CHAPTER 4

Use of Supplementary
Observations to Reduce Error

4.1 INTRODUCTION

The methods described in the prev1ous chapter use a qualitative grouping
of the units. For instance, even in Example 3.3, where a quantitative
measurement, body weight, is used to group exper1menta1 animals into
blocks, no use of the measurements is made once the blocks have been
formed, so that in effect only a ranking of the ammals in order of increasing
weight is used. It is natural to consider whether effective use can be
made of the actual value of weight, either in addition to, or instead of, the
grouping into blocks. ‘

We shall deal with this topic in the present chapter. It is convenient
to reserve the term concomitant observation for a supplementary observation
that may be used to increase precision. An essential condition has to be
satisfied in order that after use of the concomitant observation, estimated
treatment effects for the desired main observation shall still be obtained.
This condition is that the concomitant observatlons should be quite
unaffected by the treatments. ;

4.2 NATURE OF CONCOMITANT OBSERVATIONS

We shall, therefore, consider situations in which in addition to the
main observations, for which we want to find thel treatment effects, we
have for each experimental unit one or more concomitant observatijons.
The essential point in our assumptions about these observations is that
the value for any unit must be unaffected by the partlcular assignment of

treatments to units actually used. In practice this means that either
(@) the concomitant observations are taken before the assignment of
treatments to units is made; or
(b) the concomitant observations are made after the assignment of
treatments, but before the effect of treatments has' had time to develop.
48
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This case occurs, for example, in some agricultural field trials, and in some
laboratory experiments with animals; or

(c) we can assume from our knowledge of the nature of the concomitant
observations concerned, that they are unaffected by treatment differences.
For example in comparing a number of textile spinning processes, a main
observation might be the end breakage rate and a concomitant observa-
tion the relative humidity in the spinning shed during processing. Both
are taken during processing, after the treatments have been assigned to
units, but it is clear that the relative humidity for any particular period of
processing is unaffected by the process applied during that period, and so
this observation is a concomitant observation in our sense.

Examples of concomitant observations have already been mentioned.
Some more are the yield of product on a plot in years previous to the
experimental year (which is particularly useful in experiments on perennial
crops), the purity of the raw material in a chemical process, the weight of
a particular organ (for example, the heart) of an experimental animal
used in a biological assay, the score attained by a subject in a preiiminary
test in a psychological experiment, and so on.

43 THE USE OF A CONCOMITANT OBSERVATION
AS AN ALTERNATIVE TO BLOCKING

Consider a situation, such as that of Example 3.3, where one concomi-
tant observation on each unit is available, and suppose for simplicity that
the same number of units are to be devoted to each treatment. We have
seen in' Example 3.3 how such an observation can be used to effect a
grouping into blocks; suppose now either that the concomitant obser-
vations are of types (b) or (¢) and so are not available at the time the
treatmentsare allotted, or that it is desired to use the observations quantita-
tively in the analysis of the results instead of in the formation of blocks.

Suppose first that no alternative system of blocking suggests itself, so
that the treatments are assigned to experimental units completely
randomly. That is to say if five units are to receive treatment 7, these
are selected completely randomly from all the units available, using the
methods described in the next chapter. Five more units are selected at
random from the remainder for the second treatment, and so on. This
is in a sense the simplest and most flexible design that can be used. Its
disadvantage, if there is no concomitant observation, is that no attempt is
made to reduce the effect of uncontrolled variation.

Suppose, however, that a concomitant observation, denoted by «, is
made on each unit and that the main observation is denoted by y. Thus
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the full set of observations consists of a series of pairs (z, ¥), one pair for
each experimental unit. Thus if the experimen;t concerned alternative
chemical processes, = might be a measure of the purity of the raw material
and y the yield of product. ‘

Consider first what would happen if there were no treatment effects,
i.e., if the observation obtained in any unit did not depend on the treat-
ment applied to it. Imagine the value of y plotted against the corre-
sponding value of x. Qualitatively two things may happen. There may
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Fig. 4.1. The calculation of adjusted treatment means. (a) Plot of y
against z in the absence of true treatment effects; {(b) Corresponding
plot after imposing treatment effects. The points M are unadjusted means,
the points A4 are adjusted means, and the lines are fitted treatment lines.

be no appreciable relation between y and =, the points forming a random
scatter. In this case no useful information about y'can be obtained from
the values of . The interesting case is when the values of = and y cluster
reasonably closely around a smooth curve. It is often convenient to
assume that this curve is a straight line and we shall do this, but this
assumption is not necessary; any simple smooth curve can be dealt with
in a similar way. ﬂ

Figure 4.1(a) shows a typical case for fifteen experimental units. The
line that has been drawn through the points is known statistically as the
regression line of ¥ on « and its physical interpretation is that it gives,
corresponding to any particular value of z, an estir‘r‘late of what the mean
value of ¥ would be for a large number of experimental units similar to
those used and all having the particular value of #. A detailed method
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for the calculation of the line is described in textbooks on statistics; for
a rough estimate it is sometimes enough to divide the points into four or
five sets in order of increasing «, to find, perhaps by eye, the centroid of
each set and then to fit a line by eye to these five centroids, checking that
there is no evidence of systematic departure from linearity.

Now consider the situation when there are treatment effects. Plot a
graph corresponding to Fig. 4.1(a) but with the units receiving differeflt
treatments distinguished in some way. Figure 4.1(6) shows what will

TABLE 4.1

Frctrrious OBSERVATIONS TO ILLUSTRATE THE CALCULATION OF
ADJUSTED TREATMENT MEANS

Imaginary Imaginary
Value of » Observed Value of ¥ Observed
z before Treatment Valueof | x= before Treatment Value of
Applying Y Applying y
Treatment Treatment
1.5 5.6 T, 9.6 4.1 8.6 T, 12.6
2.2 7.8 T, 4.8 4.6 9.2 T, 6.2
2.2 7.3 T, 11.3 5.5 10.5 Ty 7.5
2.7 8.6 T, 8.6 5.6 8.9 T, 8.9
2.9 6.3 T, 10.3 6.4 11.6 T, 11.6
3.5 8.6 Ty 5.6 6.6 9.8 T, 6.8
3.8 7.2 T, 7.2 6.8 11.5 T, 11.5
4.1 8.5 T, 12.5
Unadjusted Treatment Adjusted Treatment
Means Means
T, 11.26 12.20
T, 9.56 8.87
T, 6.18 5.94

result; the data on which this figure is based have been constructed from
Fig. 4.1(a) by adding +4 to the y values of the five units selected at
random for the treatment 7T;, leaving five more unchanged for T, and
adding —3 to the remaining units considered to have received Tj; the
data themselves are given in full in Table 4.1.

What can we say in general about the form of the graph corresponding
to Fig. 4.1(6)? First we expect to find that so far as the values of «
are concerned, there are no systematic differences between treatments;
for example we would have been surprised to find that the five units with
lowest values of « all received 7. This is because of our initial assump-
tion that x is a concomitant variable and because the treatments were
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assigned to units randomly. If inspection of the results suggests that

there are nevertheless systematic variations in z between treatments,

there are three possible explanations;

(i) the effect is a chance one. Whether or not this is likely to be so
can be assessed by a statistical significance test; '

(ii) our belief that the allotment of treatments to units is random may
be false. Now if the methods of objective randomization described in
the next chapter have been used, this possibility can be disregarded, but
it may happen that for some reason of convenience, or by an oversight,
the assignment of treatments has been left systematic or determined
subjectively by some procedure other than strict randomization. In such
a case the assignment of treatments could be correlated with z.

(iii) in the case of concomitant measurements ci)f type (b) and (¢), our
assumption that = is unaffected by treatments rhay be false, i.e., the
variations in « may represent a genuine treatment effect.

|

In certain applications (ii) or (iii), or both, cah‘ be ruled out. If the
significance test indicates that it is very unlikely that the = differences are
chance ones and (ii) is the only possible explanation, we may proceed
with the methods to be described below, although‘f‘ the possibility should
not be overlooked that correlation with z is not the only peculiarity in
the allocation of treatments to units. However, if (iii) is a possibility,
the methods must not be used in order to estimate the simple treatment
effects of y; this case will be discussed in Examplei 4.6. '

To sum up the discussion of this first point, we| normally expect there
to be no systematic differences between treatments in the values of =,
but in certain cases it is all right to go ahead cautjously even if there are
such differences. J

The second general point follows from the basic ?ssumption of Chapter
2 that the treatment effects are represented by the'addition of constants.
Therefore if, in the absence of treatment effects, yve have a reasonably
linear set of values such as Fig. 4.1(a), we shall find that the points for
each treatment tend to cluster around a line and. that the lines for the
different treatments are parallel. This has happened in Fig. 4.1(b) and
it will be clear why this is from the way the values, for this diagram have
been constructed in Table 4.1. i

Therefore if the graph corresponding to Fig. 14.1(b) shows definite
evidence of nonparallelism, the fundamental assumption about the treat-
ment constants must be false. An apparent nonparallelism may arise
from random fluctuations, i.e., from chance properties of the particular
arrangement of treatments actually used, and the statistical significance of
the nonparallelism can be tested by standard statistical methods. If real
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nonparallelism is established beyond reasonable doubt, it would usually be
required to estimate the treatment effects separately for a number of
values of z. Alternatively if the nonconstancy can be removed by a
simple transformation of ¥, for example, to log ¥ or to y/z, this would be
done. These points will not be gone into in detail here, since they
concern the analysis rather than the design of the experiment; the general

effect on the interpretation of the experiment has already been discussed

in §§2.2, 2.3 and will be mentioned again below. The main implication
for experimental design is that if the treatment effects are suspected to
vary systematically from unit to unit, it will be wise to record the values
of suitable supplementary observations, in order that the variations in
treatment effect may be detected and explained.

If the true treatment effects are constant but the initial values,; in the
absence of treatment effects, tend to cluster not around a line but around
a curve, the final graph corresponding to Fig. 4.1(b) will consist of a
series of paraIlel curves, one for each treatment. The nonlinearity makes
no difference in principle to the argument, but complicates the procedure.
It is therefore desirable to make the relation effectively linear if this can
be done easily. The method is to use a transformed concomitant variable,
such as log z, 1/z, 4/, etc., selected after an initial graphical analysis in
terms of the original variable, x. 'We shall not go into details.

To sum up, we usually expect to find that there are no systematic
differences between treatments in the values of z, and that the points for
different treatments lie along parallel lines (or curves). We can now see
how to use the diagram to obtain improved estimates of the treatment
effects. Fit parallel lines to the sets of points and call these treatment
lines. Take any convenient value of , say the overall mean value of z,
and find the corresponding value of y on each treatment line. Call these
values the adjusted treatment means. Then the differences among these
quantities are estimates of the true treatment effects, This process can
sometimes be done adequately by purely graphical methods, but if an
objective answer is required, or if the standard error of the adjusted
values is wanted, the whole procedure should be done arithmetically
by the statistical technique called analysis of covariance (Goulden, 1952,
p- 153). Again the details of this need not concern us; it is simply a
question of fitting the parallel lines (or curves) arithmetically by statisti-
cally efficient methods,* rather than graphically.

The reason why the adjusted treatment means give a better estimate
of the treatment effects than the uncorrected treatment means can be
seen by thinking about the results for 7} and T, in the numerical example.

* Some complications will arise if the scatter of  about the fitted line or curve varies
appreciably with z. ’
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By chance 7; has been tested on units with on the whole lower values of
z than those for T,, and this means that the uncbrrected mean M, of
observations on T, will tend to be low. The adj uste(# value of 4;, obtained
by sliding along the treatment line, is in effect an,estimate of what the
treatment mean for 7; would have been had the units for 7 had average
values of z. The comparison of the adjusted treatment means for T,
and T, therefore corrects the error arising from the differing values of
. Note that in fact the differences among the adjusted means are nearer
the “true” values 4, 3 than are the corresponding differences for the
unadjusted means.

The precision of comparisons based on adjus"fed treatment means
depends on the standard deviation of y about the regression line, i.e.,
roughly speaking, on the standard deviation that y would have over a set
of units all with the same value of z, treatment effects being absent. The
formula for the standard error of the difference between two adjusted
treatment means is complicated by the fact that the adjustments them-
selves have error, due to random error in estimating the slope of the
regression line. This results in the standard erroq not being the same
for all pairs of treatments. However for quick comparison the following
approximate formula may be used, provided that there are no systematic
differences between treatments in the value of and that there are the
same number of observations on each treatment;

standard error of standard deviation

difference between two | = | about regression
\ adjusted means line ‘
2 1.
no. of obs. per x [+ no. of ( no. of obs. 1) . (D)
treatment treatments per treatment

This should be compared with the formula (1) of §“‘ 1.2, namely that the

standard error in an experiment not involving correction for a concomitant
variable is equal to :
! 2

)- @

standard deviation x A/ ( ,
no. of obs. per treatment

The factor in the second square root in formula (1) is the contribution
arising from the error in the slope of the fitted treatment lines.

There are several consequences of (1) and (2). First, if there is really
no relation between y and =, the two standard devi‘ations in (1) and (2)
are equal, so that the precision is lower after adjustment. This is because
for nearly every particular arrangement of treatments there will be some

apparent dependence of y on z, so that a nonzero' adjustment will be
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applied. This is an additional random term, inflating the error. How-

ever, if the number of units is large the quantity under the second square

root in (1) will not be much greater than unity and the additional error

is unlikely to be appreciable. . The second, and more important, con-

sequence is that, provided that this second square root can be ignored,

the ratio of the standard error with and without adjustment for z is
standard deviation of y about regression line

R, = o , (3)
overall standard deviation of ¥

both true standard deviations being calculated in the absence of treatment
effects. The ratio R, is a measure of the degree of relation between y
and x. Readers familiar with the definition and meaning of the popu-
lation correlation coefficient r may note that R, = 4/(1 — r2). To give
a rough picture of the strength of relation between y and = that will lead
to a given value of the ratio R, Fig. 4.2 shows a number of scatter diagrams
of y and « together with the corresponding values of the ratio. For
example if, in the absence of treatment effects, ¥ and = are related as in
Fig. 4.2(c), the use of x as a concomitant variable would halve the standard
error and thus be equivalent to a fourfold increase in the number of units.

4.4 ALTERNATIVE PROCEDURES

The procedure just given uses only the observations from the experiment
and does not depend on assuming a completely specified relation between
y and z; the relation is in fact estimated from the data and is not regarded
as known a priori. All that we assume is that the relation is approxi-
mately linear. - The disadvantage of the method is that it can be rather
tedious to apply.

A simpler method, and one that in special cases is often used implicitly,
is the construction of a suitable index of response, i.e., a combination of
y and z which is treated as a new observation for analysis as a single
quantity. This method is frequently used when the concomitant observa-
tion is of the same nature as the main observation, differing from it in
being taken before the treatments are applied. Thus z may be the initial
score in a spelling test, or the initial weight of an animal, ¥ being the
score or weight after treatment. An index of response widely used in
such cases is y — =z, the improvement or increase during test, a comparison
of treatments being made in terms of this, the separate values of ¥ and =
being ignored.

It can be seen that if the slope of the treatment lines, fitted by the
method of § 4.3, happens to be exactly unity, the index of response and
the method of adjustments give identical estimates of the treatment
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effects. In other words the decision to use a simple analysis ot" the
differences, ¥ — x, amounts to assuming a ﬁPecial for.rn for the .res1dua1
relation between y and z, whereas the metl‘}od of ad].ustmenys in effect
finds in an objective way from the data, the most suitable linear com-

bination of ¥ and # for analysis.
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Fig. 4.2. Scatter diagrams to illustrate various" ratios R, and correlations r.

(@) R, =09, r = 0.44 (b) R, = 0.8, r = 0.60

(¢) R, = 0.5, r =0.87 @R =02,r= 0.98
Quite generally, whenever theory or pri‘;or knowledge suggest a par-
ticular relation between yandz, an alternative to the method of ad]ustr_nents
is to assume that the relation is approximately true and to ma:ke a simple
analysis of y — kx, where k is the expected slope of the rellatlon between
y and z (see Example 4.4 in the next section). In the previous paragraph
k is taken to be unity. . The objection is oJf course that if th.e value of &
chosen is seriously different from the truel slopfa, an appreciable loss of
precision will result. The uncritical use of indices of response was
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criticized on these grounds by Fisher (1951, p. 161), who introduced the
method of adjustment of § 4.3.

Gourlay (1953) and Cox (1957) have investigated how close k need be
to the true slope in order to avoid a sérious loss of information. Table
4.2, taken from the second of these papers, sums up the conclusions.

TABLE 4.2
Loss oF PRECISION FROM USING WRONG INDEX OF RESPONSE

] Range within which Ratio of True to Assumed
Correlation  glope must Lie to Avoid a Loss of Precision

between of
yand z
109, 20% 50%

0.4 (0.28,0.72) (—0.02,2.02) (-0.62, 2.62)
0.6 (0.68,1.32) ( 0.40,1.60) ( 0.06, 1.94)
0.8 0.76,1.24) ( 0.67,1.33) ( 0.47, 1.53)
0.9 (0.82,1.18) ( 0.74,1.26) ( 0.59, 1.41)
0.95 (0.90,1.10) ( 0.85,1.15) ( 0.77,1.23)

A Joss of precision of say 50 per cent means here that the standard error with
the assumed slope is 4/1.5 times what it would have been with the correct slope.

For example, suppose that the correlation ‘between main and concomi-
tant observations is 0.8; see equation (3) and Fig. 4.2 for an explanation
of what this means. Then the loss of precision arising from using the
wrong index of response is less than 20 per cent provided that the assumed
slope k is not less than 0.7 times or more than 1.3 times the true slope;
a precise definition of loss of precision is given in the footnote to the
table. A reasonable general conclusion from the table is that the index
of response does not have to be too close to the best one to give quite good
results.

It is not possible to give a general rule about when to use an index of
response rather than the method of adjustments. For the decision rests
on, for example, the importance of saving time in analysis, the strength
of belief in the assumed relation, and the importance of objectivity in
the answer. However, if a number of similar experiments have to be
analyzed, a sensible thing may be to analyze one or two experiments by
the lengthier method before deciding what to do with the whole series.
In any case a quick graphical analysis of all or part of the data will often
show whether the assumed value of & is a reasonable one and whether the
treatment effects appear to be independent of #, i.e., whether the treatment
lines are parallel.
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When the concomitant variable is avajlable before the treatments are
assigned to the experimental units the method used in Example 3.3 is a
further alternative; that is, the units can be gq\ouped in rando'mized
blpcks on the basis of the values of z, putting in one block those units
with the lowest values of z, etc. If there js a ﬁearly perfect relation
between y and z, with negligible random scatter, éhe use of adjustments
based on z will give nearly zero random errors, w}hereas the randomized
bl‘ocl.c design will give appreciable error arising from thé"dispersion of x
Vi./lthlr‘l blocks. However this is an extreme case and in many practical
situations the randomized block method is adequa‘te unless there are one
or two very extreme values of z, or the number of: units per treatment is
small, or the correlation between the two variables is high, say 0.8 or more
The randor.nized block approach is of course simpler in analysis since ié
does not involve the calculation of adjustments\. Some quantitaﬁve
comparisons of blocking and adjustment have been given by Cox (1957)

The most profitable uses of the adjustment method are likely to be.
when there is no known index of response and when ’

(fz) the value of z is not available until after the itreatments have been
assigned to the units; or ;

Eb)) the relation between y and « is of intrinsic interest; or

¢) it is important to examine whether the treatn ’ i

reatment effec

the value of #; or : _tS v

(d) it is desired to block the experimental units on the basis of some
other property, so that the information contained in « has to be used in
another way. We consider this in the next section.’

45 THE USE OF A CONCOMITANT OhSERVATION

IN ADDITION TO BLOCKING

In .§ 4.3 we described a method for adjusting thel treatment means to
Fake into account a concomitant variable z, it being assumed that there
1S o grouping of the experimental units into blocks. Suppose now that
tbe.umts are arranged in a randomized block, Latin square, or other
smnl.ar design and that it is required to make an aéjustment ,for a con-
comitant variable. Then the assumptions and geneﬁal method discussed

in §4.3 above apply, with the single change that instead of plotting the -

observations o_f ¥ directly against those of z, we plot a partial residual
valufe of ¥ against a corresponding partial residual vajue of z. These
partlall residuals differ slightly from the residuals deﬁned in §§ 3.'3 3.4in
that, in order to get a more meaningful graph, the ireatment me;ns. are
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not to be subtracted. For example in a randomized block experiment,
the partial residual corresponding to a particular observation y is

mean observation

observation — on the R 4)
corresponding block '

whereas for a Latin square the partial residual is

mean observation mean observation
. on the ) on the overall
observation — . - . .
corresponding corresponding mean
row column
O]

The general idea is that before plotting, variation in ¥ and = accounted
for by the grouping of the experimental units should be removed.
The procedure is best explained in detail by an example.

Example 4.1. Pearce (1953, p. 113) has illustrated the statistical technique for
calculating adjustments in a randomized block experiment. His data are
reproduced in Table 4.3. The main observation, y, is the yield in pounds of
apples over a four-year experimental period and the concomitant observation, ,
is the yield in bushels in the preceding four-year period, during which no-differing
treatments were applied to the trees.  Thus z is a proper concomitant observation
of type (@). The six treatments under comparison are denoted by T,..., T
and the observations in the table have been set out ordered by treatments,
rather than randomly.

The first step in the analysis is to work out the mean values of ¥ and of « by
treatments and by blocks (the first part of Table 4.3(5)). The adjusted treatment
means can be obtained directly by analysis of covariance without the calculation
of partial residuals, but to do the adjustment semigraphically -and to obtain a
general understanding of what is being done, we proceed as follows.

The partial residuals dehoted by Y and X are set out in Table 4.3(c), and have
been calculated from equation (4). Thus for the observation y on T in block I11,
the partial residual is 243 — 268.7 = —25.7, since the mean of all observations,
y, in block III is 268.7. Figure 4.3 shows the corresponding partial residuals

Yand X plotted against one another for each treatment; this figure is analogous
to Fig. 4.1(b). Inspection of the graph shows that within any one treatment
there is a strong effectively linear relation between the values of ¥ and X and
that the lines for each treatment are substantially parallel. Thus there is no
evidence that the true treatment effects depend on z; a line for one treatment
rising steeply from a relatively low value of Y for-negative X to a relatively high
value of Y for positive X would have suggested that the corresponding treatment
was relatively good for “‘good” trees with a high initial yield and relatively bad
for “poor’’ trees with a low initial yield. In the absence of such effects, we may fit
parallel treatment lines. The slope as estimated graphically is about 30 units,
that is an increase of 30 in Y for unit increase in X. The slope calculated from
the analysis of covariance is 28.4 and this value has been used in what follows.

Treatment lines are drawn with this slope for the points corresponding to each
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, TABLE 4.3

THE CALCULATIONS OF AD,TUSTMENTS IN A RANDOMIZED Brock EXPERIMENT
(a) The Data :
Block I o - oI v

Yy z K z Yy @ Yy z
T, 287 82 290 94 254 77 307 85
T, 271 82 200 60 243 91 348 101
T, 234 68 20 70 286 97 371 99
T, 189 57 205 55 312 1o, 375 103
Ty 210 6.1 276 7.0 219 87 344 81
Te 222 76 301 100 238 90 357 105

(b) Some Mean Values
() by blocks i
I 268.7 907

I 2355710 II 248.5 7.50 IV 350.3 9.57
(ii) by treatments |
Mean . —
Mean Mean Overall Adjusted
Yy @ Mean Adjustm#nt* Mean

T, 284.5 8.45 0.14 —3.98 280.5

T, 267.8 8.35 0.04 —1.14 266.7

T, 275.2 8.35 0.04 —1.14 274.1

T, 270.2 7.92 —0.39 11.08 281.3

Ts 2712 7.48 ~0.83 2357 300.8

y 279.5 9.30 0.99 —28.12 251.4
Overall  275.75 8.31

(¢) The Partial Residuals
Block I i m v
Y ' Y ' Y ' Y X
T, 515 L1 415 1.9  —147 —14 —433 -—1.1
T, 355 L1 =395 —15 257 00 -23 05
T, -1.5 —03 —385 —05 173 06 207 03
T, —465 ~14 —435 —20 $B3 1 4.7 07
T, =255 —10 27.5 -0.5 103 —0'4 —63 —1.5
Tg —135 05 525 26 -307 —01 67 09
|

(d). Some Estimates of Precision

The estimated standard error of the difference betwken two uncorrected
treatme'nt means is 28. The estimated standard error of the difference between
two adjusted treatment means depends slightly on whichﬁpair of treatments is

being compared; an average value is 12, [

* The adjustment is equal to minus the slope (28.4);! times the preceding
column. :

v

i
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treatment. The position of each line is chosen so that it passes through the
centroid of the appropriate points. Thus, for Ty the mean values of z and v are
9.30 and 279.5. Therefore, in terms of residuals the mean point for Tq has X
equal to 9.30 — 8.31 = 0.99 and Y equal to 279.5 — 275.75 = 3.75, and this is
the point My in Fig. 4.3. To avoid complicating the figure unduly, the treatment
lines are shown only for Ty and Tg. The difference between the Y values for the
centroids M and Mj is just the difference between the unadjusted treatment
means, Table 4.3(b), column 1.

Y //' °
. /o .
40| /
Ag // N /
/
A \;/ ° /
20~ VA /
A/ ’ / M,
" Ve I:‘/4// 6
0 \y /
— / + a /
a // ‘
.// /ﬁ] Tl:o
-20 - / / Tyie
A ﬁ/ T3:+
}/*\As Ty:0
Te:a
-0 &, +// T::D
| | | i
-2 -1 0 1 2 x

Fig. 4.3. Adjusted means in a randomized block experiment.

To find the adjusted estimates we take a standard value of X, say zero, in Fig.
4.3 and read off, or calculate, the corresponding values of ¥ on the treatment lines.
These correspond to the points 45 and 4, in the figure; when the overall mean
value of y, 275.75, is added to the Y values, we obtain the adjusted treatment
means in the last column of Table 4.3(5). Thus the Y value for 44is about —28,
agreeing with the value in the last column but one of the table. An arithmetical
method for obtaining the adjustments is indicated in the table.

The common-sense justification of this procedure is exactly the same as that
for the simple example in § 4.3. The only new point is the elimination of block
differences prior to the plotting of the scatter diagram. The reasonableness of
this step can be seen by considering that it should be possible to superimpose on
the data arbitrary block effects for both = and ¥ without affecting the conclusions.
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The main effect of the adjustments has been on the treatments Ts and T,.
The treatr.ne:r}t TG., for example, was applied to trees haying on the whole high
values of initial yield, so that the adjustment to v has lowered the yield. Some
Slft;)?aie;(;); prgmﬁlon obtained from the full statistical analysis are given in

able 4. and show that the use of = has apparently appreciably i
precision of the experiment. PP d ppreca®y mereased the

The description of this example in terms of graphical méthods is, of course, not
to.be talgen as an_1mp11ed criticism of the usefulness or appropriateness of the
arithmetical technique of analysis of covariance. 3 ‘

Quite generally, in an experiment in which the concomitant observation
z is available before the allocation of treatments to units, it would be
possible to group the units into blocks on the basis of # and in addition
to apply adjustments to remove the effect of variations in « not accounted
for in the blocking. It would, however, very rarelyf‘ be worth doing this
solely for the purpose of increasing precision. The main value of the
method of adjustments is when = represents some pfoperty of the experi-
mental unit not directly connected with that used in grouping the units
into blocks, or into the rows and columns of a Latin square.

4.6 SOME GENERAL POINTS

The following c?xamples serve both to illustrate; applications of the
method and to bring out points of general interest connected with con-
comitant variables.

_Example 4.2. In experiments on spinning textile yarn, it is sometimes
difficult to ensure that each batch of yarn spun has the same mean weight per unit
ler.lgtl_l. X_’et one of the observations of most interest, the end-breakage rate in
spinning, is quite critically dependent on the weight per unit length. Therefore it
Is natural to take the weight per unit length as a concomitant variable in an
analysis of the type just described. Randomized block o#' Latin square designs
are frequently useful to control systematic differences between machines, times
etc. This is an example of the use of a concomitant variable of type (c)’(§ 4.2),
n ghat the estimate of mean weight per unit length does!not become available’
until after the completion of spinning. However, differences in mean weight
per unit leng!th are accidental in the sense that they could: have been eliminated
by minor adjustment of the machinery had sufficient initial information been
available. Hepce there is no sense in which treatments f‘cause” differences in
yarn mean yvelght per unit length, so that use of this qhantity as a basis for
adjustment is in order. ‘ '

This example illustrates the use of adjustments to correct for failure to control
completely the experimental conditions, :

Example 4.3, .Pearce (1953, p. 34) has given an excellen“t account of the use of
concomitant variables for adjustment in experiments on!fruit trees and other
perennial crops. He points out that when an experimental unit consists of one
tree or bush, Positional variations, which can conveniently be controlled by
blocking, are likely to be relatively less important than in experiments on, say,
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wheat, in which each unit contains at least several thousand plants and in which
individual differences are therefore likely to balance out. Consequently in the
experiments Pearce is describing, it is worthwhile not only to control positional
effects by blocking, but also to obtain concomitant variables for eliminating,
as far as possible, the effect of variations arising from the peculiarities of indivi-
dual trees. He lists suitable concomitant observations for various crops.

It would be possible, although inconvenient, to use these observations as a
basis for blocking, following the method of Example 3.3. This would, however,
mean that blocks would not be formed from adjacent units and this would make
spatial variations more difficult to control, as well as probably making the
experimental work more difficult to organize.

The general conclusion to be drawn from this example is that the use of
concomitant observations is especially worth consideration whenever a major
portion of the uncontrolled variation is associated with the particular objects,
animals, plants, people, etc. forming the experimental units, rather tiian with the
“external’’ conditions under which the experiment is carried out.* On the other
hand variation associated with “external” conditions (observer, time, spatial, etc.
differences) is often most conveniently controlled by the randomized block or
Latin square devices. Experimental psychology and education are two fields
where these remarks are particularly relevant, since in them a major source of
uncontrolled variation lies in differences between subjects.

Example 4.4. Finney (1952, p. 45) has discussed an experiment of Chen et al.
(1942) relating to the-assay of digitalis-like principles in ouabain and other
cardiac substances. The method was to infuse slowly a suitable dilution of drug
into an anaesthetized cat and to record the dose at which death occurred.
Twelve drugs were under comparison, ouabain being taken as a standard.. There
were three observers each testing four cats per day and the experiment was
repeated on twelve days. A 12 x 12 Latin square was used with each column
representing a day’s work and each row a combination of observer and time of
-day. The details of this are not relevant to the discussion of adjustments, but
the reader not too familiar with the use of Latin squares should think over this
use of the design, consulting the above references if necessary.

The concomitant observation was the heart weight of the cat, determined, of
course, at the end of each test, therefore being a concomitant variable of type (c).
There were sound redsons for regarding the heart weight as unaffected by drug
differences. Finney discusses the use of a second concomitant observation,
the body weight, but we shall disregard this here. Notice how this use of the
Latin square and a concomitant variable fits in with the general remarks at the
end of Example 4.3.

There were physiological reasons for expecting the fatal dose of a particular
drug to be proportional to the surface area of the cat’s heart, which in turn is
roughly proportional to the two-thirds power of heart weight. This power-law
dependency is converted into a linear relation by working with logarithms,
namely

log (fatal dose) = % log (heart weight) + constant. 6)

* Another method of controlling such variations is to use each object as a unit
several times (Chapter 13). However, this may, as in the present example, be impossible
from the nature of the experiment, and in other cases may lead to troublesome
“interference” effects between different units.
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Even if this relation does not hold exactly, it seems more reasonable to expect an

approximately linear relation between logarithms than bet}veen original observa-
tions. Also, as we have seen in Example 2.1, it is natural to consider drug

differences as affecting doses multiplicatively (c.g., one drug always requiring a
109, greater dose than a second drug would have on tﬁe same cat) and thus

affecting log dose additively. Hence there are two reasons for converting the
observations of dose and heart weight into logarithms. When this was done the
fitted slope for the relation of log dose on log heart weight lcame to 0.676, in close
agreement with the theoretical value of §; hence the use of an index of response
(84.4) log (dose) — % log (heart weight) would have given ;éxcellent results.

This example illustrates the point that we should consider whether there is
any prior reasoning to suggest the general form of the relation between the main
observation and the concomitant observation, and exemplifies also that the
relation between the two may be of some intrinsic interest.

Another general question, of analysis rather than 'of design, raised by
the previous example concerns the desirability of transforming the obser-
vations mathematically, for example by taking logarith‘)ms, before analysis.
This brings up some difficult issues. The concomitant variable = does
not enter into the definition of what we are trying to estimate, namely the
comparison of doses, and it is sometimes very helpful to transform z
in order to get a linear relation between the variables. When we apply
a mathematical transformation to the main observation, however, we are,
if we work with means of transformed quantities, estimating differences
between treatments on the transformed scale, not on the original scale.

In the example, the transformation to log dosé is suggested both
because ratios of doses provide the natural measure of relative potency
and also because the theoretical relation between main and concomitant
observations is simplified thereby. Things are not always so easy. If
there is a definite reason for regarding treatment differences in terms of
an observational scale z as particularly meaningful and for expecting
treatment differences to be constant on this scale, then it seems wrong
to estimate treatment effects on some other scale such as log # just for
reasons of statistical or arithmetical convenience. In many applications,
however, there may be no particular reason to expect that the scale on
which the main observation is recorded is the one most helpful for analysis
and interpretation of the results. ‘

Common transformations usually affect the results materially only if
the total fractional variation of results around the average is very appreci-
able, representing say a twofold variation or more.

Example 4.5. In all our examples so far the concomitant variable = has been a
quantitative measurement. We can, however, sometimes usefully employ a
“dummy” variable = to represent a qualitative division of the units into two
classes. Thus, in an experiment with animals, a ra.ndomi’z‘éd block design might
be used, taking all the animals in any one block from a single litter. In general,
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however, it would not be possible in doing this to ensure that all the animals in
one block are of the same sex. The problem may therefore arise of adjusting the
treatment means for the effect of any systematic difference between sexes, since
in general each treatment will not occur equally frequently on males and females.
To achieve this adjustment, introduce a concomitant variable taking the value 0
for males and 1 for females. Then the adjusted treatment means, calculated by
the procedure of § 4.3, give the estimated treatment effects corrected for variation
in the sex-ratio between treatment groups.

It might also be interesting in this application to examine whether the treatment
effects for males are different from those for females, and this too can be done by
an extension of the above procedure. Other groupings of the experimental units
into two* sets not controlled in the blocking can be handled in the same way,
provided of course, that the condition for a concomitant variable is satisfied,
L.e., that the concomitant variable is unaffected by the treatments.

Throughout the discussion of adjustments it has been assumed that =
is a concomitant variable, i.e., that the value of z for any unit is unaffected
by the treatment applied to that unit. A further important aspect of
the method is the examination of whether the treatment effects are constant.
This is done, as explained in § 4.3, by looking for nonparallelism in the
treatment lines or curves. We now consider a different type of application
in which z is not a concomitant variable.

Example 4.6. The following example is suggested by Gourlay (1953) in his
discussion of the analysis of covariance applied to psychological research. To
compare a number of methods of teaching composition, the methods are
assigned randomly to a number of experimental groups, with several groups for
each treatment. After an appropriate time, scores are obtained for each group
to measure (a) ability in composition and (b) knowledge of the mechanical
aspects of English. Call these two scores ¥ and =.

Then = is certainly not a concomitant variable, since it is quite likely to be
influenced by methods of teaching composition. If, however, we go ahead with
the method of adjustments, we are answering the question: what would the mean
values of ¥ have been had there been no differencesin ? In other words we are
asking whether any differences in ability in composition can be accounted for in
terms of the effect of teaching on a knowledge of the mechanical aspects of
English.

I§igure 4.4 shows four cases that could arise with two treatments in a completely
randomized experiment. In Fig. 4.4(a) differences between treatments in y are
clearly not accounted for by differences in=. We may, in terms of the particular
example, conclude that the treatment T, has improved ability in composition
and that the improvement is not wholly accounted for by improvements in
the knowledge of mechanical aspects of English. In Fig. 4.4(b) the difference
between treatments in y is less than would be expected on the basis of the increase
inz. InFig. 4.4(c) differences in = account for the differences iny. InFig. 4.4(d)
the interpretation is in doubt because, although the fitting of treatment lines might
suggest unaccounted differences in y the data are also reasonably consistent with

* Groupings into, say, three or four sets can be handled reasonably easily by the
methods for several concomitant variables, to be described in § 4.6.
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a single smooth curve. -Similar difficulties are likely to arise whenever there are
large differences in =, so that substantial extrapolation is involved. In practice,
statistical analysis would usually be desirable to examine the precision of the
conclusions suggested by the diagrams. P

It should be noted that we talk about differences in y being “accounted. for”
by differencesinz. Thatthis is the right thing is best seen/from the consideration
that « and y are variables of the same nature and that, from a statistical point
of view, any arguments that purported to show that differences in z caused
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Fig. 4.4. Some possible types of relation between y and = when
there are two treatments T;, x; T,, O.

differences in y would equally prove that differences in y caused differences in z.
If we were to conclude that differences in = cause differences in v, this could only
be because of hypotheses about the nature of the variables = and y extraneous to
the experimental results themselves. Such hypotheses may be perfectly in order,
but the scientist should always be aware when they are being appealed to.

This application, when = is not a concomitant variable, is clearly quite
different from the use of a concomitant variable to increase the precision
of treatment comparisons. The types of variable that are legitimate for
increasing precision have been set out in § 4.2 and it is important to make
sure in using the method that the conditions given there are satisfied.
In particular it is in principle quite wrong to use as a concomitant variable
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a quantity z which there is no strong prior reason to regard as unaffected
by treatments, but which has happened, in the particular experiment, to
show nonsignificant treatment effects.

4.7 SEVERAL CONCOMITANT VARIABLES

It may happen that instecad of one concomitant observation on each
experimental unit there are several, that we think that they all give useful
information about the main-observation  and that we therefore wish to
use them all to adjust the estimated treatment effects for y. For example,
in an animal experiment we may have for each animal the initial weight
and also other measurements that are considered important. In a
psychological experiment we may have for each subject initial scores in
several tests and other measurements on the subject relevant to the
performance of the experimental task. In an industrial experiment we
may have several different measurements on each batch of raw materials.
We shall assume that all these observations are genuine concomitant
observations. :

A simple way of dealing with this problem is to combine the concomitant
observations into one. Thus, if we had percentage scores in several tests,
we could take the total score in all tests as a single concomitant variable.
Similarly, if the concomitant variables z,, z,, . .., z;are not commen-
surable, we could construct a combination of them by some intuitively
reasonable process. Thus, if s, 8y, . . ., 5, are the standard deviations of
%y, Ty, . . ., &, measuring the variation between units and if wy, w,, ..., W,
are rough measures* of the probable importance of =z, z,, ..., z; we
could take a new preliminary variable w,2,/s; + woZo/Ss + . . . + Wz /5,.
If we are fortunate enough to have previous data linking y to =, . . . , =,
the best regression formula for predicting ¥ from =, . . ., z, gives a good
single variable. .

These methods are useful but are, except for the last one, open to
obvious drawbacks. We may, by using an inappropriate single variable,
sacrifice a lot of information; if we make a really bad choice we may do
worse than using just one of the original variables. Also we lose objec-
tivity in that there is no guarantee that another worker, faced with the
same experimental data, even though asking the same questions, would
not have reached somewhat different conclusions. This is not always
important.

If we decide to use all the concomitant observations, without prior
combination into a single quantity, the appropriate numerical technique,

*If 2y, @,, . . ., @, represent roughly independent properties of the experimental units,

we should take w, proportional to the correlation coefficient we expect to find between
y and z,, etc.
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multiple analysis of covariance, is a direct extension of the corresponding
technique with one concomitant variable. The general interpretation of
what is being done is the same too. Thus, with two cbncomitant variables
), 5, we are effectively plotting a three-dimensional diagram of y against
x, and ,, separately for each treatment, and then fitting parallel treatment
planes to each set of points. The values of y at-some standard values of
z, and z, give the adjusted treatment means. The same idea applies
when there are three or more preliminary variables, although more than
three dimensions are required to visualize the procedure geometrically.

We shall not go into details of the numerical method here, but it
should be noted that the arithmetic, while straightforward, gets rapidly
more laborious as the number of concomitant variables is increased.
For this reason the method is not recommended as a routine tool, although
there is no doubt that it is on occasion valuable ar‘gd is worth knowing
about. It would be possible to find the adjustments. semigraphically,
but the procedure is rather involved and not of rnuch interest. The
numerical calculations when we use a single concomitant variable, but fit
treatment curves instead of lines, are very similar to those with several
variables. This method of increasing precision by adjustment for several
concomitant variables suffers from the general disadvantage that the gain
is obtained by indirect calculation, i.e., by obtaining quantities that are
comparatively remote from the original observatrons

Sometimes, it may be required to use two or more concomitant obser-
vations in order to group the units into blocks, just as the single con-
comitant observation, body weight, was used in Example 3.3. If we
have, from previous work, a regression formula for the main observation
in terms of the concomitant observations there is no difficulty. If we
have no such prior quantitative information, a sensible procedure with
two variables x, and , is the following. Plot a scatter diagram of z,
against z, choosing a scale such that the dispersions i in the two directions
are approximately equal. Thus, with sixteen experrmental units we should
have a diagram with sixteen points, one for each umt To group into
four .blocks of four units each, we take that d1v1s10n which makes each
block of four points as compact as possible in the scatter diagram; if x,
is thought to be a better variable than =,, we pay more attention to dis-
persion parallel to the #,; axis than to that parallel to the z, axis. Various
ways of introducing a third variable, z,, will occur to the reader.

SUMMARY |

A concomitant observation is one whose value for any experimental unit

is independent of the arrangement of the treatments under comparison.
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Suppose that there is available on each unit a concomitant observation
in addition to the main observation in terms of which it is required to
compare the treatments.

The concomitant observations can be used to increase the precision of
the treatment comparisons, provided that the concomitant and main
observations on a unit would have been closely correlated in the absence
of treatment effects. One method, which is essentially the statistical
technique called analysis of covariance, is to obtain from the data adjust-
ments that should be applied to the treatment means, in order to estimate
what main observations would have been obtained had it been possible
to make the concomitant variable the same for all experimental units.
A second, simpler but usually less efficient, method is to analyze the data
in terms of a suitable index of response formed by combining the main
and the concomitant observations on a unit into a single quantity.

The skilful choice of concomitant observations can lead to an appreci-
able increase in precision, particularly when the main uncontrolled
variation arises from the peculiarities of 1nd1v1dual experimental units
(animals, subjects, etc.).

A further important use of the concomitant observations is in the
detection and explanation of variations in treatment effect from unit to
unit.
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