0, P,0, P,0,
Day 2 P,0, P,0, P,0y P,0,
Day 3 P,0, P,0, P,0, P,0,
Day 4 P,0, P,0, P,0, P,0,
(b) The Same with Latin and Greek Letters i
By Da CcB ‘ Ad
cé Ap B Dy
Ax Cy Dé BB

Dg Bs Ayl Ca
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processes are arranged in the same way as in Table 3.5(b). Note that the O's
form a Latin square and that condition (a) is satisfied because, for example, O,
occurs in combination with P, just once. An arrangement like this is called a
Graeco-Latin square. The reason for this name is that it is a common convention
to rewrite the square replacing one set of symbols, say Py, . . . , Py, by Latin letters
A, B, C, D and the other set of symbols, Oy, ..., Oy by Greek letters «, 8, ¥, 6.
This has been done in Table 3.10(b); the general definition is that an n» X n
Gracco-Latin square is an arrangement of # Latin letters and # Greek lettets in an
n X nsquare in such a way that each Latin letter (and each Greek letter) occurs

- once in each row and once in each column, and that each combination of a Latin

letter and a Greek letter occurs paired just once.

The statistical analysis of the results of such an experiment is a straightforward
extension of that for a Latin square. Process, day, time of day, and observer
effects are estimated by averaging and the error standard deviation is estimated
either by analysis of variance or, equivalently, by forming and squaring the
residuals, defined as .

mean obs. on mean obs. on
observation — { corresponding | — | corresponding

process day
mean obs. on mean obs. on)\
- (corresponding — | corresponding | + 3 (overall mean).
time of day observer

The degrees of freedom for residual in an # X n square are (n — 1)(n — 3), so
that a 4 x 4 Graeco-Latin square gives only 3 degrees of freedom for residual.
This would not, by itself, lead to an adequate estimate of error and so it would,
with one replicate of this design, be necessary to have a supplementary estimate
of error.

The Graeco-Latin square, though an important design both in principle
and as a basis for constructing further designs, is not itself used very
frequently in practice. The same applies to the more complicated squares,
in which, for example, a third alphabet is placed in Table 3.10(b) in such
a way that any alphabet by itself forms a Latin square and any pair of
alphabets a Graeco-Latin square. This would be relevant if there were
four simultaneous groupings of the experimental units.

Examples of Graeco-Latin and higher-order squares for small and
moderate values of n, and instructions for their randomization, are given
in Chapter 10. Some ingenious practical applications of these squares

~ have been described by Tippett (1935).

3.5 THE NEED FOR
MORE COMPLICATED ARRANGEMENTS

The essential point of randomized block and Latin square designs is
that the experimental units are grouped into sets, the grouping being
chosen so that the uncontrolled variation within sets is as small as possible.
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It quite often happens that if this last condition is to be satisfied the
number of units in a block must be small.

Thus, if the experimental units consist of pairs of identical twins, we
are restricted to two units per block in order to make effective use of the
similarity of the twins. If we wish to make one day’s work a block in a
randomized block design, this will.set an upper limit to the number of
units in a block, depending on how many units can Ibe dealt with in a day.
In an agricultural field trial there is no such clear upper limit to the
number of plots per block, but the more plots in a} block, the greater the
area of the block and the more likely it is to contain substantial hetero-
geneity. Hence, there is again reason for limiting the number of plots per
block, and twelve to sixteen is usually regarded as a maximum satisfactory
number. ‘

Now the randomized block design has at least as imany units in a block
as there are treatments, and similarly the simple form of Latin square
has the number of rows and columns equal to the ?umber of treatments.
But what if the number of treatments exceeds the, allowable number of
units per block or exceeds the permissible number of columns in a Latin
square design? For example, suppose that we wish to use the pairs of
twins to compare five diets. We need an arrangement similar to random-
ized blocks, eliminating differences between blocké from the error, but
having fewer units per block than the number of treatments. Much of
the mathematically advanced work connected with experimental design
aims at providing designs that enable this elimination to be achieved
efficiently and simply. Some special types are !balanced incomplete
blocks, lattices, confounded arrangements, and so on. Similarly there are
designs, Youden squares, lattice squares, and quas'j-Latin squares, which
fulfil the purpose of the Latin square but have the number of rows or
columns, or both, less than the number of treatments. These will all be
described later; the point of the present discussion has been to see just
how the need for these more complicated arrangements arises.

SUMMARY

Knowledge available to the experimenter about tl}le probable nature of
the uncontrolled variation can be used to increase the precision of the

treatment comparisons. The procedures considered in this chapter are :

(@) randomized blocks, in which the units are grouped into blocks and
the treatments arranged randomly within blocks, each treatment occurring
once, or more generally the same number of times, within each block;

(b) Latin squares, in which a similar method is{ used, although with
two groupings of the experimental units. ‘

SUMMARY 47

These methods depend for their success on a skilful grouping of the
units.
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