CHAPTER 5
Randomization

5.1 INTRODUCTION

In Chapter 3 designs called randomized blocks: and Latin squares
were introduced. Their object is to increase precision. In both cases
some constraint was introduced into the allocation of treatments, for
example by requiring each treatment to occur once in each block of the
randomized block design. Subject to the constraint we said that the
arrangement of treatments is to be randomized and we now must consider
this process of randomization in detail.

The discussion falls into three main parts deahng with the practical
details of carrying out the randomization, with the justification of the
procedure and with various detailed points that occasionally arise in
applications.

\
5.2 THE MECHANICS OF RAWOWZATION

The basic operation is that of arranging in “random order” a series of
numbered objects. In the more complicated designs this process has to
be applied several times, but we shall begin with the sﬁnple cases. One of
the essential features of randomization is that it should be an objective
impersonal procedure; to arrange things in random order does no? mean
just to manipulate them into some order that looks haphazard.

One method of randomizing is to shuffle numbered cards or to draw
numbered balls out of a well-shaken bag. Such methods are sometimes
useful, but we shall not discuss them further. The main method, and the
one we shall deal with, is the use of numerical rahdom tables. Such
tables for experimental design take two forms: tablés of random permu-
tations and tables of random digits. Short examples of both are given

for illustration in the Appendix, Tables 4.1 and AZ of random permu-

tations- being taken from Cochran and Cox’s book (1957, §15.5) and -

Table 4.3 of random digits from Kendall and Babington Smith’s (1939)
tables. These sources give much more extensive tables.
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The use of tables will be illustrated by examples.’

Example 5.1. Consider the randomization in Example 3.2; all that needs to
be recalled is that this was a randomized block experiment with three blocks of
five plots each and five treatments T, Ty, . . . , T;.

(a) Number the plots in each block 1, . . ., 5 in any convenient way.

(b) Use Table 4.1, Random Permutations of 9, random permutations of 5,
which are all that we need, not being available. Choose a starting point in a
haphazard way without looking at the tables. For example write down a
number (1 or 2) for the page, a number (1 to 5) for the row and a number (1 to 7)
for the column block Thus 2, 3, 6 gives the group beginning 9, 3, 4, 6, 2, 7, 5
8, 1.

(c) Read off the first permutation, omitting the numbers 6 to 9 since there are
only five treatments. This gives 3, 4, 2, 5, 1, and determines the allocation of
treatments in the first block. Thus T goes on plot 1, T, on plot 2, and so on.

(d) For the next block use the next permutation in the Table, whichis 7, 4, 6, .
and leads to the order T, T, T; T3 T;. Similarly for the third block, using, of
course, different tabular permutations for each block.

A useful alternative device for selecting a starting point is to begin, on the
first application, at the beginning of the table and to mark the last permutation
used with a light pencil mark. At the next application carry on from where
the last application finished, and so on. This assumes that recollection from a
previous reading of the table is unimportant.

Example 52. Suppose that we have a randomized block experiment with
10 units per block and 7 treatments, T; occurring four times in each block and
Ty, ..., T, each once. In this case let the digits 1, 8, 9, 10 represent T, and
the digits 2,...,7 represent Ty, ..., T; in order. The whole process of
randomization is now analogous to that in Example 5.1, except that Table 4.2,
Random Permutations of 16, is used.

Thus if the first permutation is 7, 12, 1, 5, 16, 4, 11, 8, 2,9, 10, 13, 15, 3, 6, 14,
the numbers above 10 are rejected and the remalnder replaced by the appropriate

treatments to glVC

T, Ty Ty T, Ty Ty Ty Ty Ty T

The randomization of Latin square designs is done by similar methods
but since one or two special points are involved the discussion is post-
poned to Chapter 10.

A design that was only mentioned implicitly in Chapter 3 is the com-
pletely randomized arrangement, in which no grouping of the units is
made and the treatments assigned at random subject only to the condition
that each occurs the required number of times in all. The method, which
is very simple and flexible, may be used in very small experiments, in
order to get the maximum number of degrees of freedom for estimating
error (Chapter 8), in experiments in which no reasonable grouping into
blocks suggests itself, or when all attempts to increase precision are to be
made by adjustment for concomitant variables.
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Example5.3. Consider the randomization of such an experiment over 21 units
with three treatments each occurring seven times. There are several ways of
proceeding; we cannot use the tables of random permutations in their simple
form since more than sixteen objects are involved. (If sixteen or fewer were
involved, we would write down a random permutation of the units and
assign the first so many to T, etc.) : |

The following method is as quick as any.

(@) Number the units in any convenient way 00, 01, 02 through 20.

(b) Select haphazardly a starting point in the Table of Random Digits,
Table 4.3, and write out pairs of digits as they occur, subtracting 30 from two
digit numbers from 30 to 59 and 60 from those that are between 60 and 89.

Numbers 90 through 99 are rejected Thus, 53 would be recorded as 53 — 30 =

23. If the starting point chosen is the block in row 24 ‘and column 12 on the

first page of Table 4.3, the first numbers are 5, 10, 6, 10'and 5 again, omitted,
21, and so on. When this device is used it is essential .to check that each of
the final set of numbers, in this case 00 through 29, has equal chance of selection.

(¢) The first seven numbers determine the units to recelve T, the next seven

are to receive T, and the remainder T'.

The process can be modified in various ways; for example when 5 have been
selected the remaining units could be ordered by a random permutation of 16.
Another method (Cochran and Cox, 1957, §15.3) is to produce a random
permutation of 1, , 21 by writing under each of the 21 figures a 3-figure
random digit. The arrangement of the numbers is then changed until the
random digits are in order of increasing magnitude. “

Other tricks will occur to the reader when he has/ some experience of
the tables. The randomization of some of the more complicated designs
will be described when we come to them.

The tables in the Appendix are given primarily for illustrative purposes.
They may be used for the randomization of small experiments but on no
account should they be used for experiments so ﬁarge that the same
permutation or digit would have to be employed twice. A more extensive
table is necessary in such cases. »

5.3 NATURE OF RANDOM NUMBERS

AND RANDOMNESS ‘

A table of random digits is a series of digits 0, ... ., 9 in which each
occurs approximately equally frequently and in which there is no recog-
_ nizable pattern. A recognizable pattern means, for\example a tendency
for some digits to follow let us say a 5 more frequently than others.
Some readers may feel that no amplification of this statement is called
for, but there are in fact a few general points worth making, although the

reader satisfied with the statement may omit this section. It is simpler -

to discuss tables of random digits, although the same remarks would,
with minor changes, apply to tables of random pennutations.

N
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A completely random sequence of digits is a mathematical idealization
in which we think of a mechanism capable of producing an infinite
sequence of digits. The sequence is to conform completely to the mathe-
matical laws of probability, as applied to a set of mutually independent
events, each equally likely tobe 0, ..., 9. That is to say, if we make any
calculation of probability connected with the sequence, e.g., the probability
of five adjacent pairs 01 occurring in a block of fifty, then the resulting
probability is to equal the proportional frequency of times with which this
event occurs in the infinite sequence. The main properties of such a
completely random series would be that

(a) each digit would occur equally frequently in the whole sequence;

() adjacent digits, or adjacent sets of digits, would be completely
independent of one another, so that, for example, if we knew one digit,
we would have no basis for predicting the next one;

(c) moderately long sections of the whole would show substantial
regularity, e.g., the number of 1’s in a set of 1000 digits would not deviate
much from 100, and so on.

A table of random digits is a finite collection of digits which

(a) is produced by a process which it is reasonable to expect will give
results closely approximating to the above mathematical idealization;

(b) has been tested to check that in several important respects, e.g., in
the relative frequencies of 0’s, 1's, ..., and in the simple independence
properties, it does behave as a finite section from a completely random
series should.

The first conclusion from this is that randomness is a property of the
table as a whole; thus to be accurate we should talk about permutations
produced by a random method, rather than about random permutations,
as if the individual permutations were random. Thus, any permutation

of 1,...,12 is a possible random permutation and any two such, for
example
1 23 456 7 8 9 10 11 12 (a)
8§ 39 7 61110 112 4 2 5 )

are equally likely to occur. Whether or not they are legitimate random
permutations is to be decided by the properties of the methods by which
they were produced and not by inspecting them as individuals.

This, of course, conflicts with the every-day usage of the word random,
and there are two related reasons for this. First, if we come across (a)
in an application, we can usually think of good physical hypotheses that
will explain the precise ordering; a hypothesis that will explain (b) is
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likely to be difficult to find. The second point is that the great majority
of the permutations of 12 are disordered like (b) and not highly ordered
like (a). These remarks have some bearing on the problem of the rejec-
tion of “unsatisfactory”” randomizations (§ 5.7). ‘

The second point to note from the general discussioﬁ; is the independence
of different numbers in the table. This is important where several
randomizations have to be done in one experimenjt. Thus, we might
have three Latin squares forming one experiment; we randomize these
separately and then the random errors in the treatment estimates from
the three squares are independent of one another. It would, of course,
be wrong to randomjze a Latin square and then to use it three times in
the same form on each occasion. The reason is that if a very similar
pattern of uncontrolled variation occurs in the three isquares, the chance
that it will produce a serious distortion in the treatment comparisons is
much less if the squares are randomized independently than if a single
common randomization is used.

5.4 JUSTIFICATION OF RANDOMIZ(ATION
(i) Introduction

Having considered how to randomize, and briefly what a random series
is, we must now consider why we randomize. Consider any of the designs
we have discussed so far, for example, the randomized block, the Latin
square, or one of its generalizations. When we have fixed the general
type of design we are going to use, say a randomized ‘\block design with a
certain number of blocks and treatments, we could determine the precise
arrangement of treatments 1‘

(a) by adopting a particular systematic arrangementtthat seems unlikely
to fit in with a pattern in the uncontrolled variatjon; -

(b) by subjectively assigning the treatments in a way that seems hap-
hazard; ‘

(¢) by randomization.
The dangers of (a) and (b) will be illustrated by exainples.

(i) Systematic Arrangements ‘

Example 5.4. Greenberg (1951) has discussed an experiment in parasitology
which illustrates the drawbacks of systematic anangemeni. The experimental
units were mice arranged in pairs of the same sex, one member of each pair
receiving a series of stimulating injections, 7, and the other member acting as a
control (untreated, U). The observation consisted in chéllenging each mouse
witl_l 0.05 cc of solution, supposed to contain a standard number of larvae, and
noting any response.
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The point of the discussion depends on this. We have a series of pairs of
mice 7, U; T, U; T, U; In what order are the mice to be taken for
inoculation? Greenberg reports that it was common to use the systematic
order TU; TU; .. .inthe hope of cancelling variations.in dosage. He produces
data and experimental reasons, however, to show that during the course of the
experiment, the number of larvae per injection increases steadily, and that
therefore the ordering gives a systematically greater injection to the untreated
mice. The consequences of this are:

(a) there is a systematic error in the estimated treatment effect, which would
persist in a long experiment and even over several different experiments, if the
above order were always used;

(b) the estimate of the error, based on the false hypothesis of the randomness
of uncontrolled variations, is misleading.

When a systematic uncontrolled variation, such as this, is discovered in the
experimental technique, it is, of course, important to take steps to eliminate
the variation. However the aspect that concerns us now is the effect of such
variations that we do not know about when the experiment is planned.

It is easy to be wise after the event and to say that a steady trend is a priori
quite likely and that therefore some other pattern such as TU; UT; TU; UT; . . .
should have been used. However, whatever such pattern is chosen, there is
the possibility that it coincides with some pattern in the uncontrolled variation,
maybe one of obscure origin, producing a systematic error persisting even in a
long experiment. To put the point another way, if a systematic arrangement of
treatments is chosen, the presumption that it does not coincide with a pattern
in the uncontrolled variation is a statement of the experimenter’s opinion,
which may well be justified, but which cannot be assessed quantitatively and
which it is difficult for others to check on. If a surprising result is obtained,
the experimenter may begin to doubt the validity of the systematic arrangement;
if the results appear surprising to a later worker in the field, he will probably
have no way of checking on the reasonableness of the pattern used.

Randomization, on the other hand, is an objective procedure, equally con-
vincing to all and dealing equally with any pattern of uncontrolled variation
that may present itself. The disadvantages of the systematic arrangements do

not apply.

Example 5.5. When Latin squares were first introduced into experimental
design, there was some discussion on whether a randomized square should be
used or a square chosen deliberately for its balanced properties. An example
of such a systematic square is the so-called knight’s move 5 x 5 square,

A B C D E
D E A B C
B C D E A4
E A B C D
C D E A B

which has the treatments evenly spread out with respect to the diagonals of the
square.
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The disadvantages of this design are less striking than those of the systematic
arrangement of Example 5.4. However there would certainly be objections to
repeating the design unchanged in a series of trials and|also, as Yates (1951)
has pointed out, difficulties could arise from the fact that in four cases out of
five E, for example, is immediately to the right of D. Thaus if the experiment is
an agricultural field trial and D is a “tall” variety, the effect would be, with
certain orientations of the square, to depress the yield of E.

However the main objection to the systematic design in this case is not the
appreciable possibility of serious systematic error in thg treatient estimates
but the difficulty of estimating the amount of random error (Fisher, 1951, p. 74).
In the discussion of the analysis of the randomized block and Latin square
designs in Chapter 3, the principle was mentioned that whenever a source of
uncontrolled variation is eliminated from the error in the design of the experi-
ment, it must also be eliminated in the analysis, if a correct estimate of random
error is to be obtained. Now in the systematic square some variation parallel
to the diagonals of the square is eliminated in virtue of the balanced property
of the design, but the ordinary analysis of the Latin square takes no account of
this. Therefore a biased estimate of error is to be expected and Tedin (1931)
confirmed this by examining uniformity data from field experiments. The bias
he found was small, although there is, of course, no guaqantee that this would
always be so.

The bias in the estimate of error could probably be removed by a modification
of the method of analysis, but several different, although plausible, ways of
doing this are available and it is not clear which should be used, so that there
is some loss of objectivity.

To sum up, the objection to lack of randomization in this case is mainly
connected with the estimation of error. If the design is not randomized, and
particularly if it is chosen for its “balanced” nature, it 1s} quite likely that the
estimate of error from the conventional method of statistical analysis will not be
appropriate, even if it is very unlikely that there is appreciable systematic error
in the treatment estimates themselves. This consideration of the correctness
of the estimate of error applies also to Example 5.4, but there it is rather
overshadowed by the occurrence of substantial bias in the treatment estimates
themselves. \

The conclusion from these two examples is that systejmatic arrangements
suffer from the disadvantages that ‘

(a) the arrangement of treatments may combine w1th a pattern in the
uncontrolled variation to produce a systematic error in the estimated
‘treatment effects, persisting over a long experiment OF even over a series
of experiments. We may begin by thinking this poss1b111ty sufficiently
unlikely to be disregarded, but this is a matter of personal judgement
which cannot be put on an ob_]ectlve basis; i

(&) there is likely, even in the most favorable cases, to be difficulty
connected with the estimation of error from such des1gns

Randomization removes these disadvantages and hence is, other things

being equal, to be preferred to systematization. That is, we aim, by .

-
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controlled grouping of the units (as in randomized blocks or the Latin
square) to eliminate the effect of as much of the uncontrolled variation
as possible and then to randomize the remainder.

It should not be thought, however, that these remarks mean that
systematic designs are never to be tolerated. If we have good knowledge
of the form of the uncontrolled variation and if a systematic arrangement
is much easier to work with, as when the different treatments represent
ordered changes of a machine, it may be right not to randomize. For
example, suppose that there are at some stage of an experiment 24 test
tubes of solution, to which are to be added « cc of reagent for treatment
T;, 2z cc for treatment 7T,, and 3z cc for treatment 7;. Imagine further
that this operation needs to be completed as quickly as possible. Clearly,
the procedure that is quickest and least likely to lead to gross errors is to
set the work out in systematic order, dealing first with all units receiving
Ty, etc.  If it is known that negligible error is involved in pipetting and if
the whole set of 24 units can be completed in such a short time that the
first and last tubes can be considered as dealt with simultaneously, it
would be quite wrong to attempt randomization. If a number of repeti-
tions are involved, a sensible precaution, however, would be to change the
order of treatments for each repetition and, if practicable, to include
some check on the assumptions.

Another reason for not randomizing is that in certain very special
shoprt experiments there is an appreciable gain in precision in using a
special systematic arrangement (§ 14.2). What is important, however, is
to randomize except when there is a very good reason not to, to under-
stand that the conclusions from a nonrandomized experiment depend on
the correctness. of what is assumed about the uncontrolled variation, and
to state this explicitly in reporting the experiment. The reader interested
in a further discussion of systematic arrangements should read the papers
by “Student” (1938), Yates (1939), and, for an account of some more
recent work, Cox (1951). If a systematic design is adopted for an experi-

.ment to be repeated several times with the same design, the names of the

treatments should be randomized independently in each repetition.

(iii) Subjective Assignment

We now consider the second alternative, the assignment of treatments
not by strict randomization but in a subjective way that seems haphazard.
The following is an example of an experiment spoiled by a procedure of
this sort.

Example 5.6. In 1930 a very extensive experiment was carried out in the
schools of Lanarkshire, in which 5000 school children received 3/4 pint of raw
milk per day, 5000 received 3/4 pint pasteurized milk, and 10,000 children were
selected as controls to receive no milk. The children were weighed and



78 RANDOMIZATION “
measured for height at the beginning and end of the experiment, which lasted
four months. The discussion below is based on “Student’s” critique of the
experiment (“Student,” 1931), i B

‘The following method was used in determining, for each fsc'hool, which children
should receive milk and which not, only one type of milk being used in any one
school. A division into two groups was made either by ballot or using an
alphabetical system. I this appeared to give a group with an undue proportion
of well-fed or ill-nourished children, others were substituted in order to obtain a
more level selection. In other words a random, or nearly random, assignment
of treatments was made and then “improved” by subjective assessment. '

This resulted in the final observations on the control group exceeding those on
the treated group by an amount equivalent to three-months’ growth in weight
and four-months’ growth in height. The explanation of this is presumably
that the teachers were unconsciously influenced by the greater need of the poorer
children, and that this led to the substitution of too many ill-nourished among
the feeders and too few among the controls. ! _

This had a particularly serious effect on the comparisons of weight, because
the children were weighed in their indoor clothes in February at the beginning
of the experiment and in June at the end. Thus the difference in weight between
their winter and summer clothing is subtracted from their actual increase in
weight. Had the control and treated groups been random this difference in
weight due to the clothing would have decreased the precision of the results but
would not have introduced bias; however there was the suggestion that the
treated group contained more poor children, who probably lost less weight
from this cause, so that the experiment was biased. :

Although it was possible to draw certain conclusions, these were of a very
approximate and tentative nature, even though the number of children taking
part was large. The failure of the experiment to yield clear-cut conclusions
was due to the failure to adopt an impersonal procedure in‘allocating treatments
to experimental units. ‘

“Student” pointed out that a much more economical and precise way of
comparing two treatments, say the two types of milk, would have been to work
with pairs of identical twins, in a randomized paired comparison experiment
(§3.2). Very probably a comparatively small number of such pairs would give
high precision and it would then have been practical to make detailed and
carefully controlled measurements on each child.

The conclusion from this is that an experiment is fin danger of being
very serjously affected if the personal judgement of people taking part is
allowed to determine the allocation of treatments tjo units. There is
abundant evidence that observer biases occur even in apparently unlikely
circumstances, and moreover, even if the arrangement chosen is in fact
satisfactory, there is always the suspicion that it may not be, and this will
detract considerably from the cogency of the experiment if surprising
conclusions are found. The time taken to carry thr}ough a process of
objective randomization by the methods of §5.2 is trivial under all
ordinary circumstances, so that there is no argum‘/ent for subjective
assignment on the grounds of simplicity. |

i
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(iv) Randomization as a Device for Concealment

In most of the previous examples, randomization has been used to
deal with variations in space, in time, between different animals or
subjects, and so on to ensure that any patterns of variation that may exist
in the experimental material cause no systematic error in treatment
comparisons. A very important further use of randomization, however,
is in situations where a substantjal amount of the. uncontrolled variation
arises from subjective effects due to personal biases of the people taking
part in the experiment, including the experimenter. himself. In such
applications randomization achieves its aim by concealing from the
persons involved which treatment is applied to each unit.

Consider first an application where bias may enter the selection of
units to take part in the experiment.

Example 5.7. Suppose that a clinical trial is set up to compare two or more
methods (drugs, surgical treatments, etc.) of treating a disease. Experimental
units, i.e., patients, are included in the experiment as suitable individuals appear
at the various centers taking part. There will often be doubt as to whether a
particular person should, in fact, be included. ) o

If the doctor responsible for the decision about inclusion knows that the
patient, if included, will receive say treatment A, this may easily mﬂuenc::,
consciously or unconsciously, the decision reached in doubtful cases, and if th_ls
happens, the groups of experimental units receiving different treatments will
not be genuinely comparable. )

If the allotment of treatments is determined by a systematic pattern, this may
soon become apparent; equally, if the order of treatments is determined by an
initial randomization and if the full key is available to the doctor concerned,
the necessary concealment will not be achieved. The satisfactory method is
either to do the randomization after the patient has been chosen for inclusion,
or to arrange that the treatment a particular patient is to receive is named in a
sealed envelope that is not opened until after the patient has definitely been
selected. The order of treatments in successive envelopes is randomized by the
controller of the experiment ar.d not revealed. _

This device is now widely used in the design of clinical trials. =~ Similar remarks
apply to any experiment in which a subjective element enters into the selection
of experimental units for inclusion in the experiment.

Randomization to achieve concealment may also be necessary in
applying the treatments, particularly where the units are people likely to
be influenced in an irrelevant way if they knew the treatment which they
have actually received.

Examplé 5.8. Consider an experiment on school children to assess the effect
of a new tooth paste, say one with an added fluoride. We need a group of
children’ with whom to compare the children who receive the experimental
tooth paste, F. A quite unsatisfactory way of obtaining such a control group
would be to give F to half the children chosen by a randomized method and to
give the other half no special treatment. In order to obtain worth-while results,
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steps to encourage correct and frequent use of F would be necessary and any
relative improvement in the experimental groups’ teeth might well be due to the
additional attention given to the cleaning of teeth rather than to the particular
merits of F. !

A better, but still unsatisfactory, procedure would be!to issue the control
group with a standard brand of tooth paste. The objection here is that the
experimental group, knowing that they are receiving special/treatment, may tend
to be more diligent than the control group. The only satisfactory way of
ensuring that no such effects occur, is to have identical|tubes of control and
experimental tooth pastes, so far as is possible differing only in the absence or
presence of the special ingredient, and if possible indistinguishable in flavor, etc.
The treatments are randomly assigned to the children, the key to the randomiza-
tion being available only to the controller of the experi@ent. The children,
their parents, and the staff responsible for instruction in the use of the tooth
paste and for assessing the children’s teeth at the end of the trial, should know

neither which treatment any particular child has received,. nor which groups of -

children have received the same treatment. The final observation on each child
at the end of the experimental period would be some such'index as the number
of defective and missing teeth. This would also be determined for each child
before the start of the experimental period and this initial value would enable
adjusted treatment means to be calculated, eliminating from the error much of
the variation connected with the initial state of the teeth ksee §4.3). It would
also be possible to examine whether any difference between the treatments was
more or less marked with children with good teeth.

These considerations are important in any experiment in which the
application of one or more treatments may tend to be influenced by
personal attitudes towards the treatments, these attitudes being considered
irrelevant to the purpose of the experiment.* Thus in comparing a new
and an old experimental technique or a modified and an unmodified
industrial process, bias may arise due say to devoting greater attention to
the running of the modified process. If, owing to! the nature of the
processes, this possible bias cannot be eliminated by concealment, what-
ever steps that may be practicable should be taken to remove such a bias.
For example, the biases may tend to disappear if the e‘)‘(periment is spread
over an appreciable time or is preceded by a practice period, or if the
people taking part are deliberately misinformed as to the object of the
investigation. ‘

In some applications it may be required to conceal the nature of the
treatment from the person who has to apply the treatments to a large
number or all of the units. For example, one treatmeht might require an
impure chemical, another an analytically pure source of the same substance.
It would not in such cases be satisfactory to have two s‘ppplies one labelled
A, and the other B, and to conceal which was which, 'since the nécessary

* Note that for some purposes we might consider such at;‘titudes as part of the
treatments and would then not wish to eliminate their effect. |
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requirement of independence from unit to unit would not be satisfied.
Thus a guess, possibly incorrect, might be made as to which treatment 4
was and a systematic error introduced. A better arrangement would be
to have say at least six sources of material labelled A through F, three of
which are impure, three not. For each experimental unit the source to
use is given in the experimental instructions, having been determined by
appropriate randomization.

The final stage in which concealment may be advisable is in the making
of the observation itself. There are many fields where substantial
personal biases may arise and in all these randomization of the order of
presentation of the units for measurement is desirable. Thus in taste-
testing experiments, where a judge is asked to state his preference among
a number of products, it is most inadvisable that the judge should know
the treatment to which each of the objects has been subjected. Again,
in experiments in which the reproducibility of, say, an analytical technique
is of interest, it is best for the analyst not to know which of the items
submitted for analysis have received identical treatment. Quite generally,
in any experiment in which personal judgement enters to a considerable
extent into the determination of the final observation, concealment is
desirable. Sometimes this is impracticable, but quite often randomiza-
tion does achieve concealment in a simple and satisfactory way.

(v) Summing Up

To sum up, it seems fair to say. that subjective allocation of treatments
to units should never be used, because the method has serious dis-
advantages and no compensating advantages when compared with
objective randomization. Of course, subjective allocation may work out
perfectly well in some applications, but this is no argument for using it,
since randomization is just as simple and has definite advantages.

Therefore, our general conclusion is that, with the minor exceptions
noted in the discussion of systematic arrangements, randomization is to
be preferred to alternative methods. This conclusion has been reached
in a rather negative way by showing the disadvantages of other methods.
In § 5.6 there is a brief discussion of the positive advantages of randomiza-
tion from a more statistical point of view. That section may be omitted
if desired. First, however, we deal with an important general matter
concerned with the scheme of randomization to be used.

5.5 ERRORS ARISING: IN SEVERAL STAGES

In many, if not most, experiments important uncontrolled variation
may arise from several sources, notably in the experimental material, in
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the various stages of applying the treatments, and jin the taking of the
observations. It is important that the randomization should cover all
important -sources of variation connected with the experimental units
and that, so far as is practicable, the different experimental units receiving
the same treatment should be dealt with separately and independently at
all stages at which important errors may arise, one such stage being in the
application of the treatments.

This point has already been discussed to some extent in Example 3.2.
It will be dealt with now in more detail using a’ somewhat fictitious
example connected with the shrinkage of socks. The example should be
studied carefully because it can be paralleled in many fields, particularly
in that type of laboratory work in which a whole sequence of operations
has to be carried out on each batch of experimental material.

Example 5.9. In an experiment to compare four ftreatments applied to
knitted socks to reduce shrinkage, something like the following might be done.
Forty-eight socks are divided into 4 sets of 12, each setw: to receive one of the
4 treatments, say a control and 3 different chlorination processes. The treat-
ments are applied and the socks measured. Normal wear and washing is then
simulated in a controlled way in a machine that can take from 1 to 12 socks
at a time. At the end the socks are remeasured and the percentage shrinkage
calculated. : !

The treatment comparisons can be affected by (a) the variation of intrinsic
properties from sock to sock, (b)) measurement errors, (c) variations arising
during the application of the chlorination processes, (d) lack of complete
uniformity in the simulation of wear. We may decide, after investigation, that
measurement errors can be treated as completely random and are in any case
small compared with other sources of variation. If thislis done, the measure-
ments may be obtained in any convenient order. We shall consider several

randomization procedures in the light of the remaining threJe sources of variation.

Method I. The socks are divided randomly into 4 set$ of 12. Each set is
processed as one batch and after measurement, dealt wjth in one run of the
simulation machine. There are, thus, 4 runs of the simulation machine, each
run dealing with socks that have all received the same treatment.

Method II. The socks are divided randomly into 4 sets as before, but the
chlorination processes are applied independently to single socks, for example
by including each sock in a separate batch for processing;, After measurement
the simulation of wear and washing is carried through asjin Method L

Method III. This is the same as Method II up to the sirhulation stage. Here
the socks are grouped into blocks of 4, one from each treatment, each block
being used for one run of the machine. ‘

Method IV. The socks are divided into 12 sets of 4, 3 siets per process. The
chlorination processes are applied independently to each set, so that 3 separate
batches need to be run for each process. -The runs of the simulation machine
are arranged by Method III. !

Method I is adequate only if negligible variation arises}‘ from sources (¢) and

(d), the chlorination and simulation stages. If, for example, there is some
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variation in the performance of the simulation machine from run to run, this
will appear as systematic error, since all the socks having one treatment are
dealt with in a single run. If there happens to be appreciable variation between
the conditions appertaining in different runs of the same chlorination process,
the conclusions from Method I will apply solely to the particular runs of each
process used and this will be a serious restriction. For example, it will be
impossible from the experimental results alone to distinguish between real
differences in the processes and.variation from one application to another of
one process. ]

Randomization is no help for treatment errors and the right procedure is to
have independent applications of the treatment for each unit. This is Method II;
any variation connected with the simulation process is still inadequately dealt
with. Method III gives one way of dealing with this, by the randomized block
principle, each run of the machine forming a block. )

Method IV is a compromise version of Method III which meets the practical
objection that would often be made that an independent run of a chlorination
process for each sock is uneconomic. The method here is essentially to take
experimental units consisting of 4 socks each and to set up a randomized block
design of 3 blocks each with 4 treatments.

There are numerous fuarther possibilities. Moreover, if the measurement
process, instead of being fairly straightforward, involved a substantial subjective
element, it would be necessary to measure the socks in randomized order, taking
the sort of precaution discussed in the preceding section to conceal the treatment
applied to the sock being measured. Of course, if this stage of randomization
can be omitted, the work of measurement may be much simplified.

This discussion can be summarized as follows. Variation may arise
from several sources, and randomization should cover all those at which
the variation cannot be assumed negligible or completely random. It is
frequently not good enough to randomize just at one stage of the experi-
mental procedure and to leave the treatments systematically arrayed at
other stages.

5.6 STATISTICAL DISCUSSION OF RANDOMIZATION

In this section, which may be omitted at a first reading, the statistical
consequences of randomization are discussed. We start from the
assumption,* § 2.2, equation (1), which says that the observation obtained
when a particular treatment is applied to a particular experimental unit is

a quantity a quantity
depending only | + | depending on the ). (1)
on the unit treatment

Consider for definiteness a randomized block experiment, although the

* An analysis based on a more general assumption, allowing varijations in treatment
effect from unit to unit, has been made by Wilk and Kempthorne (1956).
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following remarks apply with minor changes to nearly all the designs
described in this book.

If we randomize the treatments within blocks, the unit quantities
associated with a particular treatment T, consist of -a random sample of
one from the set of unit quantities for the first block, a\random sample of
one from the unit quantities for the second block, and so on. Similarly
for the other treatments, the only complication being that the samples
for T,, T, . . . are drawn “‘without replacement,” since no unit receives
more than one treatment. Hence we may apply 'the mathematical
theory of random sampling to the behavior of our jobservations, and
moreover the theory is rigorously applicable, provided that the assumption
(1) holds and that the table of random numbers, or random permutations,
used in randomizing the treatments, is adequate. The latter point need
cause us no trouble. .

In this way we reach the following conclusions, without further assump-
tions about the nature of thé uncontrolled variation.

(@) The estimated treatment effects are unbiased, in|the sense that the
average of the estimates over a large number of independent repetitions
of the experiment would be equal to the true treatment effects defined
from (1).

(b) In asingle experimerit with a fixed amount of uncontrolled variation,
as measured by the standard deviation, the error in the estimated treat-
ment effects would almost certainly be very small if the number of units
were sufficiently large. That is, there is a negligible chance of appreciable
error persisting in a very long experiment; this state of affairs shauld be
contrasted with the situation for a nonrandomized experlment,// duch as
Example 5.6, where there was appreciable systematlc error even though
the number of units was very large./

(¢) The square of the standard error of the estlmated treatment effects,
calculated by the method described in § 3.3, is unblased in the sense
that, averaged over a number of independent repetitions of the experiment,
it would equal the average of the square of the actual error, i.e., estimated
effect minus true effect, squared.

(d) In principle it is possible (Fisher, 1951, p. 43) to make exact signifi-
cance tests concerning the treatment effects and to calculate limits within
which the true effects lie at any assigned level of probablhty Thus we
can build up a distribution, inferred from the data, for the magnitude of
the true treatment effect. In practice these calculations are almost
always done, not by the “exact”” method, but by introducing certain
assumptions about the shape of the distribution of theunitquantities in (1).
This enables the significance calculations to be maqe very simply by

SOME FURTHER POINTS 85

the ¢ test and related methods. It is known that, except in small experi-
ments, results obtained in this way agree satisfactorily with those based
on the “exact” argument. In any case the assumptions about the un-
controlled variation concern the shape of the overall distribution of the

unit quantities and not the nonexistence of patterns.

To return to a less statistical description, the positive advantages of
randomization are assurances

(@) that in a Jarge experiment it is very unlikely that the estimated
treatment effects will be appreciably inerror. In other wordsa randomized
experiment may be more accurate than a corresponding nonrandomized
one in which an unskilful assignment of treatments to units has led to
systematic bias. Randomization achijeves this mechanically; '

(b) that the random error of the estimated treatment effects can be
measured and their level of statistical significance examined, taking into
account all possible forms of uncontrolled variation subject to (1).

Thus, to take a simple case to illustrate (b), we might conclude from a
randomized experiment that there is a difference between two treatments
that is statistically significant at a very high level. The corresponding
conclusion for an experlment laid out in a systematic arrangement might
be that the difference is very unlikely to be due to random uncontrolled
variation (this is shown by the significance test) and that it is considered
very improbable that the systematic arrangement is responsible for the
apparent effect. This last statement has no measurable uncertainty, nor
is there any guarantee that the standard error and significance test
measure anything very relevant about the system. It is not that the
systematic arrangement is necessarily less precise than the randomized

one, but that the assessment of the results is on a less objective basis. -

One or both points (a) and () may apply in any particular case.

This concludes the general discussion of the arguments for randomiza-
tion in the allotment of treatments to experimental units. There is a
second very important use for randomization in experimental work,
namely in sampling, i.e., in selecting from a given bulk a portion for
detailed study and measurement, the portion to be representative of the
whole. The arguments for randomization in sampling are parallel to
those developed above, but will not be discussed here.

5.7 SOME FURTHER POINTS

There are some difficulties that arise in the application of randomization,
particularly to small experiments, and these will now be discussed.
The first point concerns the rejection of an arrangement produced by
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the randomization when it seems particularly unsu1table As an example,
consider the paired comparison experiment, Example 3.1, with eight pairs
of units. Suppose that, as in our first account of this experiment, the
units are arranged in a definite order within each'pair, but that it is
decided that this ordering is not of sufficient importance to warrant
balancing it in the design of the experiment by the method of Example
3.10. Now it will happen, actually about once in 128 times in the long
run, that the ordering of treatments is the same for every pair, either
T, T, every time or T, T; every time. Further, once in about 14 times the
arrangement is either of this type or has just one pa1r showing a different
ordering from the remaining 7.

It is clearly undesirable to use these arrangements Even though we
think that there is probably not an important order eﬁ"ect there are likely
to be various things, connected say with the experinjental technique, that
could produce such an effect. In other words a pattern of uncontrolled
variation with a substantial systematlc difference between the first and
second unit in the pair, is a priori considerably more! probable than other
particular patterns we can think of.

Similar considerations apply in other experiments where the randomiza-
tion produces an arrangement that fits in with some Rhysrcally meaningful
pattern in the experimental material, even though this pattern is thought’
probably unimportant. Other examples are if a Latin square on
randomization has a line of treatment T}, say, down a diagonal, or if a
randomized block experiment gives the same order of treatments within
each block. The chances of these particular arrangements occurring are
extremely small, except in experiments with a small total number of units.

There are three ways of dealing with the difficulty, all depending on
curtailing the randomization. The first method is to'incorporate a condi-
tion about order into the formal design of the experiment, as was done

in Example 3.10, where T} and T, each occurred four times in the first
position. This is probably the best solution in the present case, but it
is certainly not a general answer to the problem, since there are various
reasons why it may be impracticable or undesirable to introduce further
constraints into the design. For example we lose degrees of freedom for
residual in eliminating a source of variation that is probably not important,
we make the experiment more complicated and there may already be
several different systems of grouping in the design, makmg the introduction
of further conditions difficult or impossible. !

The second method is to reject extreme arrangements whenever they

occur, i.e., to rerandomize. For example in the\ paired comparison -

experlment we may decide to reject all arrangements with seven or more
pairs in the same order. A highly desirable COndlthIl in using this
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method, if observer biases like those of Example 5.6 are to be avoided, is
that if any arrangement is to be rejected, so must -all other arrangements
obtained by permuting the names of the treatments. Thus if the arrange-
ment with eight T T,’s is rejected, so must the arrangement with eight
T, T,’s. There would be little likelihood of disagreement over such an
extreme case, but since the decision as to what arrangements to regard
as unsatisfactory is arbitrary, there could be disagreement with less
extreme cases. The best plan is, if possible, to decide which arrangements
are to be rejected before randomization. It is difficult to give general
advice about which arrangements to reject, but the best rule is probably
to have no hesitation in rejecting any arrangement that seems on general -
common-sense grounds to be unsatlsfactory Fortunately this matter is
not nearly so important in practice as might be thought, since, as remarked
dbove, extreme arrangements occur with appreciable chance only in very
small experiments.

The third method is to use a special device, known techmcally as
restricted randomization (Grundy and Healy, 1951; Youden, 1958). This
is a very ingenious idea, in which a design is selected- at random from
a very special set of arrangements. The set is chosen to exclude both the
extreme arrangements and the very balanced arrangements, in such a
way that the full mathematical consequences of ordinary randomization
follow. The method is probably of most value for a special design called
the quasi-Latin square (Chapter 12), for which the method was first intro-
duced, and otherwise in a series of small experiments, each of some interest
in itself, but which also need to be considered collectively. The method is
however -too specialized to discuss here and its full implications have
not yet been worked out; the nonstatistical reader requiring more
information about it should consult a statistician.

The reader may object that the second method, the rejection of extreme
arrangements, will falsify. the mathematical consequences of randomiza-
tion described in § 5.6. This is true of the estimation of error, although
not of the absence of bias in the treatment estimates themselves. The
estimate of error will only be unbiased if there is in fact no systematic
order effect. However in single small experiments the estimate of error
is very inaccurate anyway. More importantly we have here a mathe-
matical interpretation of randomization: that it leads to desirable pro-
perties in the long run, or on the average, and on the other hand a practical
problem—namely the designing and drawing of useful conclusions from
a particular single experiment that we are now in the process of considering.
Usually the concept that our procedures will work out well in the long
run is a very helpful one, both qualitatively and in giving a vivid physical
picture of the meaning of probabilities calculated in connection with a
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particular experiment. However to adopt arrangements that we suspect
are bad, simply because things will be all right in the long run, is to force
our behavior into the Procrustean bed of a mathematical. theory. Our
object is the design of individual experiments that \X”(ill work well: good
long-run properties are concepts that help us in doing this, but the exact
fulfillment of long-run mathematical conditions is not the ultimate aim.

The second general matter is closely related to theg first. Suppose that
we design and carry out a randomized experiment, and that When we come
to analyze and interpret the results we realize either that the arrangement
we have used is probably an unfortunate one and should have been
rejected, ‘or, by inspection of the results, that therq is some particular
form of uncontrolled variation. For example, we might have the above
paired comparison experiment with, say, six pairs receiving the order
T, T, and two receiving the order T, 7. Inspection of the results may
suggest a substantial order effect comparable to the treatment effect.
Another example would be if an agricultural field trial arranged in
randomized blocks shows a systematic trend from ohe end to the other
of the experimental area. What do we do in such situations?

In some cases, possibly in the first, we may decide ‘that the data should
be regarded with suspicion. Suppose, however, that/we do wish to draw
what conclusions we can. The previous discussion shows that it is not,
good enough to say that the long-run properties are valid whatever the
form of the uncontrolled variation and on those grounds to analyze the
experimental results by the usual methods. On the other hand, to intro-
duce modifications into the analysis based on inspection of the results
and on personal judgement about the desigh must lead to some loss of

-objectivity. The following procedure is suggested. |

(@) Work through the conventional analysis of the ol%scrvations ignoring
the suspected complication. |

(b) Make a special statistical analysis of the observations taking account
of the complication in whatever seems the most re:{sonable way. The
reader who is not familiar with fairly advanced statistical methods will
probably need statistical advice in this. The method {will_usually involve
the analysis of what is known technically as a nonorthogonal least-squares
situation. ' : }

(c) If the conclusions of the two analyses are for practical purposes
equivalent there is no difficulty. If the conclusions do differ, care is needed.
The assumptions underlying the second analysis should be carefully
thought over, and if they seem reasonable, the second/ analysis should be
regarded as correct. ‘

(d) In reporting on the experiment, conclusions from both analyses

iR
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should be given, at any rate briefly. If the first analysis is rejected,
reasons should be outlined. The general idea should be to make it
clear to the reader what has been done and to give him the opportunity
of forming his own conclusions as far as practicable.

Fortunately these difficulties tend to occur infrequently in practice.

Another difficulty that occasionally arises is that there is some practical
reason why certain treatment arrangements are not allowable. One
example arises in raspberry variety trials (Taylor, 1950). The point
here is that additional canes spring up near many of the canes originally
planted and it is necessary to remove these new canes from each plot.
For this to be possible varieties that resemble each other closely must
not occur close together, thus restricting the randomization. Another
example occurs in carpet wearing trials, in which dyed and undyed carpets
are under comparison. An experimental carpet is formed by sewing
together squares of carpet of different types and the whole carpet placed
say in a busy corridor. It would often be desirable that the carpet should
look presentable and this would preclude full randomization of the dyed
and undyed sections. The procedure in such cases is either to do as much
randomization as possible or to use.a systematic arrangement taking
whatever steps are practicable to avoid bias.

SUMMARY

When a particular type of design, say a Latin square, has been chosen
as likely to give precise treatment comparisons, the arrangement of treat-
ments should be determined by impersonal randomization. This is
done by shuffling cards, etc. or, much more usually, by tables of random
permutations or of random digits.

Systematic arrangement is very occasionally to be preferred to randomi-
zation, for example on the grounds of simplicity; subjective assignment
of treatments in a haphazard way should never be done. The justification
for randomization is that it makes the chance negligible that systematic
differences between units receiving different treatments will persist in a
long experiment and that it enables the error to be estimated whatever the
form of the uncontrolled variation. In effect the randomization re-
arranges the experimental units into random order and converts uncon-
trolled variation of whatever pattern into completely random variation.
It is very important that randomization should cover all stages at which
major errors may arise.

Care is needed, particularly in very small experiments, whenever
unsatisfactory arrangements are produced in the randomization.
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