CHAPTER 8

The Choice of the
Number of Observations

8.1 INTRODUCTION

We now turn to a matter more specifically statistical, namely the
relation between the number of experimental units and the precision
of the estimates of the treatment effects. There are two aspects to this.
First the scale of effort that can be devoted to the experiment may be
fixed by circumstances outside the experimenter’s control. In this case

it is nearly always helpful to have, before doing the 1experiment, some

rough estimate of the precision that is likely to re‘[sult. This rough
estimate may, for example, show that the final estimates will probably
be subject to such large errors that no effective conclusions are likely to
result, thus suggesting that the experiment is not worth doing until more
resources can be assembled. Or it may appear that adequate precision
can be obtained with less than the full number of experimental units.

The second aspect is more positive. If the numberiof units is to an
important extent under the experimenter’s control, we may work out the
precision corresponding to a range of values of the ‘number of units.
Hence reasonable compromise may be reached between, on the one hand,
having too few units and low precision, and on the ohher wasting’ tlme
and experimental material in attaining unnecessary pI‘CGlSlOl’l

In the general discussion of § 1.2(ii) we noted that the final precision
of the estimated treatment effects depends on !

(a) the intrinsic variability of the experimental materia] and the accuracy
of the experimental work; *

(b) the number of experimental units (and the number of repeat obser-
vations per experimental unit);

(c) the design of the experiment (and on the method \of analy51s if this
is not fully efficient). -

In the present chapter we are concerned solely with (b) and so we shall
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assume that all practicable steps have been taken to increase precision
by methods (@) and (c). We also assume that all important sources of
systematic error have been removed, for exampie by randomization, and
that the treatment comparisons are therefore subject only to random errors.

One most important point concerns the definition of an experimental
unit for the purposes of the following calculations. Two observations on
the same treatment are considered to come from different units only if
the design of the experiment is such that the experimental material corre-
sponding to the two observations might have received different treatments,
and moreover if the corresponding material has been dealt with inde-
pendently at all stages at which important variation may enter. For
example, imagine that a consignment of material is divided into eight
parts, four to receive each of two treatments. Let these eight parts be
dealt with separately in the experimental procedure, and at the end let
triplicate observations be made on each part, for example by sampling
each part three times. There are then twelve observations for each
treatment, but only four units. It would be legitimate to regard the
twelve observations as twelve units only in the unlikely event that we may
assume that negligible variation enters the experiment prior to the last
stage, the taking of the observations. There is a further discussion in
§ 8.3(iv). -

The details that follow are inevitably somewhat statistical, and the
reader who wishes primarily to learn the general nature and scope of the
subject may omit the following sections. He should be aware, however, of
the importance of making, before an experiment is started, some estimate
of the precision that is likely to be obtained.

8.2 THE MEASUREMENT OF PRECISION

We begin by discussing the way in which precision can be measured.
Suppose that we have the situation of § 2.2, so that we are interested in
comparisons, or.contrasts, of the treatment constants a4, ..., a, Con-
trasts can take various forms, for example:

(a) the difference, a, — a,, between the effects of two particular treat-
ments, say the first and the second, Ty and T,. This is usually estimated
by the mean observation on units receiving treatment 7; minus the corre-
sponding mean for T;

(b) the mean difference between one group of treatments and another
treatment or group of treatments. For example, in a nutritional experi-
ment, T, might represent a basic diet and the remaining treatments
various forms of supplemented diet. One contrast of interest might then
be the average of the a’s for all the supplemented diets minus a;. The
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contrast would usually be estimated by the corresponding difference of
the observed treatment means; ‘

(o) if the treatments correspond to different levels' of one or more
quantitative carrier variables, we may be interested in the particular
combinations of the a’s that measure, for example, the slope and curvature
of the response curve. Methods of estimating these contrasts have been
considered in Chapter 6. : . :

From the observations we construct an estimate of the particular
contrast™ that interests us. In general the estimate from the observations
will not equal the true value of the contrast calculated from the treatment
constants g, . . ., a,, and it is with the magnitude of the diﬂ‘erence between
the true and estimated values that we are concerned. We call this
difference the error in the estimated contrast. Of coursé in any particular
instance the true treatment constants a,, . . ., a, are unknown and so is
the error in the estimated contrast. We have to work with a proba-
bility distribution of errors derived from the fact that the treatment
arrangement for use has been selected from a set of possible arrangements
in a random way. It can be shown that the average error is zero; this
is another way of expressing the elimination of systematic error achieved

by randomization. The general size of the errors for a particular contrast

* is usually best measured by the standard error, which is defined formally
to be equal to the square root of the average of the squared errors. The
interpretation of the standard error givenin § 1.2 depends somewhat on the
form of the frequency distribution of the uncontrolled variation, but has a
more direct practical meaning. This interpretation is as follows. In about
one occasion out of three, the randomization will lead to a design in
which the error is more than plus 0.97 times standard error or less than
minus 0.97 times standard error, i.e., is in absolute magnitude more than
about one standard error. In about one occasion out of twenty, the
randomization will lead to a design in which the error is in absolute
magnitude more than 1.96 times the standard error (for practical purposes
1.96 may be replaced by 2); in about one occasion (J‘)ut of a hundred,
the randomization will lead to a design in which the error is in absolute
magnitude more than 2.58 times the standard error.

In view of these facts, the standard error is a measure of precision with
a direct practical interpretation. The multiple of the standard error
corresponding to other frequencies of errors can be obtained from tables
of the normal distribution given in books on statistical rnethods; see also
Table 8.1. ' ' '

\
. - |
* The common mathematical feature of these contrasts is that theéy are linear combina-

tions of the a’s with the sum of the coefficients zero.

i
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It would be expected on general grounds that the standard error of a
particular contrast would depend in part on the form of the contrast,
in part on the numbers of observations involved, and in part on the
amount of uncontrolled variation. This is confirmed by mathematical
calculation which shows that, for example, the standard error of any
estimate formed by taking the mean of one set of observations minus
the mean of a different set, is

1 1 residual
(no. of observations) + (no. of observations) % { standard |, (1)

in first set in second set deviation

where the residual standard deviation is a measure of the amount of that
part of the uncontrolled varjation which affects the error of the treatment
contrasts. More precisely imagine that we could obtain observations
from the experimental units in the absence of true treatment effects. We
then remove that part of the variation in these observations that can be
accounted for by the blocks in a randomized block design or by the rows
and columns in a Latin square design, i.e., we take residuals eliminating
blocks in the randomized block design and eliminating rows and columns
in the Latin square. The residual standard \deviation measures the
amount of variation in the residuals, in a way analogous to that in which
the standard error measures the error in an estimated contrast, i.e., we
can think of the standard error and the standard deviation as similar
quantities, the first referring to estimated effects, the second to individual
observations. As we saw in the discussion of split plot designs in Chapter
7, different contrasts may have different residual standard deviations.

Equation (1) gives the standard error of the difference between two
means and the formulas for slopes and curvatures were given in Chapter 6.
A fairly nonmathematical discussion for a general contrast* is given by
Cochran and Cox (1957, §3.5). For the particular case when the two
sets contain equal numbers of observations, (1) becomes

2
- residual
(no. of observatlons) X (standard deviation)' @
per set

It follows that, if we can determine or estimate the standard deviation,

* The general formula, from which all those given here and in Chapter 6 follow as
special cases, is that the standard error of [i#; + . .. + Léis o/ {I2fm + ... + L3 m},
where &, is the mean of n, observations, etc., no two #'s having observations in common,
and where o is the residual standard deviation.
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we are able to find the standard error for any particular contrast and
hence can ‘

(@) determine from the observations limits within which the true value
of the contrast lies, at any given level of probability. Thus, the true
value lies within the estimated value plus or minus two standard errors,
with a probability of 95 %; _ B

(b) determine, before the experiment is done, the width of the interval
of uncertainty at any given level of probability. ‘

In this chapter we are mainly concerned with (b), but (a) will be brieﬁy
illustrated by an example. !

Example8.1. Suppose that in comparing the growth rates of animals receiving
two diets, T'; and T, it is known from previous experience of‘“similar experiments
that the residual standard deviation'is likely to be about i2.5 units. Let ten
animals be devoted to each diet. Then the standard error of the estimated
difference between the growth rates for the two diets is, by formula 2),
v/{2/10) x 2.5 = 1.12 units. ‘r

If now the observed mean observation on Tj is 6.10 unit§ more than that on
T;, we can calculate limits for the true difference between the diets as follows:
with a chance of 2/3, the true difference lies between 6.10'— 0.97 x 1.12 and
6.10 + 0.97 x 1.12, i.e., between 5.01 and 7.19; with a chanfce of 19/20, the true
difference lies between 6.10 — 1.96 x 1.12and 6.10 + 1.96 % 1.12, i.e., between

3.90 and 8.30. With a chance of 99/100, the true difference lies between °

6.10 — 2.58 x 1.12 and 6.10 + 2.58 x 1.12, i.e., between 3.21 and 8.99.
These statements enable us to form an objective picture of what can be inferred
about the true difference from the results of the experiment.*

Quite often we are interested not just in estimating a particular contrast
~but also in examining its statistical significance. This idea needs careful
explanation.

Suppose for definiteness that we are interested in the relative effect of
two particular treatments 7, and T,, i.e., in the true contrast a; — a,.
Now imagine that using the results of a particular experiment we find
that the estimated difference is roughly equal in magnitude to the standard
error. Then the frequency interpretation of the stand‘prd error tells us
that even if there were no real difference between the treatments, a differ-
ence as large or larger than the one observed would occur by chance about
once in every three times. That is, the difference is just such as would
be expected to occur if the true treatment effect were zero.” The con-
sequence of this is not that the true difference is asserted to be zero, but
that on the basis of the results under analysis we would not be justified in
claiming that there is a real difference between the treatments, or, in other
words, that the data are consistent with a zero true treatment difference.

* The precise interpretation of these probability statemients is explained in textbooks
on statistics and needs careful qualification. 1
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" To put this slightly differently, the data do not, at an interesting level of

significance, establish the sign of the true treatment effect. For the positive
estimated difference is reasonably consistent with a zero or negative true
difference. Significance tests, from this point of view, measure the
adequacy of the data to support the qualitative conclusion that there is a
true effect in the direction of the apparent difference.

Imagine next that the estimated contrast is just over twice its standard
error. An apparent treatment difference as great or greater than this
would occur by ehance less than ong time in twenty and we say that the
difference is statistically significant at the 5 per cent (1 in 20) level. Simi-
larly, if the estimated contrast is more than about 2.6 times its standard
error, an apparent difference as great or greater than the observed one
would occur by chance less than one time in one hundred, and we say that
the difference is statistically significant at the 1 per cent level. The level
of significance corresponding to other values of the estimated contrast is
shown in Table 8.1. Any estimate statistically significant at the 1 per
cent level is automatically statistically significant at the 2 per cent, 5 per
cent, etc. levels.

The level of statistical significance attained measures the uncertainty
involved in taking say an apparent difference between two treatments
to be real. For example, if high statistical significance is attained, e.g.,
the 0.1 per cent level, the statistical uncertainty involved in treating the
apparent difference as real is very slight. The following is a general
guide to the practical meaning of the various levels:

not statistically significant at 109,  data are consistent with a zero true
level contrast.

statisticallysignificant at or near the data give good evidence that the
5% level but not near the 1% level true contrast is not zero.

statistically significant at or near data give strong evidence that the
the 19 level true contrast is not zero.

Example 8.2 illustrates some of these ideas.

Example 8.2. Consider again the experiment described in Example 8.1.
The estimated difference is 6.10 units and the standard error is 1.12 units. The
ratio of these is 6.10/1.12 = 5.45, and this is considerably larger than the largest
valuein Table 8.1. Therefore the difference is very highly significant statistically,
and negligible uncertainty is involved in taking there to be a real difference
between the two sets of observations in the direction indicated.

If the estimated difference had been 1.50 units the ratio to the standard error
would have been 1.50/1.12 = 1.34, and from Table 8.1 there is a probability of
rather less than 20 per cent of obtaining as great or greater a difference just by
chance, the true difference being zero.  Since this probability is quite appreciable,
we may consider the data as consistent with the absence of a true treatment
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difference. The 95 per cent limits of error for the true eﬁ‘ec‘t are 1.50 plus and
minus 1.96 x 1.12, i.e., (—0.70, 3.70). Note first that this includes negative
values, so that we cannot, at this level of probability, infer that the true difference
is positive. Note also that it depends entirely on the circumstances of the
application whether the data are consistent with the existence of practically
important true treatment differences.

As a final example, note that if the estimated difference had been 2.38 units,
it would have been statistically significant at the 5 per cent but not. at the 2 per
cent level. Usually this would be taken as moderately good evidence that the
true treatment difference is positive.

TABLE 8.1

LIMITS OF STATISTICAL SIGNIFICANCE FOR AN ESTIMATED
CONTRAST WITH THE STANDARD ERROR KN(?WN

Ratio of Estimated Contrast Level of Statistical
to its Standard Error Significance
1.28 20%
1.64 109
1.96 5%
2.33 2%
2.58 1%
2.81 0.5}%
3.09 0.2%
3.29 0.1(%

If the ratio exceeds the value in the left-hand column, it is statistically significant
at .the level given in the right-hand column.

Derived, by permission of the Biometrika trust and the authors, from Table 1
of Biometrika Tables for Statisticians by E. S. Pearson and H. O. Hartley,
Cambridge University Press, 1954.

The following further points should be noted.

(@) The significance test is concerned with what the dfata under analysis
tell us. If further data become available, or if we have|relevant informa-
tion about the contrast from general experience or theoretlcal considera-
tions, our overall conclusions about the contrast may bF changed.

(b) If the contrast is statistically significant at say thF 1 per cent level,
we are in little doubt that there is a nonzero true contrast. This is only
part of the matter. It will be necessary to consider a‘lso the magnitude
of the true contrast, not just whether or not it is zero, and we do this by
the method indicated at the beginning of this section, that is, by working
out the estimated contrast plus and minus appropriate multiples of the
standard error, in order to give limits between which'the true contrast
lies at assigned levels of probability.

(c) It can happen that although a contrast is statlstlcally significant,
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the limits, at a reasonable probability level, for the true value correspond
to differences of no practical importance. That is, we may sometimes
conclude that although two treatments differ, the difference between
them is of no importance. Statistical significance is not the same as
technical importance.

(d) On the other hand, if the estimated contrast is consistent with a
zero true contrast, it is nevertheless still possible that an important true
contrast may exist. For instance in the case discussed above in which the
estimated difference is equal to the standard error, and equal, say, to one
unit, the limits for the true difference at the 5 per cent probability level are

estimated contrast & 1.96 x standard error,

i.e., are very nearly —1 and 3. That is, there is a 95 per cent chance that
the true contrast lies between the limits worked out in this way. Now
depending entirely on what magnitude of difference we regard as of
practical importance, this range from —1 to 3 may or may not include
differences of practical concern to us. All that the absence of statistical
significance tells us is that we cannot reasonably claim that these data
show that T; gives a higher observation than T,, because the range —1 to
3 includes negative as well as positive differences. Further data may,
or may not, show that a practically important difference exists, unless
we can say from practical knowledge that differences in the range —1 to 3
are of no interest. It follows that we should ordinarily consider the
limits of error for a true contrast, even when the estimated difference is
not statistically significant. Significance tests fulfil an important, but
limited, role in the analysis of data.

This last point (d) suggests the need to consider the sensitivity or power
of a significance test. The whole idea of statistical significance hinges
aroundthe desire to protect ourselves against claiming that our data show a
treatment contrast in a particular direction, when, in fact, the true contrast
is zero (or in the opposite direction). But it is also important to arrange
if possible that if the true contrast is sufficiently different from zero to be
of practical importance, then the estimated contrast should stand a good
chance of being judged statistically significant. This suggests that we
should consider the probability that for a given value of the true contrast,
the estimated contrast should be statistically significant at some par-
ticular level, for example the 5 or 1 per cent levels. This gives what is
called the power of the significance test, i.e., it measures the chance of
detecting a certain true contrast at a specified level of significance. Power
is important in choosing between alternative methods of analysing data
and in deciding on an appropriate size of experiment. It is quite
irrelevant in the actual analysis of data.
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Table 8.2 shows the results of such calculations. We illustrate the
meaning of the Table on the same situation that has been used for Examples
8.1 and 8.2.

TABLE 8.2

POWER OF THE SIGNIFICANCE TEST FOR A CONTRAST
WHERE STANDARD ERROR 1s KNOWN |

Probability that Estimated Contrast will be Positive

Magnitude of True and Statistically Sigpificant at the Following Level
Contrast/Standard Error 10 per cent 5percent ' 1 percent '
0 S per cent 2% per cent  § per cent
0.5 13 7 2
1.0 26 17 6
L5 44 32 14
2.0 64 52 28
3.0 91 85 - 66

4.0 99 98 S92

Example 8.3. The standard error in the example under discussion is 1.12
units. Therefore the third line of Table 8.2 tells us that if a true difference of
this magnitude existed, with say T, giving a greater observatlon than T, there

is a 26 per cent chance that the estimated difference will show the mean for 7;

to be greater than the mean for T,, the difference being statlstlcally significant
at the 10 per cent level. Slmllarly, from the next to the last line, if the true
difference is 3 x 1.12 = 3.36 units, there is a 91 per cent chance that the
estimated difference will be statistically significant at the 10 per cent level, etc.

We can express these quantitative statements roughly by\ saying that if the
true difference is equal to one standard error, there is not a high chance that
the sample difference will be statistically significant at a useful level, but that if
the true difference is equal to three times the standard error, there is a reasonably
high chance that statistical significance will be attained.

Suppose now that in the example the number of experimental units for each
diet is increased-from 10 to 40, the residual standard deviation being unchanged.
This halves the standard error of the difference between diets and so the true
difference of 3 x 0.56 == 1.68 units has the same probability of leading to
statistically significant differences as a true difference of 3.36 units had before,
and so on. |

We can sum up the discussion so far as follows. Tfle standard error
of an estimated contrast is a measure of the difference that is likely to
arise between the estimate of the contrast and its true value. If we know,
before doing the experiment, what the standard error; will be, we can
predict the resulting width of the interval of uncertainty for the true
contrast and can also work out the power of the test of the statistical
significance of the estimated contrast. The standard error depends on
the form of the contrast, the number of experimental umts involved, and
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the residual standard deviation, which measures the relevant portion of
the uncontrolled variation of the observations.

It has been assumed throughout that the amount of uncontrolled
variation is constant. If, for example, some treatments lead to more
uncontrolled variation than others, the formulas are changed.. The
possibility that the standard deviation is different in different sections of
the experiment has quite often to be allowed for in complicated statistical
analyses, but only affects the planning of the experiment, when we know
beforehand roughly what variations in standard deviation will occur.
The general effect is that we should take relatively more observations
where the variability is expected to be high.

The immediate object of most experiments of the type we are con-
sidering is the estimation of the magnitude of certain contrasts among
the treatments, and often also the examination of the statistical significance
of the resulting estimates. 'We usually require, therefore, that the standard
errors of our estimated contrasts should not be too large. Very occasion-
ally, however, the idea that we require to estimate the magnitude of a
particular contrast, say the difference between two treatments, is mis-
leading. We may be interested solely in deciding which of the two
treatments gives the higher observation, or in picking out from a number
of treatments a small set with particular properties. In such cases we
want to end with a simple recommendation that, for example, T; gives a
higher observation than 7,. Although we want assurance that this is
in some sense the proper decision to reach, we do not necessarily ask for
a measure of the uncertainty of the final decision or for an estimate of
the magnitude of the difference between the treatments. The effect of this
on the design of the experiment can be seen from the following example.

Consider an experiment to determine whether a proposed new medical
treatment effects a higher proportion of cures than a standard treatment.
Suppose that on the basis of the results of the experiment we propose to
reach one or other of two possible decisions, namely to use in future
either always the standard treatment or always the new treatment. Sup-
pose also that observations become available sequentially in time, as
suitable patients present themselves.

Now if one treatment is markedly superior to the other, this may become
apparent very soon in the experiment. Then, provided that the evidence
is statistically convincing, there are compelling reasons for discontinuing
the experiment and using the better treatment on all future patients.
On the other hand, if the difference between the treatments is slight,
many observations will be usually required to reach a decision. In the
first case the estimate of the magnitude of the difference between the
treatments may, owing to the small number of observations, be very
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imprecise; this is the price that has to be paid for carrying out the experi-
ment with just the choice between the two ‘particular decisions in mind.
In the medical application just described, it would often be very reasonable
to regard the problem as purely one of reaching a decision between two
(or more generally a small number) of alternative courses of action.
However experiments that can be profitably regarded in this way are not
so common as might be thought. Although many experiments, par-
ticularly in technology, are done primarily to determine some course of
action, for example to decide which of a number of industrial processes
or experimental methods to use, it does seem to be the case that we nearly
always need a reasonably precise estimate of the- differences involved.
There are various reasons for this, such as the following:

(@) Decisions are rarely as simple as in the case outlined above, in that
they may depend on several types of observation and also on the relative
expensiveness of the alternative treatments or processes. The final
decision has often to be made by an act of judgemenf, weighting these
different factors in a rather intuitive way. Estimates of the magnitude
of the treatment effect for each type of observation are needed for this
process to be at all satisfactory.

(b) Even in experiments with an immediate practical aim, it is usually

advisable to try to reach some understanding of the system under investi-

gation in addition to the decision of immediate concern. For this,
quantitative estimation of the magnitudes of treatment]‘ effects is usually
desirable. ;

(¢) 1t often happens that the results of an experiment are useful in a
somewhat unexpected way, for example in helping to settle a question
different from that for which the investigation was first set up. If the
results are obtained in a form bearing solely on the immediate point at

issue, much of this potential usefulness may be lost.

To sum up this discussion, an estimate of the relevafpt treatment con-
trasts is nearly always required in experiments designed to add to funda-
mental knowledge. In experiments intended to decide between alternative
courses of action, it is important to consider in designing the experiment
exactly. what the possible decisions are and how they are related to the
observations to be made. The experiment should, Within reason, be
designed to give just information relevant to the decisionf, and considerable
economy is sometimes achieved by determining the total number of units in
the light of the initial results of the experiment.* Usually, however, it will

again be necessary to estimate the magnitudes of the relevant contrasts.
* The statistical technique for doing this is called sequential sampling and is described
briefly in § 8.5. ‘

THE ESTIMATION OF PRECISION ' 165

8.3 THE ESTIMATION OF PRECISION

In the preceding section we saw that the precision with which a contrast
is estimated is measured by the standard error. This depends in a known
way on the number of observations and the form of the contrast and on
the residual standard deviation, which measures the amount of the relevant
part of the uncontrolled variation. Therefore the numerical determina-
tion of the standard error in any particular case depends largely on
finding or estimating the residual standard deviation, and this we now
consider. '

We have to consider the estimation of the residual standard deviation
both in the analysis of the final results and in the preliminary calculations
to determine the appropriate number of experimental units.. There are
essentially five methods of determining the residual standard deviation:

(i) by the observed dispersion, in the experiment itself, of the observa-
tions on different units receiving the same treatment. This can be used
only in the final analysis and not in preliminary calculations;

(i1) from the -magnitude of high-order interactions in factorial experi-
ments;

(iii) by theoretical considerations;
(iv) from within-unit sampling variation. This will be described later;
(v) from past experience of similar experiments.

These methods will be considered in turn.

(i) Use of Observed Variation between Experimental Units

This is the most frequently used method and has already been described
in Chapter 3 in connection with randomized block and Latin square
designs. An experimental unit was defined to correspond to the smallest
subdivision of the experimental material, such that it is possible for
different units to receive different treatments. By considering the varia-
tion between different units receiving the same treatment, we have a
direct measure of the reproducibility of the observations obtained in
independent repetitions of the experiment.

The requirements for this method to give a correct estimate of the
residual standard deviation are '

(a) that the different units should respond independently of one
another (see § 2.4); and

(b) that any source of uncontrolled variation balanced out in the
design of the experiment should also be removed before calculating the
standard deviation (see § 3.3). ‘
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The reader should re-read §§ 3.3, 3.4 for an account of the method by
which the estimate of the residual standard deviation can be calculated.

The estimate of standard deviation can now be used to obtain an
estimated standard error for any particular contrast. Thus for the differ-
ence between two treatment means, both based on the' same number of
observations, the estimated standard error is

estimate of resi;dual
standard deviation

2

no. of observations; X (
per treatment

(&)

This formula is obtained from formula (2) for the true standard error
by replacing the standard deviation by our estimate of it.

In the discussion in § 8.2 of the meaning and use of the standard error,
it has been assumed that the true standard deviation is known. Thus
in Example 8.1, the interpretation of the limits given is correct only if the
standard deviation of 2.5 umits is not itself subject to random errors. If
the standard deviation is only an estimate, it is intuitivély clear that the
limits for the true contrast, at a given level of probability, must be pushed
further apart to allow for the additional uncertainty in ‘uhe system.

The additional allowance in the uncertainty that has to/be made depends -

on the degrees of freedom for the residual which measure, roughly speak-
ing, the number of independent pieces of information available to estimate
the standard deviation. There is some further discussioh in Example 3.2.
The residual degrees of freedom depend to a considerable extent on the
total number of units in the experiment and to a lesser extent on the
particular design adopted. The most important cases will be put down
here for reference:

|
For a completely randomized experiment in which #'treatments are
tested on N experimental units, not necessarily with the same number
of units for each tredtment, the residual degrees of freedom are
N — ). \

In a randomized block experiment in which ¢ treatments are tested
on N experimental units arranged in k& randomized blocks with
N/k units in each, the residual degrees of freedom are N—t—k+1
In particular if each block contains each treatment just once, N = tk
and the residual degrees of freedom are (k — 1)(z — 1). ~

In a single #.x ¢ Latin square experiment in which t“treatments are
compared on 2 experimental units, the residual degrees of freedom
are (¢t — 1)(r,— 2).
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In a composite Latin square design with r separate ¢ X ¢ squares,
the residual degrees of freedom are (¢t — 1)(rt — r — 1).

In a composite Latin square design with r squares each of size ¢ x ¢
and in which the rows, say, are intermixed, the residual degrees of
freedom are (rt — 2)(z — 1).

The derivation of these formulas need not concern us, although the
reader who has followed the discussion in Example 3.2 should be able
to work them out.

The effect of errors of estimation in the standard deviation is illustrated
in Table 8.3.

TABLE 8.3

MUuULTIPLIERS TO OBTAIN LiMITS OF ERROR AT ASSIGNED LEVELS OF
PROBABILITY WHEN THE STANDARD DEVIATION HAs TO BE ESTIMATED

Degrees of Freedom Level of Probability
for Residual 90 per cent 95 per cent 99 per cent
5 2.02 2.57 4.03
10 1.81 2.23 3.17
15 1.75 2.13 2.95
20 1.72 2.09 2.85
25 1.71 2.06 2.80
30 1.70 2.04 2.75
Standard deviation
known 1.64 1.96 2.58

The precise interpretation of these limits depends on an assumption about
the form of the frequency distribution of the uncontrolled variation.

Extracted, by permission of the Biometrika trust and the authors, from
Table 12, Biometrika Tables for Statisticians by E. S. Pearson and H. O. Hartley,
Cambridge University Press, 1954.

Thus, in Example 8.1, with a known standard error of 1.12, and an
estimated difference of 6.10 there is a chance of 19/20 that the true differ-
ence lies between 6.10 — 1.96 x 1.12 and 6.10 + 1.96 x 1.12, i.e.,
between 3.90 and 8.30. If the standard error had been obtained from an
estimated standard deviation with 20 degrees of freedom and had happened
again to have the value 1.12, the limits would have been 6.10 — 2.09 x 1.12
and 6.10 + 2.09 x 1.12, that is, 3.76 and 8.44. Similarly with 10 degrees
of freedom the limits are 3.60 and 8.60. Although Table 8.3 could be
extended down to a single residual degree of freedom, general experience
suggests that standard deviations based on less than about five degrees of
freedom should not be used for the estimation of standard errors.

In the analysis of experiments, Table 8.3 is used for calculating statistical



<

168 THE CHOICE OF THE NUMBER OF OBSERVATIONS

significance and finding limits of error. If it is required; during the design
stage of the experiment, to estimate the precision to be expected the
following rough rule is useful. The effect on the estrmated precision of
contrasts of having to estimate the residual standard deviation is approxi-
mately to multiply the standard deviation by |

1 K
+ (residual degrees of freedom)

“4)

This rule tends to underestimate the effect when the residual degrees of
freedom are small and, as noted above, the degrees of freedom should
not, if possible, fall below five.

The increase in error arises from errors in the estimation of the residual
standard deviation. If we were solely concerned with obtaining estimated
contrasts as close as possible to the true values, and not with estimating
the precision of our conclusions, the residual degrees of freedom would be
irrelevant. That is, the factor in formula (4) apphes to the estlmated
precision and not to the true precision.

As an example of the use of the rule, suppose that we whave 5 treatments
and 20 experimental units and wish to choose betw‘een a completely
randomized experiment and a design in 4 randomized blocks. In the

first design the standard deviation is effectively multrphed byl +1/15="

1.067, and in the second by 1 + 1/12 = 1.083; the degrees of freedom 15
and 12 have been obtained from the general formulas given above. The
ratio of these factors is 1.015, so that the completely randomized design
is the more accurate unless at least a 14 per cent reductilon in the residual
standard deviation is attained by blocking. Usually skllful use of the
randomized block design would produce an appreciably greater reduction
in standard deviation than this. In general it is clear that little informa-
tion is Jost by having to estimate the residual standard deviation provided
that the residual degrees of freedom exceed 15 or 20. 1

In a more complex design, such as a split plot experiment, there are
two or more residual standard deviations and these have to be estimated
separately, each having its appropriate degrees of freedom

To sum up, we can estimate the residual standard deviation directly
“from the results of the experiment, by considering thel dispersion of the
observations on different units receiving the same treatment. ~Any
portion of the uncontrolled variation whose effect has been eliminated in
the design of the experiment must likewise be eliminated/before calculating
the standard deviation. If we are designing an experlrnent in which the
residual standard deviation is to be estimated in this way, the ultimate
precision to be expected is lower than if the standard deviation had been
known exactly; an allowance for this can be made. The advantage of
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this method of determining precision is that it makes the interpretation
of the experiment selfcontained, in that the standard deviation is deter-
mined under the actual conditions of the experiment, and is not dependent
on any assumption that, for example, the standard deviation is the same
as in previous similar experiments. :

(ii) Use of High-Order Interactions in a Factorial Experiment

This has been discussed in § 6.11. In a complicated factorial experi-
ment we may attain sufficient precision from one replicate, and in this
case all experimental units receive different treatments, so that method
(i) is inapplicable. We can however estimate the residual standard
deviation, if it can be assumed that the true values of certain high-order
interactions are negligible. Once this assumption has been made, an
estimate can be obtained with a certain number of degrees of freedom,
and the discussion in (i) applies. If the assumption about the high-order
interactions is false, the true residual standard deviation will be over-
estimated.

(iti) From Theoretical Considerations

It is sometimes possible to calculate theoretically what the residual
standard deviation should be under idealized conditions. Such a calcu-
lation is useful

(@) to estimate the residual standard deviation in the analysis of small
experiments, in which very few degrees of freedom are available for
residual;

() to provide in the planning of the experiment, an estimate of the
precision that is likely to be attained;

(¢) to use in the interpretation of an estimate of standard deviation
obtained by methods (i) or (ii). It is often instructive to compare. the
observed standard deviation with a theoretical value. If the theoretical
value is too small there are important sources of variation present not
accounted for in the theoretical analysis.

The calculation of theoretical standard deviations is, of course, a
matter of statistical technique and will not be gone into in detail here.
The following are the most important cases.

First the observation on each experimental unit may be that out of,
say, N individuals, r have a certain property and the remaining N — r
do not. For example on each plot of an agricultural field trial, we may
examine 100 randomly selected plants and count the number discased.
In this case N is 100 and r is the number with the disease actually counted
on the plot. Suppose that the only source of uncontrolled varjation
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present arises from sampling the plot rather than counting all plants, i.e.,
in general, arises from examining N randomly selected individuals rather
than an indefinitely large number. Then it can be shown mathematically
that the residual standard deviation of the observed, proportion with the
property is equal to

A/ {true proportion with property X true proportion without property ®)
N ‘ (S

|

For instance, if the true proportion of diseased ﬁlants was 0.3 in the
above example, the standard deviation would be “\/(0.3 x 0.7/100) =
0.046. ‘

The second case is when the observation made on each experimental
unit is the rate of occurrence of a randomly occurring event. Examples
are counts of radioactive particles, or accidents, or breakdowns of a
machine, or mutations of genetic material. In all these cases we have
events occurring in a haphazard way in time, and the observation on each
experimental unit is that a certain number, », of events occur in a period
of observation 7. The rate of occurrence is thus n/T Suppose that the
on!y source of uncontrolled variation arises from having observed each
unit only for a time T, rather than for a much longer time,* and that on
each unit events occur completely randomly, the occurrence of one event
?)e.ing entirely independent of the occurrence of all other events. Then
it can be shown mathematically that the residual standard deviation of the
rate of occurrence is equal to |

expected number of
A/ {true rate of occurrence} events &bserved
= ; (6)

T period of observation, T
For example, suppose that each experimental unit is a batch of wool
agd that the observation made on each unit is the end breakage rate in
spinning. If the true end breakage rate is expected|to be about 10 per
1000 spindle hours, and the period of observation is|3000 spindle hours
the standard deviation will, under the above assumptions, be 4/(10/3) =
1.83if the unit of time is taken to be 100Q spindle hours. Similarly with
a period of observation of 1000 spindle hours per experimental unit, the
residual standard deviation would be 4/10 = 3.16. | Other applicat’ions
of this formula are to counting problems in bacteriolbgy and serology.
A third situation is when the observation for each %experimental unit is
a measure of dispersion. For example the treatments may be different
experimental methods and one object of the experiment may be to compare

" . . .
That is, we assume that all units receiving the same treatme“nt would give effectively
the same rate of occurrence, if observed for a sufficiently long time.
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the reproducibilities of the different methods. For one batch of material
several observations are made by a particular method, and the dispersion
of these observations measured, for example by the standard deviation.
We now have for each experimental unit a standard deviation and we
treat these as the “observations” for analysis. These ‘“‘observations’
have a residual standard deviation, i.e., we have to consider the standard
deviation of a standard deviation. It can be shown that if the frequency
distribution of the readings on any one unit approximates to a special
mathematical form, called the normal or Gaussian distribution, the
residual standard deviation is approximately equal to

true value of the standard deviation
4/(2 x number of readings per determination of st. dev.)’

(M

These are not the only cases where a theoretical calculation of the
residual standard deviation can be made; whenever the observation
under analysis can be considered as originating from a probability model,
a theoretical calculation of standard deviation may be possible. The
disadvantage of using the theoretical standard deviation is that the
theoretical model assumed, for example the sampling of a completely
random series of events with no other sources of variability, may be quite
inaccurate as a representation of the uncontrolled variation actually
occurring. If it can be obtained, an estimate of the residual standard
deviation calculated from the observed variation between units is to be
preferred for the direct assessment of the precision of treatment effects.
In analyzing data on proportions, counts, and variabilities it is frequently
desirable to work with mathematically transformed values. The theo-
retical standard deviation is different after transformation but can always

be found.
(iv) From Within-Unit Sampling Variation

It frequently happens that the observation of ‘main interest for any
one unit is the mean of independent readings obtained from randomly
selected portions of the unit. Some examples should make this clear.

In an agricultural field trial, it may be required to analyze the total
yield of product per plot. If each plot is large, the yield may be estimated
by selecting a number of small areas within each plot and weighing the
product only from these. From the total yield of the sampled areas, we
can estimate the yield of the whole plot.

In many types of industrial experiment, we are interested, among
other things, in comparing the mean strengths of articles produced by
alternative processes. Each experimental unit consists of a batch of
articles, processed at one time by one method, and the mean strength
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will usually be estimated by testing a relatively small number of articles,
randomly selected from the batch. For example in a textile experiment
each batch of yarn, i.e., each experimental unit, would probably consist
of many miles of yarn, the mean strength being esti’fnated from tests on
say 100 1-ft lengths randomly selected from the batch.

More generally, it is a common characteristic of methods of chemical
and biological analysis thzt duplicate or triplicate ind‘bpende'nt determina-

tions are made on samples of material from the sam“e experimental unit,
the final observation for the unit being the average of the separate deter-

minations. In complex methods of chemical analysis there may be several
stages of sampling, corresponding to the different stages of the analysis.

In this type of situation we can distinguish several components of
uncontrolled variation, as shown by the following exé;.mple.

Example 8.4. Consider as a typical example a simplified form of an experi-
ment for comparing two methods S; and S, of spinning wool yarn. There
w11! be several experimental units, each being a batch of raw material from
which yarn is to be spun. Suppose that the batches are!processed in random
order, half by process S; and half by process S,. Finally from each batch a
number of lengths are randomly selected and tested for strength. This gives
us a collection of observations of the following general type:

Unit 1 Unit 2 Unit3 !
S S, S,

Quite generally think of a situation in which the primaryiobservation on each
unit is the average of several readings. |

Now it would in principle be possible to make a large nq‘fnber of observations
on each experimental unit. From the variation of the observations on one
unit, we coqld then obtain a measure of the within-unit variability. If we
measure variation by the standard deviation we thus obtain the within-uni
standard deviation. In the present example this is a measure of the variation of
§trength within a batch of yarn spun in one lot; it takes nol account of variation
in mean strength from batch to batch. Next if we had the true mean strength
for each experimental unit, we could define the between-u‘hit standard deviation
to measure the uncontrolled variation between units receiving the same treatment
in Fhe. true mean strength for each unit. This would measure the effect of
variations between batches of raw material and of nonconsté.ncy in the conditions
of processing. Notice that the between-unit standard deviation is unaffected by
variations of strength within a batch, since it refers to the mean of a very large

number of observations per batch. ‘ L]

Ina p}'actical situatiog we usually have only a small or ‘moderate number of
observations on each unit, and it can be seen that the comparison of the mean
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strength for the two processes is then subject to errors arising from both sources.
The effective residual standard deviation for the comparison of mean strengths

can be shown to be
(within-unit st. dev.)?
no. of obs. per unit |

A/ {(between-unit st. dev.)? +

There is a discussion of this formula with numerical applications in Example 8.9;
for the present, note that if we can estimate both component standard deviations,
we can predict the residual standard deviation corresponding to any number of
observations per experimental unit.

The two components of standard deviation can be estimated from the results
of an experiment in which there are at least two observations per experimental
unit; the analysis of variance for doing this is described in textbooks on
statistical methods (Goulden, 1952, p. 67). The estimation of the separate
components is, however, only necessary in order either to examine the nature of
the uncontrolled variation or to predict what the standard deviation would have
been with a different number of observations per unit. If all that is required
is to estimate the precision of the process comparisons in the experiment as
performed, it is enough to analyze the mean strengths per batch as if they were
single observations. _

Now consider the type of experiment, which is sometimes done, in which
there is only one experimental unit for each treatment. That is, one batch of
material is processed by .Sy _and one by S;, and several measurements of strength
are made for each batch. Clearly no fully satisfactory estimate of precision can
be obtained from such an experiment, because there is no way of estimating the
between-unit standard deviation. The most that can be shown is that the two
units have different mean strengths; whether or not this difference is due to the
processes or is just random between-unit variation cannot be determined from
the observations themselves. An essential condition for a selfcontained analysis
of the observations and for the correct estimation of precision is that for each
treatment there should be several experimental units, run independently.
Nevertheless, in cases where it is impracticable to have more than one, or a
small number, of experimental units for each treatment, and in which prior
knowledge suggests that the between-unit component of variation is relatively
unimportant, the estimation of precision from the within-unit standard deviation
is permissible, i.e., we in effect assume that the between-unit standard deviation
is zero. 'This is not a good procedure, however, and should be avoided wherever
possible, by running enough independent experimental units for each treatment
to provide a satisfactory estimate of the residual standard deviation by method (i).

In more complicated cases, with several stages of sampling, there will be
several components of standard deviation but the general principles involved
remain the same.

The use of within-unit sampling variation to measure the precision of
treatment contrasts is therefore in general undesirable. However, in
experiments with a very small number of units, so that no effective
estimate of the correct residual standard deviation can be made, the
within-unit may, if used with caution, be useful in giving the minimum
error to which the treatment contrasts are subject. More generally the
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magnitudes of the within-unit standard deviation and the between-unit
standard deviation give information about the importance of the different
sources of uncontrolled variation, and also determin:e, for future experi-
ments, what is a suitable value for the number of readings per unit.
Notice that the use of within-unit variation is af]alogous to that of
certain theoretical values for the standard deviation, in that both are

obtained assuming that some sources of variability arfe negligible.

(v) From the Results of Previous Similar Experimentsj

The last method of estimating the residual standafd deviation is from
the statistical analysis of the results of previous ﬁr‘imilar experiments.
Particularly in routine laboratory work, large bodigs of previous data
may be available for such an analysis from which an estimate based on a
large number of degrees of freedom may be obtained.

Such an estimate is particularly useful in the d:etermination of an
appropriate size for an experiment being designed. Tt is also useful in
the analysis of the results of an experiment 1

(@) to estimate the residual standard deviation when few degrees of
freedom for residual are available in the experiment; |

(b) to compare with a residual standard deviation, obtained from the
experiment itself. Tt is frequently a good check on the experimental
work to see how the standard deviation compares with that in previous
similar experiments. f

If a reasonably accurate estimate of the residual standard deviation
can be obtained from the experiment itself, we would normally use this
for the calculation of standard errors rather than the ¢éstimate from prior
work, even though the latter is nominally more accurate. We thereby
avoid the assumption that the amount of uncontrolled variation is the
same as in previous work, make the interpretation of the experiment more
selfcontained, and, other things being equal, the conclusions more cogent.
A possible exception to the use of the observed residual standard deviation
is when it is appreciably less than the value from pri‘?r work, and yet it
is' fairly certain from knowledge of the system that no real increase in
precision can have occurred. ¢

_(vi) Summing Up ‘

We have seen that methods (i), (ii), and (iv) of estimating the standard
deviation are applicable only in the analysis of the observations, not in
the design of the experiment. In order to obtain an estimate of precision
prior to the performance of the experiment we must use methods (iii) or
(v), theoretical calculation or the analysis of the results iof previous similar
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experiments. Occasionally, as for example when the experiment is the
first of its type, neither of these methods can be used; in s.uch a case the
size of the experiment must either be settled by general judgement or,
alternatively, if a prior calculation of precision is very desi.rable, the
experiment must be done in two or more stages, the observations f_rom
the first stage being used to determine the appropriate size of the second
stage. This technique is discussed briefly in § 8.5.

8.4 SOME STANDARD FORMULAS

We can now give some formulas for deciding on an appropriate number
of observations to take. First determine the residual standard deviation
as well as possible, by one or another of the methods of the previous
section.

If we have a set of treatments, and the comparisons of all pairs are of
equal importance, we devote an equal number of units to each treatment.*
Then the standard error of the estimate of the difference between any
two treatments is

A/ { 2 } residual standard

no. of units per treatment deviation

and therefore the number of units per treatment leading to a preassigned
standard error is

residual standard daviation}2 @®
{ required standard error

If we can now decide what standard error we require, either by con-
sidering the width of the limits of error for the true contrast, or'by
considering the power of the associated significance test, the appropriate
number of units per treatment is determined. Similar calculat10n§ may
be made for contrasts other than simple differences between pairs of
treatments. _

Example 8.5. In a certain type of agricultural field trial it may be known that
the residual standard deviation is about 10 per cent of the mean yield. Suppose
that we require to make the limits of uncertainty for a true difference at the
95 per cent level of probability extend 5 per cent on each side of the estimated
difference. This implies a standard error of 2% per cent, and hence from (8) the
appropriate number of plots per treatment is 2 x (10/24)* = 32. )

With even a moderate number of treatments this represents a large experiment,
and it might well be decided that our requirements on precision have to be

* An exception to this would be if it were expected that observations on dif?ﬁ?rer_lt
treatments would have different amounts of uncontrolled variation. This possibility is
noted briefly in § 8.2. It would then be reasonable to take more observations on those
treatments for which the variability is expected to be high.
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weakened. The next step would then be to work out the/extent of the interval
of uncertainty at the 95 per cent level for various sizes of experiment. We get

Number of Plots Approximate 95 Per Cent
per Treatment Limits, plus and minus
32 5 per cent
25 5.7 per cent
16 7.1 per cent

9 9.4 per cent

It is now usually a matter of intuitive judgement to decide what to do. The
additional expense of an increase in the size of the experiment has to be balanced
against the resulting gain in precision in the conclusions. We shall give an

example below in which these considerations can be w?ighed quantitatively,

but this is rather unusual. !

Alternatively it may seem better to think in terms of the power of the
significance test of the difference between two treatments. | For example suppose
that a true difference between two treatments of 10 per [cent is considered of
appreciable practical importance. Then it will be desirable that if a true
difference of this magnitude exists there should be a good chance that a reasonable
degree of statistical significance should be attained by:the observed values.
Now Table 8.2 shows that if the true difference is three tintes the standard error,
there is 91 per cent chance of attaining statistical significance at the 10 per cent
level, an 85 per cent chance of attaining statistical significance at the 5 per cent
level, and so on. If the ratio to the standard error is much less than three the
chance of attaining significance is appreciably reduced. Therefore it would be
reasonable to arrange that the true difference, 10 per cent, is three times the
standard error, ie., to arrange that the standard error is 10/3 per cent. If we
substitute this value into formula (8), we get for the number tof plots per treatment
2 x (10 x 3/10)> = 18. Again, if this calculation makes the total number of
plots in the experiment intolerably large, the effect of weakening the requiﬁrements
can be investigated. ‘

If it seems that an experiment with a small number of experimental
‘units will be adequate, the residual degrees of freedom in the design will
be small, and this, as we have seen, increases the effective standard
deviation. Usually, however, the allowance for this is relatively small
compared with the general uncertainty involved in the whole calculation
of the appropriate number of units. An exception is when the size of
the experiment as determined from the first calculation would leave five
or fewer degrees of freedom for residual; it would then be impracticable
‘to estimate the standard deviation from the ebserved dispersion of the
observations, and it may be desirable to increase tfpc number of units
solely in order to get enough degrees of freedom for residual. This is
especially the case when methods of estimating the standard deviation
other than from the observed dispersion of the observations are unreliable.

It must be stressed, however, that the condition that there should be
enough degrees of freedom for residual is not to be used as a general
criterion for determining the size of experiments. The/main consideration
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is the standard error of the contrasts, with the degrees of freedom for
residual a subsidiary matter.

Similar methods apply when the residual standard deviation is calcu-
lated theoretically, or when the contrast of interest is not a simple
difference. :

Example 8.6. Suppose that in an invesgigz_a.tion in p_uclear p}lysics it is desired
to examine the frequency with which certal'n_ condltlons_ which can be set up
experimentally lead to specified types of transition. Imagl_ne that the_ mechanism
of the transition is unknown and that to find out something about it, th‘e effect
on the frequency of transitions of various modifications to the equrlmental
conditions is to be investigated. ) )

Suppose that initially the transition occurs in about 20 per cent of occasions
and that it is thought desirable that if a certain treatment increases th1§ true
proportion to 30 per cent, there should be a go_od chance_ of attaining stat.lstlcal
significance. Let each experimental unit consist of » trials, the proportion of
these leading to transitions being observed. If we calculate on the basis of a
25 per cent transition rate, the residual standard devu}tlon is, from (5),
V(025 x 0.75/n) = v/(0.1875/n). If r units are tested with each treatment,
the standard error of the estimated difference between the treatments VYlll_ be
+/(2/r) x standard deviation, which equals V[0.375/_(rn)]. Arguments similar
to those used for the previous example suggest arranging that the true difference
of interest 3020 per cent, i.e., 0.1, is three times the standard error. This gives

the equation
X A/{(27—5-} =0.1, that is rn = 340.
rm :

Thus we need about 340 trials for each treatment. Tables and a nomogram
for the appropriate number of units, calculated by 2 more refined method, are
available (Eisenhart et al., 1947, p. 247).

Now the calculation has given just the total number of trials that should be
carried out for each treatment; from the point of view of the calculatlo_n it
makes no difference whether we have for each treatment one unit with 340 trials,
two units with 170 each, and so on. This is because formula (5) for the standard
deviation is based on the assumption that there are no sources of uncontrolled
variation to make two trials on different units receiving the same treatment any
less alike than two trials on the same unit. In practice this would be at best_ a
good approximation and it would be preferable to have as many different units
as practicable, in order to attain the best possible sampling of other sources of
uncontrolled variation that may be present. In the present example a good
arrangement would possibly be to have, for each treatment, seven expe_rlmer.ltal
units, each unit consisting of, say, 50 trials made as far as possible under identical
conditions.

Example 8.7. Suppose that we are particularly interested in the slope of the
response curve for a certain quantitative factor and that the factor is investigated
at three equally spaced levels, with equal numbers of units at each level.
Table 7.1 shows that the standard error of the slope is

residual standard deviation

1.225 x +/(total number of experimental units at the three levels) )
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If we can estimate the residual standard deviation and decide on the standard
error that we require, we can determine the total number of experimental units
as before,

In determining the number of experimental units, wé are compromising
between, on the one hand, having high precision and an expensive experi-

. . . L. P
ment and, on the other, having an economical experiment giving low

precision. Usually this compromise has to be reac};‘1ed in' a somewhat

intuitive way, but if it is possible to measure in the sarqfe units, for example
of money, the cost of the experiment and the loss caused when the con-
clusions are inaccurate, it will be possible to calculate explicitly the
appropriate number of units. Yates (1952) has provided an interesting
discussion of this.

Example 8.8. Yates’s example is of the determinatiion of the optimum
dressing of nitrogen for sugar beet. The optimum dressing will be such that
the cost of a small additional dressing just equals the value of the additional
yield produced; the determination of this optimum will be subject to random
errors of experimentation and it is possible to express the average “loss” arising
from the use of an incorrect dressing in terms of the square of the standard
error of the estimated optimum, and of the total area of crop to which the
conclusions are to be applied, etc. The standard error will depend in part on
the size, and hence on the cost, of the experiment, and if the cost of an experiment
of given size is known, the average “loss” from an incorrect recommendation
plus the cost of experimenting can be minimized, and so the most economical
size of experiment calculated. ;

To carry through the calculation it is necessary to know approximately the
cost of experimenting, the loss per unit of experimental material due to a given
departure from optimum conditions, the residual standard deviation, and the
quantity of material to which the conclusions are to be applied.

There are several things that may complicate such a calculation. It may be
advisable to determine optimum treatments separately for various portions of
the experimental material. Again, it often happens that the conditions under
which the experimental work is done are not fully representative of conditions
under which the results are to be applied, i.e., there may be a bias. Effort
spent in removing this bias rather than in increasing the size of the experiment
is often worth-while.

The main discussion at the beginning of this section has been of the
case where the comparisons of all pairs of treatments are of equal impor-
tance, so that we arrange that each treatment occurs the same number of
times. It may happen, however, that some comparfisc;ns are of more
interest than others. There are two main possibilities!

We may have one control treatment and a numbef, m, of alternative
treatments. Sometimes the most interesting thing is to compare the
alternative treatments individually with the control, comparisons of the
alternative treatments among themselves being of sec?ndary importance.
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It can be shown that if all observations have the same precision the best
procedure is to arrange that for each unit receiving a particular alternative
treatment there are approximately 4/m units receiving the control treat-
ment. A second case is when the main interest is in the difference between
the control and the average of the other treatments. . Then we should
have m observations on the control for each observation on a particular
alternative treatment.

For example, in a nutritional experiment we may compare a control
diet deficient in a certain constituent with, say, three other diets, all
containing substantial amounts of the constituent, but differing in the
form in which it is presented. Since the nearest whole number to 4/3
is 2, the recommended arrangement is to have two observations on the
control to one on each of the other three treatments, whenever the-main
interest is in comparing an individual supplemented diet with the control.
If the main interest is in comparing the average of the three supplemented
diets with the control, the recommendation would be three observations
on the control to one on each of the other three treatments. The experi-
ment could be set out in randomized blocks with five units per block in
the first case and six in the second case. The total number of blocks
would probably be determined so as to reduce the standard error of the
principal comparison to an acceptable level. ‘ .

A different situation arises when the treatments can be divided into
two groups, one relatively more important than the other. Here trial
and error combined with the use of formula (1) will usually indicate a
suitable arrangement. For example if the total number of available units
is severely limited, we may prefer to attain a specified precision.f(')r com-
parisons within the important group, accepting whatever precision can
be obtained from the remaining units for the remaining comparisons.
Or we may decide to have the standard errors for comparisons with%n
the more important group and within the less important group to be in -
the ratio of say 1 : 2. This would be achieved by having the corresponding
ratio for the number of observations per treatment be 4 : 1. In fact, by
formula (1), if there are 4n observations.on each of one group of treat-
ments and n observations on each of the second group, the following
standard errors for estimated differences are obtained:

for two treatments in first group, 4/[2/(4n)] x standard deviation =
4/[1/(2n)] % standard deviation;
for two treatments in second group, +/(2/n) X standard deviation;
for a treatment in one group com- +/{1/n + 1/(4n)] X standard devia-
pared with a treatment in another tion = 4/[5/(4n)] % standard de-
group, viation.
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Again the number of units per second group treatment, », can be deter-
mined if the required value of the standard error is known.

The final group of problems for consideration is connected with the
within-unit sampling variation of the type illustrated in Example 8.4.
Here we have to decide not only on the total numl?er of experimental
units but also on the number of repeat observations per experimental unit.

The general principle involved is the obvious ong that if the main
expense and time are in taking the observations, so tbat repeat observa-
tions on the same unit cost as much as the testing of the same number of
new units, the best procedure is to have as many units as are necessary,
making either one observation on each unit or two if the variation within
units is of intrinsic interest. On the other hand, if, as is commonly the
case, the main expense is in the provision and testing of the experimental
units, it will be best to use a small number of experimental units, making
a relatively large number of observations on each uni“t. For instance, in
Example 8.4, an increase in the number of experimental units would
involve the processing of fresh batches of wool and would be éxpensive,
whereas an increase in the number of observations per unit merely
involves selecting further lengths for test and carrying out the strength-
testing, and the expense of this is slight.

A statistician should be consulted for details on how to proceed in
such cases. - Two components of standard deviation are involved (see
Example 8.4). The within-unit standard deviation measures the variation
that would be obtained if a large number of 'observaqions were made all
on one unit. The between-unit standard deviation measures the variatjon,
in the absence of treatment effects, when the average of a large number of
observations on each unit is analyzed. The effective residual standard
deviation, for the comparison of the treatment means, is

(within-unit st. dev.)?
no. of repeat obs. per unit)’

A/ :(between-unit st. dev.)? + ®
and once approximate values for the two 'components{ of standard devia-
tion can be found, we can determine as before the standard error that will
result from any given number of units and number of observations per unit.

Example 8.9. Suppose that in an experiment such as that of Example 8.4,
it is known from previous work that the between-unit and,within-unit standard
deviations are, respectively, about 1 and 2 units. The s‘t‘andard error of the
estimated difference between two treatments is therefore -

2
- 1+ 4 o
no. of units per treatment no. of repeat obs. per unit

The numerical values of this are shown in Table 8.4.
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TABLE 8.4

STANDARD ERROR OF DIFFERENCE BETWEEN Two
TREATMENTS IN A HYPOTHETICAL EXPERIMENT

No. of Repeat

Obs. per Unit 1 2 4. 8 16 32 Infinity
No. of Units ‘
per Treatment
2 2.24 1.73 1.41 1.22 1.12 1.06 1.00
4 1.58 1.22 1.00 0.87 0.79 0.75 0.71
6 1.29 1.00 0.82 0.71 0.65 0.61 0.58
8 1.12 0.87 0.71 0.61 0.56 0.53 0.50
10 1.00 0.77 0.63 0.55 0.50 0.47 0.45
12 0.91 0.71 0.58 0.50 0.46 0.43 0.41

The following conclusions can be drawn from Table 8.4 and can be paralleled
in a more general case.

(@) Not much decrease in the standard error is produced by increasing the
number of repeat observations per unit beyond about 16 (the corresponding
number in the general case is about four times the square of the ratio of the
within-unit standard deviation to the between-unit standard deviation).

(b) A particular standard error can be produced in various ways. For
example a standard error of 0.71 can be obtained with 20 units per treatment
and 1 observation per unit (not shown), with 12 units per treatment and.2
observations per unit, with 8 units per treatment and 4 observations per unit,
with 6 units per treatment and 8 observations per unit, and aIS:o w1th_ 4_umts
per treatment and a very large number of observations per unit. This is the
smallest number of units per treatment that will give the required standard
error; no allowance has been made for the effective loss of precision consequent
on a reduction in the degrees of freedom for residual. )

(¢) If it is possible to assess the relative costs of a unit and of an observation,
the most economical combination to produce a given standard error can be
found, either mathematically or by direct examination of a table such as Table 8.4.

In more complicated cases with several stages of sampling, there will be
several components of standard deviation. The general remarks above are
applicable, but details are too complicated to go into here.

8.5 SOME SEQUENTIAL TECHNIQUES

In the methods described in § 8.4, a single calculation is made of the
number of observations to be made to attain given precision. It is
sometimes useful to fix the number of observations not in one step at the
beginning of the experiment, but in several steps, that is, to make the
number of observations depend on the actual outcome of the experiment.
An experiment set up in this way is called sequential.

The general idea of working in stages, deciding what to do at one stage
only after examination of all the results obtained up to that point, is of
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course widely used; here we are concerned with a specralrzed aspect of
it in which the results already obtained determine, not the objective of
further work, but simply how many more observations shall be taken.
There are four situations in which these methods may be useful:

(@) when initially no reliable estimate of the residual standard deviation
Is available;

(b) when the residual standard deviation depends in a known way on
the quantity to be estimated;

(¢) when a clear-cut decision is required between a small number of
courses of action;

(d) when an estimate is requrred with a precision dependmg on the
value of the contrast under estimation.

Some experiments lend themselves naturally to a sequential approach.
For example if experimental units have to be dealt with singly, so that
observations become available at intervals in time, a sequentlal determina-
tion of the number of observations is often perfectly ﬂeasrble In other
situations, notably in agricultural field trials, the experimental work has
to be planned and started at one time and the results: become available
together much later. A sequential method is not then;practlcable for an
individual experiment, although it may well be applicable to a series of
similar experiments, for example in the repetition for several years of an
important variety trial. The general point that the following discussion
applies mainly to the first type of experiment should be borne in mind
throughout.

In any experiment in which the total number of observations is influenced -

by the values of the observations care is needed in applymg the conventional
statistical methods of analysis (Anscombe, 1954), since the practical inter-
pretation of statistical significance limits, etc., requrres that the total
number of observations is chosen without regard to the outcome of the
experiment. If, for example, units are tested in small grdups and statistical
significance is calculated after each step, the experiment being stopped as
soon as, say, the 1 per cent level of statistical significance is reached, the
true statistical significance of -the conclusions is usually considerably
exaggerated. This consideration means .that ideally’ the appropriate
method of statistical analysis has to be worked out theoretically for each
method of determining the number of observations; in ‘practice the point
is usually of importance for the decision problem, (c), and sometimes for
the fourth type of problem, but not in the other cases. |

Consider first the type of problem that would be dealt; with by a srmple
calculation like that of Example 8.5 were a suﬂimently reliable estimate
of the residual standard deviation available. 1f there isino such estimate,
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a common-sense procedure is to do a preliminary experiment using as
many units as possible, subject to the proviso that the final required
precision is unlikely to be attained. From the observations, the residual
standard deviation and the standard error of the interesting contrasts
are estimated in the usual way. If the standard error is already as small
or smaller than the required value, the experiment is complete; if the
standard error is too large, the residual standard deviation is used, as in
Example 8.5, to calculate the total number of observations required, and
then the appropriate number of additional units is taken. Such a two-
stage procedure is called double sampling; it is the simplest form of
sequential technique.

Example 8.10. In an experiment to compare three methods of measuring
the percentage of red cells in blood, it was required to estimate the true mean

difference between any two methods with a standard error of about } per cent.

For each subject the percentage is measured, in random order, by all methods,
i.e., we use a randomized block design. Suppose that from the results of a
prehmmary test of fifteen subjects, the residual standard deviation is estimated
to be 1.85 per cent.* The standard error of the difference between two treat-
ments is 1.85+/(2/15) = 0.68. This is somewhat greater than the standard error
orlgmally required, and to calculate how many more subjects should be tested
to attain the required precision we argue as follows. If the residual standard
deviation is approximately the same for future subjects, the standard error for
any particular total number of subjects is about

2
1.85 /\/ (no. of subjects)

and if this is to equal £, we have the equation

1.85 ———2 = 1
no. of subjects T2

1.852 ———2— = l
’ no. of subjects 4’

i.e., number of subjects = 8 x 1.85%, which is approximately 27. This is the
total number of subjects; we have 15 already and so need to test about another 12.

The observations on the 27 subjects are analyzed as a whole by the ordinary
methods of analysis for a randomized block design and, provided that the
second set of observations are not markedly different from the first, approxi-
mately the required precision will result. T

or

* The methods did not depend on the direct counting of cells, so that the theoretical
formula (5) of § 8.3(iii) was not applicable.

t There is an approximation involved in applying ordinary methods of analysis to the
results of a sequential experiment, but this is unlikely to be important. The common-
sense procedure here is a modification of one due to Stein (1945), who, at the cost of
some loss of information, arranged that the precision should exactly equal the required
value.
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Double sampiing is a simple procedure in that only one intermediate
stage of calculation is involved, and the experiment;falls into just two
parts. In some situations, particularly when observations become
available singly at say weekly intervals, it may be worth elaborating the
scheme somewhat. This can be done by calculating, at frequent intervals,
the estimated standard error of the important contrasts. So long as this
is greater than the required standard error the experiment is continued,
but as soon as it becomes less than or equal to the required value, the
experiment is stopped and a full analysis of the results is made by con-
ventional statistical methods. There is an approximation involved in
using conventional methods of analysis in a sequential problem, but the
effect here is small. The disadvantage of the fully sequential procedure,
as compared with double sampling, is that it involves more intermediate
calculation; the main advantage is that the rather arbitrary choice of an
initial sample size is avoided. ‘

"The second type of problem referred to above arises mostly in connection
wi‘th the special theoretical formulas (5) and (6) of § 8.3(iii).

Example 8.11. In some types of work the observation to be made on each
unit is a proportion, for example the proportion of a particular subject’s blood
cells showing a certain abnormality. The question arises of determining not
the number of subjects (units), but the number of observations per subject.
A reasonable requirement is often to obtain a certain fractional precision in the
estimate for each subject. If this were say 20 per cent, we require that if the
true proportion abnormal is 5 per cent, the standard error of our estimate should
be 1 per cent, whereas if the true proportion abnormal is 1 per cent, the standard
error should be 0.2 per cent, and so on. ‘

Now from formula (5) it may be shown that to attain this standard error the
number of cells to be counted depends markedly on the true value of the
proportion to be estimated. Thus if the true proportion is 5 per cent, the
standard error is, from (5), +/(0.05 x 0.95/number of cells per subject). This is
equal to the required value, 0.01, when the number of cells counted per subject
is 475. Similarly, if the true proportion is 1 per cent, the number to be counted
should be slightly less than 2500. _ :

Now if we have to begin with a fairly good idea of the value of the proportion
to be estimated, this calculation will determine the number of cells that should
be counted. But if all we know is that the proportion lies' somewhere between,
say, 5 and 1 per cent, the calculation is not helpful, beq‘ause the appropriate
number. of cells is so critically dependent on the unknown proportion to be
estimated. “

Therefore some sequential method seems called for. Double sampling is one
possibility. Another method was proposed by Haldane'(1945) and is called
inverse sampling. The idea here is that instead of fixing| the total number of
cells to be examined and recording the number of abnorr ‘als, counting should
continue until a certain predetermined number of abnormals have been obtained.
This number is the reciprocal of the square of the fractional error required, and
in the above case is 1/(0.2)2 = 25. That is, counting shop]d continue until 25
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abnormals have been obtained. The resulting.proportion of abnormals is an
estimate with approximately the required precision. .

This case has been described as a simple illustration of a techmque_for
adjusting the number of observations to produce an estimate witl'} the desired
precision. The same type of method can be used in more complicated cases;
a statistician should be consulted for details.

There is a review of the statistical literature on methods of this type by
Anscombe (1953) and a discussion of double sampling methods for these
problems by Cox (1952). '

The third type of problem, in which a decision is required between two,
or sometimes more, courses of action, raises fresh points. There are two
approaches; first we may attempt a direct balancing of the monetary loss
due to reaching the wrong decision and the cost of experimenting. This
is analogous to the approach of Example 8.8. A double-sampling scheme
for choosing between two alternative decisions, based on these considera-
tions, has been given by Grundy et al. (1954). The general idea is that a
choice has to be made between say two alternative processes; if an initial
experiment indicates a substantial superiority for one process, the appropri-
ate decision is reached. If not, further units are tested, the number of new
units being chosen to minimize the sum of the average loss arising from
reaching the wrong decision and the cost of testing the further units. For
these results to be applied a reasonably accurate economic analysis of the
problem has to be possible and this is frequently not so. In that case
different and more intuitive methods have to be used; the following is an
example.

Example 8.12. Kilpatrick and Oldham (1954) have described an experix:nent
to decide between two methods of relieving bronchial spasm in patients with a
chronic pulmonary disease. The treatments were the inhalation of either
adrenaline, the customary treatment, or calcium chloride, which had been
suggested as a possible substitute with certain advantages. The assessment of
the drugs was made in terms of an objective measure, the expiratory flow
rate (e.f.r.).

The experimental procedure was of the paired comparison type, as follows.
In the morning the e.f.r. of a subject was determined and then a 15-minute
inhalation of one or other substance was given. Neither patient nor observer
knew which, the decision having been reached by randomization. The e.f.r.
was again determined on completion of inhalation, and on the evening of the
same day the procedure was repeated using the other substance. The difference
between the gain of e.f.r. resulting from calcium chloride inhalation and that
resulting from adrenaline inhalation was worked out as each subject’s results
were obtained.

Suitable subjects were expected to become available for the experiment only
infrequently, so that it was of some importance to reach the appropriate decision
in the most economical way. The problem is of the same general type as that
discussed immediately above, but any economic analysis of the consequences of



186 THE CHOICE OF THE. NUMBER OF OBSERVATIONS

a wrong decision is out of the question. Instead the follo}wing considerations
were formulated, after careful thought: i

(@) If calcium chloride caused subjects to gain, in the long—run average,
10 liters per min of e.f.r. more than they gained on adrenaline, it was desired to
reach the decision to prefer calcium chloride: \

(b) If the gain of e.fir. with calcium chloride was no greater than with
adrenaline, in the long-run average, it was desired to reach the decnslon to prefer
adrenaline, in view of its well-established virtues.

(¢) The chance that, in the situations described in (a) and (b), we reach the
wrong decision as a result of chance fluctuations in the o\bservatlons is to be
only 1 per cent.

For any scheme that is set up, there will be an operatingcharacteristic of the

1 1
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Fig. 8.1. A sequential scheme for comparing two treatments. (a) Typical
operating characteristic curve; (b) Boundaries deﬁmng the test.

general shape shown in Fig. 8.1(a); what we are doing in (a)—_(c) is to find two
points on this curve, one towards each end. It is implicit that, for example,
if the true difference in gains exceeds 10 per cent in favor of calcium chloride,
the probability of deciding to prefer adrenaline is even less!than 1 per cent.

When the requirements (a)-(c) have been formulated, it is/a statistical problem
to determine. a rule for conducting the experiment, so that the requirements
(a)—(c) are satisfied. The rule will say, after each sub_|ects results become
available, either :

(i) that the experiment should be stopped and adrenalihe preferred; or

(i) that the experiment should be stopped and calcium chlorlde preferred; or
(iii) that a further subject should be tested. “
That is, the experiment is allowed to continue until sufﬁcicni results are available
to Justlfy a decision,

The most convenient form for representing the sampling Fule isona dlagram,
such as Fig. 8.1(6). As explamed above, for each subject the difference is
calculated between the gains in e.f.r. on calcium chloride and on adrenaline.
After each subject is tested, the cumulative total of the differences is worked out
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and divided by the square root of the cumulative total of the squares of the
differences. Thus if the first three differences are 2.6, 7.3, and — 1.4, the quantity
calculated is (2.6 + 7.3 — 1.4)/v/(2.6* + 7.3%2 + 1.4®) = 1.080. This is an
index of the comparative effect of calcium chloride. Its use is mathematically
equivalent to that of the mean difference divided by its standard error. The
index is large and positive if calcium chloride is much the better treatment,
large and negative if adrenaline is much the better treatment, and zero if the
average of the observed differences is zero. This index is plotted step by step
on Fig. 8.1(b). On this diagram are two boundaries; as soon as one or other of
them is crossed, the experiment stops and the corresponding decision is reached.
So long as the plotted point remains between the boundaries, the experiment is
continued. If calcium chloride is much the superior treatment, it is very
probable that the index will rapidly cross the upper boundary, leading to a
speedy decision; similarly if adrenaline is much superior, the lower boundary is
likely to be crossed after the testing of only a small number of subjects. If,
however, the situation is less clear-cut, it is likely that the index will remain
between the boundaries until an appreciable number of subjects has been tested.
That is, the boundaries arrange that the experiment is speedily ended in the
clear-cut cases, and is continued in the doubtful cases. The formulas for
determining the boundaries are given by Rushton (1950).

The use of a sequential scheme of this type, which suits the number of
observations to the requirements of choosing between two alternatives with
preassigned chances of error, leads on the average to substantial economies in
the number of subjects needed to reach a decision. This is particularly so
when there is a big difference between the treatments.

In the experiment described by Kilpatrick and Oldham, the observations were
all substantially negative, suggesting adrenaline to be the superior substance,
and after only four subjects had been tested, the lower boundary was crossed, see
Fig. 8.1(b), and the experiment was ended with the decision to prefer adrenaline.

Now in a strict statistical sense, this is the only conclusion that can be given
formal justification, i.e., that in accordance with the criteria (a), (b), and (c) the
appropriate decision is to prefer adrenaline. Yet the fact that all results were
negative suggests not only that adrenaline is to be preferred, but also that it is
actually superior; in accordance with (b), adrenaline would have been preferred
even if there had been no difference between the substances. It is natural to try
to estimate, with limits of error, the amount of the difference between the
substances, but this cannot be done, at any rate until there has been further
research into the statistical problems involved.. Nor can we measure the
statistical significance of the observed difference, beyond saying that there is a
significant departure from (a) at the 1 per cent level. Thus, the economy of
the sequential scheme has been achijeved at the cost of restricting the conclusions
to the choice between two._decisions. Kllpatrlck and Oldham point out that the
experiment might better have been designed to choose between three decisions:
adrenaline superior, no difference, and calcium chloride superior. However,
even then the statistical conclusions are severely limited, and no estimation
of limits for the amount of the true difference is at present possible.*

* This raises interesting issues of general statistical theory. It is not clear whether an
essential defect in conventional theory is involved, or an essential property of the design,
or merely a mathematical difficulty in working out details of appropriate techniques.
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This example has been discussed in some detail because it illustrates the
advantages and disadvantages of these sequential decision procedures.
The formulas for determining the boundaries in the: isampling diagram
have been worked out for many standard statxstxcal ‘situations (Wald,
1947); this was done with the application to 1ndustr1a1 inspection prob-
lems in mind, where a clear-cut decision between acceptmg and rejecting
a batch has to be made. There have not been many applications of the
methods in research work. An excellent account of the methods with a
view to their application in medicine has been given by Armitage (1954),
who has also given (Armitage, 1957) some very interesting new types of

Desired standard error
for estimated difference

| | ! ! |
-5 0 5 10 15
True difference in e.fr.
between Ty and T} Y

Fig. 8.2. Desired standard error in a 51tuat10n
where the precision required depends on the true
value being estimated.

sequential scheme that may be more suited to some softs of experimental
work than Wald’s methods.

To sum up, sequential decision procedures merit sefious consideration
whenever a choice between two or three (or any small number) of courses
of action is required, when experimental units are testeLj in order and it is
practicable to do a certain amount, usually small, of calculation after
the testing of each unit or group of units,.and when requlrements analogous
to (a), (b), and (¢) of Example 8. 12 can be formulated. | The disadvantage
is that, at present, the statements at the end of the experiment that can
be given statistical justification are rather limited.

This last point means that the sequentlal decision procedures just
described are inappropriate whenever it is part of the Ob_]CCt of the experi-
ment to estimate, with limits of error, the magnitude of contrasts. A
natural method to use in cases where such an estimaté is required, even
though the main objective is the decision, is to try to set up a scheme for
estimating, say, the difference between treatments with a standard error
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depending on the true value of the difference. This is the fourth type of
sequential scheme. For example, in the situation of Example 8.12 it
might have been reasonable to require an estimate of the true difference
in e.f.r. between substances with a standard error of the general form in
Fig. 8.2. If the true difference lies in the “‘doubtful’’ range (0, 10), we
require a low standard error, so that a suitably precise significance test
can be made for reaching the appropriate decision; if the difference
lies outside this range, we still require an estimate of the difference, but
are content with a much higher standard error. Double sampling
schemes for achieving these objectives have been discussed theoretically
by Cox (1952), but no examples of their use in practice are known.

SUMMARY

It is very often desirable either to make a preliminary calculation of the
precision to be expected from an experiment of the size contemplated,
or, preferably, to determine the size so as to just attain a desired precision.
Precision can, for most purposes, be measured by the standard error of the
contrasts of interest, for example by the standard error of the estimated
difference between two treatments.

The value of the standard error depends on the contrast to be estimated,
on the number of units, and on the amount of uncontrolled variation,
which is itself measured by the residual standard deviation. This can be
estimated

(a) from the observed dispersion of the observations between units
receiving the same treatment, eliminating any part of the variation that
is balanced out by the design of the experiment;

(b) from the magnitudes of high-order interactions in a factorial system;

(c) from theoretical considerations, as for example when the observa-
tion is the count of a number of occurrences of a randomly occurring
event;

(d) from the magnitude of the within-unit sampling variation, when the
main observation on each unit is the mean of several readings;

(e) from the results of previous similar experiments.

Method () is usually the best for the analysis of data, although the
comparison of measures of residual variation from several sources is
frequently instructive. Methods (c) and (e) are the ones applicable for
the preliminary estimation of precision.

Once an approximate value for the standard deviation has been obtained,
the standard error of any particular contrast can be worked out corre-
sponding to any given number of observations, or, alternatively, the
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number of observations to achieve a given standard error can be predicted.
If some comparisons are more important than others, the number of
units should not be the same for each treatment. In more complicated
cases both the number of experimental units and the number of observa-
tions per unit have to be determined.

Sequential methods, of which the simplest is double sampling, are
sometimes useful, particularly when the experiment can conveniently be
done in stages with some intermediate calculation between stages. The
idea here is that the number of units should be determined in the light of
the observations actually obtained and not settled deﬁnltely in advance.
This technique is especially worth considering when. (a) the standard
deviation is initially completely unknown, or is apprec1ably dependent on
the quantities being estimated or when, (b) a clear-cut decision is required
between two or more courses of action or when, (¢) an estlmate of a contrast
is required with a precision depending markedly on the value of thecontrast.
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