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We develop a Fourier type analysis for data consisting of many short strings
X\, Xy, oy X,y with X;=(X;y, ., X;,). The paper offers an approach to testing and
residual analysis based on a group theoretic decomposition of the sample space.
This is illustrated on a physical chance type data set where it is natural to allow
each string to have its own parameter (i.i.d. coin-tossing with parameter varying
from string to string). The usual model is rejected.  © 1994 Academic Press, Inc.

1. INTRODUCTION

It is a familiar scientific activity to expand a function in an orthogonal
series and look at the relative size of the coefficients. The most common
example is the spectral analysis of time series. James [19], Hannan [15],
and Tukey [32] have pointed out that the usual analysis of variance of a
designed experiment fits into this mold as well. This paper develops some
non-standard examples of spectral analysis using the Fourier analysis of
the permutation group.

Our methods are developed for longitudinal or panel study data.
These consist of many short strings X, .., X, with X, = (X}, .., X;). For
example, p might be 12 and X,;=0 or 1 as the ith person was employed
in month j. Such data are often analyzed using an individual specific
parametrization; each string might be modeled as a Markov chain with
parameters that vary from string to string. We develop analysis of variance
like decompositions for residuals from such models.
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108 BECKETT AND DIACONIS

Section 2 presents an analysis for a binomial example. It introduces a
data set used throughout the rest of the paper. Section 3 develops the tools
needed to analyze multinomial models. Sections4 and 5 treat Markov
models. These decompose into products of multinomial models but also
give rise to data indexed by trees. The mathematical tools developed have
application to formulas for the stationary distribution of Markov chains
and to genetics algorithms.

2. AN EXAMPLE

A. Introduction. In this section we analyze strings from a typical
“physical chance” setting that shows a breakdown in binomial variation.

The example involves repeated rolls of a common thumbtack. A one was
recorded if the tack landed point up and a zero was recorded if the tack
landed point down. All tacks started point down. Each tack was flicked or
hit with the fingers from where it last rested. A fixed tack was flicked 9
times. The data are recorded in Table I. There are 320 9-tuples. These arose
from 16 different tacks, 2 “flickers,” and 10 surfaces. The tacks vary
considerably in shape and in proportion of ones. The surfaces varied from
rugs through tablecloths through bathroom floors.

These data are analyzed below and in Section 4F of this paper.

A binomial model for these data is

X=Xy, . X)), X,;~ Bernoulli(f'), 1 <i<n.

In the example, p =9 and n = 320.

The first step of analysis uses sufficiency to eliminate the string to
string variation as suggested by Frydman and Singer [12]. Let
X, =X, + -~ +X,. Under the binomial model, X, is sufficient for 6"
Given X, =, the law of (X}, .., X,,) is uniform over all p-tuples with j
ones. This uniformity will be used as a baseline for analyzing these data.
A test based on this idea is carried out in Section 4. At the moment,
we develop a spectral analysis which is the main focus of this paper.

B. Spectral Analysis. The approach suggested here uses the uniformity
as a baseline for data. Let X, , ; be the set of binary strings of length p
having j ones. Then X, ; |=(%). Let M” // be the set of all functions
from X, ,; into the real numbers. The data set gives rise to functions
f,€ M?~7/  the number of observed sequences with a given pattern under
the binomial model. These f; should be a random function given n,: the
number of data strings with j ones. The space M”77 is a vector space and

decomposes into a direct sum of subspaces:

MPIii=S°®S, @ ...®S" (2.1)
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The subspaces S”° *' have a natural description in terms of invariance.
This is discussed carefully in the next section. Hopefully the following
intuitive description will suffice for now.

The space S7 consists of the constant functions. It is one-dimensional.
The space S” "' is spanned by the functions

1 il x;
‘5"("‘)={_1 if X

This has dimension p—1. The projection of the data function f; onto
S#~ ! amounts to looking at the number of strings having j ones with a
1 in position i, 1 < i< p. Such projections are computed below.

The space S” >2 can be described as being spanned by the functions

(2.2)

{
0, 1<igp.

1 if x,=x,=1

O (x)= { (2.3)

0 otherwise,

but with the first order statistics taken out, so that functions in §” 7 are
orthogonal to functions in S”@ §7 "'. The spaces S” // have a similar
description in terms of j-tuples; because they will not be used further here,
a careful definition is postponed until the next section.

Spectral analysis consists of the computation of the projection of f; onto
the various subspaces and the approximation of f; by as many pieces as are
required to give a satisfactory fit. Under the null hypothesis, f; is uniformly
distributed over all non-negative integer valued functions with total
mass #,. This gives a way to calibrate the analysis.

First Order Analysis. The projection of f; onto $7~"! can be found by
computing the inner product of f; with §, in (2.2). This has mean zero and

TABLE 11

First-Order Statistics

Number Position

of ones 1 2 3 4 5 6 7 8 9 n
| -06 -—-06 -06 —-06 -—-06 —06 1.2 -06 31 3
2 —-0.6 0.1 0.7 0.1 14 —06 -06 01 -06 13
3 -25 1.0 10 -10 1.0 1.5 05 -—15 0 18
4 -25 -10 0.2 0.2 01 -04 1.1 20 0.5 48
5 -24 —16 0.8 -09 09 1.4 09 0 09 47
6 =35 -02 -02 0.1 0.6 1.1 1.4 09 -02 67
7 -26 03 Q.3 0.6 0.6 1.3 06 --06 -06 54
8 ~5.6 2.1 1.2 —-02 -02 0.8 0.8 1.2 -02 51

Note. Results are standarized so each entry is approximately N(0, 1) under H,.
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variance n,;(k/p) (1 —k/p). These inner products, divided by their standard
deviation, are reported in Table II for j=1,2,..,8 and i=1,2,..,9

Remarks. (1) Observe that, roughly, the largest numbers in Table I1
are in the first column, and they all are negative. Recall that the tacks were
all started out in zero position. The large negative entries show that the
proportion of ones after the first flip is far smaller than it should be under
the binomial model. The rest of the table appears unstructured.

(2) Except for j=1, entries in the tables are approximately standard
normal variables under the null hypothesis. Different rows are independent,
conditionally on the n;, and entries within a row are independent save for
the constraint that the rows sum to zero.

Second Order Analysis. The data vector f; projected onto S#~ *? can be
viewed by giving its inner product with the basis d,, of (2.3). This measures
the number of strings with j ones, having ones in positions ¥ and /,
adjusted for the marginal frequency of ones in these positions. As shown in
the Lemma of Section 3, the inner product of £ with &, the projection of
8, onto S”7 2% is approximately normal with mean 0 and variance
n; llgk,{lz/(p(p — 3)/2). These variances were computed numerically (they are
the same for each pair (k, )).

Table IIT shows, for j=4 and all possible values of (k, /), the inner
product between f; and the projection §,, standardized by the standard
deviation.

Remarks. (1) The large numbers in the table tend to be positive and
to occur at adjacent coordinates (%, kK + 1). In these data we recognize a

TABLE III

Second-Order Statistics for Sequences with 4 Ones (n, =48)

Positions 1,2 13 1,4 1,5 1,6 1,7 1,8 1,9
Residuals 12.5 27 -1.5 —438 24 —4.2 —6.8 -03
Positions 2,3 24 2,5 2,6 2,7 28 2,9
Residuals 8.6 —18 —35.1 2.1 ~24 -5.1 -0.5
Positions 3,4 15 3,6 3,7 3.8 39

Residuals 9.2 —-03 -3.6 —1.8 —-10.7 —42

Positions 4,5 4,6 4,7 48 49

Residuals 10.1 —-57 -8.0 —-03 ~21

Positions 5,6 5.7 5,8 5,9 6,7 6,8 6,9
Residuals —4.8 -0.9 0.6 5.1 83 3.6 —-24
Positions 7.8 7.9 8,9

Residuals 7.4 LS 1.3
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tendency for pairwise adjacent coordinates to be the same. This has a
simple physical interpretation. In the tack experiment, tacks were not reset
between successive trials in a sequence. Often a tack would shde or “skittle”
without turning over. This suggests that each string X, may be distributed
as a short Markov chain with its own parameters. This model is
investigated in Section 4.

Similar patterns occur for sequences with 5 and 6 ones, respectively (not
shown here). Residuals for sequences with other values of j appeared
unstructured.

(2) There is a fair amount of dependence within a set of entries with
n; fixed; the 36 numbers shown in Table IIl have 27 degrees of freedom.
The complete table of second-order statistics contains 252 entries based on
320 nine-tuples. Each entry_ is roughly standard normal, and entries from
sequences with different numbers of ones are independent.

{(3) The entries are based on the projection of f, into the space of
second-order effects orthogonal to the constants and first-order effects. In
other words, the second-order effects have been adjusted for the marginal
(coordinate-wise) popularity. Then simple-to-interpret functions 8,, which
are | if x,=x,=1 and zero elsewhere are projected into the space of
second-order functions. If f; is particularly close to é,,, this is interpreted
as a tendency for the k/ coordinates of f, to be zero.

In the next section, we develop the spectral analysis for residuals from a
multinomial mixture model more formally. Following that, we develop the
spectral analysis for the Markov model. We will then return to the tack
data and examine the adequacy of the Markov model for this example.

A summary of the analysis of this section is as follows. The binomial
model seems inadequate. The position of the tack on the previous flip
seems to really matter.

C. Related Literature. The literature on panel studies is vast. Hsiao
[18] reviews the literature in economics, Kasprzyk e al. [21] review the
sample survey literature. Ware, Lipsitz, and Speizer [35] survey problems
with categorical data. Their article is in a special issue of Sratistics in
Medicine devoted to longitudinal methodology.

Mixtures of Markov chains are discussed by Markus [27], Korn and
Whittemore [22], Muenz and Rubinstein [28] and by Frydman and
Singer [12]. This last article introduced ideas which contributed crucially
to the present paper. Langeheine and van der Pol [23] describe many
further variants used in the social sciences.

A development of spectral analysis along present lines appears in
Diaconis [6, 7]. This gives extensive references to work of James, Hannan,
Tukey, and others.
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The analysis above leaned heavily on the conditional distribution given
a sufficient statistic. This is broadly applicable. Thus suppose that
Po(X,, .., X,) is a probability distribution for the Jth string. Let
T.(X,, .. X;) be a sufficient statistic for 8, so the law X;,, .., X, given
T,=t; does not depend on 6,. This can be used as the basis of a data
analysis to investigate model adequacy.

For example, suppose the X; are real valued observations and the model
specifies the ith string as independent and identically distributed normal
variates with mean g, and variance o depending on i. A sufficient statistic
is X,, S,. The standardized residuals

(Xfl —Yi’ ceey Xip—A_/i)/Si

should be uniformly distributed on the p — 1-dimensional unit sphere. With
many strings, a test or data analysis can be carried out. Spectral analysis
would involve expanding in “spherical harmonics.”

Fisher [11] often used such conditional distributions as tests of model
adequacy. Cox [3] applied the idea for binary regression. Frydman and
Singer [12] developed tests for a binomial mixture model using this idea.

Petrov [30] and Volondin [34] applied the idea in a continuous setting.
One of their findings is discouraging. It can take a great deal of data to
have reasonable power in pre-specified directions. For example, to test the
location-scale family of uniform random variables against the location-scale
family of normal random variables, with strings of length 5, several
thousand strings were needed. The examples in Frydman and Singer [12]
and those of the present paper suggest nonetheless that gross departures
from models can be identified and understood.

The main new contribution of the present paper is the development of
explicit tools for a data analysis. As will emerge, a fair amount of
combinatorial analysis is required to extend the tools to multinomial or
Markov models.

3. MuLTINOMIAL DATA

A. Spectral Analysis. Consider data X,,X,,..X,, with X, =
(X1, .., X;;) and each X, taking values in {1, 2, .., c}. We are interested
in studying deviations from the multinomial model. Here, each X, has a
multinomial distribution—p observations in ¢ categories with parameter
0= (0, .., 8). Thus

P = Xy =50 =(, 7 ) TT @)

1°7 j=1
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with 4,(x,, .., x,) the number of x; that equal j. Different X, are inde-
pendent and may have different parameters.
The statistic (A, .., 4,) is sufficient for 6’ and conditional on A4,
(X1, .., X;,) are uniform over all p-tuples having A; values of j, I <j<c.
A smgle string X can be specified by saying where the A, values of i
occurred. For example, X =(1, 2, 1, 2, 2, 3) gives rise to

{1,3},{2,4,5}{6} (3.1)

because the ones are in position 1 and 3, the twos in position 2, 4, and 5,
and the three is in position 6. This type of specification is called a tabloid
of shape 4, ---4.. In (3.1) the shape is 2, 3, 1. Let X(41) denote the set of
all tabloids of shape A. Thus [ X(4)| = pY4,! --- 4,1 Individual tabloids are
denoted {¢}.

The symmetric group S, operates transitively on X(4) as in the following
example. If {1} is given by (3.1),

n{1} = {n(1), 7(3)} {n(2), n(4), n(5)} {n(6)}.

For a fixed shape A= (4, --- 4,), let M* be the set of all functions from X(4)
into the real numbers R.

The space M* decomposes into an orthogonal direct sum of isotypic
pieces

—@ Vi (3.2)

"

where p runs over partitions of p that are larger than A in the order of
majorization. Each Vf; is a space of functions that is invariant under
the permutation group: fe V7 implies nfe V) with nf{s}=fr{r}. In
particular, V7 is the 1-dimensional space of constant functions.

The symmetric group S, has an irreducible representation S* for each
partition y of n. The basic theorems of group representations say that any
real vector space on which S, acts decomposes into a direct sum of
invariant, irreducible subspaces, each isomorphic to $* for some u. Of
course S* can occur several times in the decomposition. Grouping together
the different copies of S* into one invariant subspace V', gives the isotypic
decomposition. For the underlying space M*, the isotypic pieces are called
V‘ . Youngs rule (James [20]) gives a simple description of which
partltlon u appears in M* and how many copies of $* are in a given V4.

For binary data the partitions are all into two parts, (p—Jj, j). The
splitting turns out to be multiplicity free, so

Mpfi.jzsp@SPfl.l@ @Spfj.i

each subspace S”~“' occurs only once.
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The subspaces V% have reasonably simple combinatorial descriptions
which enable the projections to be interpreted in a given subject matter
context. Diaconis [6, 7] discusses this at far greater length.

Data X, ..., X, give rise to a collection of functions f;( ) for 4 a partition
of p into at most ¢ parts. Here f; {¢} denotes the number of X, having 2
as sufficient statistic and {r} as ancillary. Each f; can be decomposed into
its projection into the isotypic subspace Vf;. These projections can be
further decomposed by taking their inner products with known simple
functions. This is illustrated in Section 2, and further described and
illustrated in Diaconis [7]. These projections and inner products constitute
the promised spectral analysis.

B. Some Probability. Under the multinomial null hypothesis, f, {7}
should be a “random function.” If there are N, strings with sufficient
statistic 4, the values f, {1} should be like N, balls dropped uniformly into
pl/At-- 2. boxes. If N; is large, the projection of f onto the various Vf;
should result in new functions with lengths that are approximately chi-
squared distributed. The inner products of a projection with an individual
function should have an approximate normal distribution. The following
lemma records some standard facts which allow assessment of variability
under the null hypothesis. In the lemma, the set of all functions from
{1,2,..,n} into the real numbers is regarded as an inner product space

with (f1g>=X7_, fj) &)

LEMMA. Drop N balls into n boxes at random. Let f{j} be the number
of balls in box j.

(a) Let V be a subspace of the space of all real-valued functions
orthogonal to the constants on {1, 2, ..,n}. Let I1 be orthogonal projection
onto V. Then, as N gets large, |1l >~ Cy2, with d=dim V, C= N/n.

(b) Lengths of projections onto orthogonal subspaces are asymptoti-
cally independent.

(c) With V as in part (a), and geV a fixed function;
{flg>~N(O, | gl Nin).

As an example, in Section 2, Table III presents the inner product of
f+€ M>* with the projection of §,, onto the subspace S72 of M>*. These
inner products are standardized by dividing by their standard deviations.
From (c), the standard deviation of the projection of é,, onto the subspace
S72 of M® /7 is

1/2

n. -
0. = ——————J—‘D———Zék,(x)z
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with n; the number of strings having j ones and 5., the projection. The sum
is over Xy _, ;. The projections were computed using character theory as
explained in Diaconis [7]. The sums were done numerically. By symmetry
6,=09 ; j=2,3,.,7 Numerically o,=0020833, ¢,=0011116, o,=
0.059524. Thus o, is small compared to the differences observed in
Table III1.

Efficient computation of such group-theoretic projections is closely
related to recent work on the non-commutative Fast Fourier Transform.
See Diaconis and Rockmore [9].

4. BINARY MARKOV CHAINS

A. Introduction. Consider data X, X,,.., X, with X,=(X,, .., X,)
and each X, taking values in {0, 1}. Assume that X, are independent
realizations from a Markov chain with transition matrix

(9;0 9;)1>
0‘10 0’1]

and arbitrary starting distribution §'= P (X;,=1).

A sufficient statistic for the ith string is the starting state X,,, and the
2 x 2 transition count matrix 7. This has j, k entry the number of j to &
transitions in the ith string. For example, if

0 1

-0 /0 2
= (0110111111 T = .
X, = (011011 ), | (1 6)
The conditional distribution of X, given X,, and T’ is uniform over all
strings with these statistics. For example, there are 7 strings starting at 0
and having (} }) as transition counts

olot11it1r otwortrter otrtottttr otrtrionnt
0111110111 0111111011 0111111101,

The first use to be made of this sufficiency is a test of the binomial nuil
hypothesis 8, = 6’,. Consider all strings in the tack data set with j ones.
Under the binomial model, each of the (}) possible patterns has equal
probability. As shown in Table IV, conditioning on ; leaves only a
moderate amount of data. It is natural to lump the j strings into

equivalence classes of equal probability under the Markovian alternative.
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TABLE IV
Number of Strings in Table I Having j Ones

j 0 1 2 3 4 S 6 7 9
n, 0 3 13 18 48 47 67 54 51 19
(3) 1 9 36 84 126 126 84 36 9 1

Table V illustrates for strings with 8 ones in the tack example. There are
three possible transition matrices. Under the binomial mixture model, each
string is equally likely conditional on having 8 ones. Thus the possible
transition matrices have probability 1/9, 7/9, 1/9, respectively.

The standard chi-square statistic for this example gives y3=31.0. This
provides a striking rejection of the binomial null hypothesis. Table VI
shows the corresponding test values and degrees of freedom for the other
values of .

Remarks. (1) All of the test statistics having moderate sample sizes
are large. This allows a decisive rejection of the binomial null hypothesis.

(2) No test is possible for j=0 or 9. For j=1, n, =3 is too small to
carry out a test. In Table VI, all categories having expected value <5 have
been pooled.

(3) The tests carried out here were derived before the data were
collected and were not derived from the data analysis of Section 2.

B. A Parametrization of Markov Strings. Binary strings having j ones
are in 1 — 1 correspondence with j sets of {1, 2, .., p}. This was useful in

TABLE V

Binary Strings of Length 10, Beginning with Zero and
Having 8 Ones, Grouped by Transition Counts

Number of strings

Transition matrix Example of string Possible Observed
b1 0011111111 1 18
0o 7
02 0110111111 7 27
1 6
0t
0111111110 1 6

607-103-1-9
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TABLE VI

Chi-Squared Tests for Binomial versus Markov Mixture Model
for Strings with j Ones

j 2 3 4 5 6 7 8
n, 13 18 48 47 67 54 51
i 0.11 0.08 313 178 775 18.7 31.0
df t 1 4 5 s 3 2

setting up the spectral analysis for binomial residuals in Section 2. This
section shows how the set of all binary strings with a given starting state
and transition count matrix can be parametrized by a pair of subsets.

Fix a starting state k€ {0, 1} and a transition count matrix 7. These
determine the final state / of all compatible strings: /=k if and only if
To1 + Ty is even. The length of all compatible strings is one more than the
sum of the entries of T.

The set of all strings compatible with & and T can be parametrized
by a pair of subsets s, ¢ with |s|=Ty, |t|]=T,o+/—1. Here
sc{l,2,., Too+Toy—1} and t< {1,2,.., T\y+ T, +1—1}. The elements
of s specify which transition from 0 go 0—0. The elements of ¢ specify
which transitions from 1 go 1— 0. These uniquely determine the rest of the
string since s and ¢ specify where transitions from 0 to 1 and 1 to 1 go.

For example, consider k=0, T=(3 3). From T, + T,,=7, all com-
patible strings end in /=1 and all have length 12. Consider s= {3},
r=1{1,2,5}, s*={1,2,4}, 1“={3,4,6}. The string starts at 0. The first
transition out of 0 is to 1, so the string starts 01. The first transition out
of 11is to Q, so the string starts 011. Continuing, gives

010100111011.

This parametrization will be justified in Section 5. It implies that the
number of compatible strings is

(Too+ To, —l)(T10+ To+1— 1)
TOO Tll )

Under the Markov mixture model, each string, and so each pair of subsets,
is equally likely given k and 7. Given a set of strings, X,, X5, .., X,,, the
subset of strings with a fixed value of k and T gives rise to a function
Je.r{s, t)—the number of compatible strings with parameters s and t.

As an example, in the tack data set, all strings start at k =0. Consider
T=(2 2). The final state / must be 1. Now s runs over subsets of {1, 2, 3}
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of size 2 and r runs over subset of {1,2,3,4,5} of size 1. The data in
Table I yield 24 compatible strings which can be displayed in a 3x 5 table

{t} {2} {3} {4} {5}
(L2 (2 3 3 2 2
m3y [+ 1 0o o 1| (4.1)
23 \o 5 1 o 3

Under the Markov mixture hypothesis this table should appear like 24
balls dropped randomly into 15 boxes. Tests based on this property are
carried out in subsection D.

C. Spectral Analysis. 1In general, using the notation of Sections 2 and 3,
the function f,  is an element of M*® M* with

A=(4, 43) and iy=Ty —|, Ay =Ty,
w= (s 1) and pi=To+1-1,4,=T.

The product of symmetric groups S+ 1 XSy +;y Operates on pairs of
subsets and has a representation in M*® M* which splits into irreducibles
as

Ao
Z Z S}.|+Az-i,i® Su1+u2-j-j‘
i=0 j=0
TABLE VII
T 81 ! 7t 61 62 52 61 51 52 42 43 33
00 100 01 11 10 20 02 12 11 21 20 30
Possible 1 8 1 7 7 21 1 6 12 30 15 20
Observed 2 1 0 4 2 7 0 5 S 7 1 0
T S1 41 42 32 023 23 24 14 41 31 32 22
03 13 12 22 21 31 30 40 04 14 13 23
Possible 1 5 15 30 30 30 10 5 1 4 16 24
Observed 3 7 16 14 3 4 1 0 1 4 13 10
T 23 13 04 04 OS5 3 21 22 12 13 03 04
22 32 31 41 40 05 15 14 24 23 33 32
Possible 36 24 16 4 1 1 3 15 15 30 10 10
Observed 14 3 1 1 0 6 10 24 10 13 3 1
T 21 11 12 02 03 11 11 02 01

066 16 15 25 24 07 17 16 08

Possible 1 2 12 6 15 1 1 6 1
Observed 4 g8 23 6 13 18 6 27 19
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From this, a spectral analysis can be undertaken. Such an analysis would
only be warranted for values of (k, T') having a substantial number of
compatible strings.

For the tack data, Table VII shows, for all possible transition count
matrices T, the number of cells in the corresponding table along with the
numer of compatible strings. Here, the data are sufficiently sparse that
collapsing seems manditory. This is carried out in the next section.

D. Testing the Markov Mixture Model. Under the Markov mixture
model, strings with the same transition counts are conditionally uniform.
An empty cells test was carried out on this basis. The 320 strings were
sorted by transition count matrix. For each transition count matrix with 10
or more strings the expected number of empty cells is

E(X)=c (C_ 1>",

c

where ¢ is the number of cells and » is the frequency of strings with
the fixed transition count matrix. If E(X)>1, the test statistic
(X — E(X))?*/Var(X) was computed. This yielded 10 test statistics. A stem
and leaf of the p-values is shown in Table VIII. The p-values appear like 10
uniform variates.

A variety of other tests were carried out along the following lines:
consider (4, 1) in subsection B above. Projecting onto rows and columns
gives

12 3 9 3 9 4 2 6
{2y {13} {23} {1} {2} {3} {4} {5}
Under the Markov mixture model the row and column projections are

conditionally independent. The row sums should appear as 24 balis

TABLE VIII
Stem and Leaf Plot of 10 p Values

0.0 9
0.1 0
0.2
03 4
04
0.5
0.6 2
0.7 8490
0.8 2

0.9

—
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dropped at random into 3 boxes. The columns sums should appear as 24
balls dropped at random into 5 boxes. The row sums show the frequency
of 0 to O transitions among all transitions out of 0. Thus the big count at
{1, 2} means that O to 0 transitions tend to occur at the earliest position,
before 0 to 1 transitions.

None of the marginal multinomial distributions with sample size large
enough to permit testing showed appreciable deviations from the uniform
distribution. Combining the test statistics using Fisher’s log p method also
failed to produce evidence against the markov mixture model. Further dis-
cussion of the testing problems raised here is in D’Agostino and Stephens
[4], Marden [26], and Rosenthal [31].

5. MARKOV CHAINS AND TREES

A. Introduction. This section can be read independently of what comes
before. It offers a parametrization of the set of all strings with a given
starting state and a given set of transitions, for strings taking values in a
¢ state alphabet. Three uses are offered for this parametrization. The use
of broadest appeal may be the following simple formula for the stationary
distribution of a Markov chain.

All depends on the notion of a rooted labeled tree on ¢ vertices. For
example, there are three labeled trees on 3 vertices rooted at 3:

3
3 3
2 1
1 2 1 2

It is a familiar combinatorial fact that there are ¢ 2 labeled, rooted trees
on ¢ vertices. See, e.g., Lovasz [25, Chap. 4] or Moon [29].

Let P(i, j) be a Markov chain on ¢ states, assumed for simplicity to be
irrducible and aperiodic. Let J be a labeled tree rooted at /. Define the tree
product I1,=11 , ., P(i, j) where the product is over edges in J directed
toward the root. Thus if ¢ =3 and

J=214, J]=P(1,2)PQ2,3)
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THEOREM 5.1. Let P(i, j) be an ergodic Markov chain on ¢ states with
stationary distribution n. Then n can be given in terms of the entries of P as

OESDNIE

where the sum is over all trees rooted at | and the normalizing constant y is
the I, k cofactor of the matrix (I— P) (it is independent of k).

Remarks. (1) This theorem is essentially due to Kirkohoff. The result
has been popularized by T. Hill [16, 17]. Peter Doyle [10] has given an
elegant proof involving a random walk on trees. A new proof of the
theorem is given in subsection C as an application of the description of
strings consistent with a given transition count matrix. Leighton and Rivest
[24] give a formula for non-ergodic chains and an interesting application
to finite memory estimation. Related references are Dawson and Good [5],
Goodman [13], and Haken [14].

(2) For example, in the 3 x 3 case, n(3) is proportional to
P3Py + Py Pi3+ P3Py

The other applications offered are an efficient algorithm for generating
a random string with a given start and transition count matrix (with
applications to DNA string matching) and a description of such strings
suitable for a spectral analysis along the lines of Sections 1-4.

B. A Parametrization of Markov Strings. Consider a finite string made
up of letters from {1, 2, .., ¢}. Let T be a ¢ x ¢ transition count matrix with
J» k entry the number of transitions from state j to state k. Thus 21211323
yields

1 2 3
1 11 1

T'={rom 2 2 0 0] (5.1)
3 \0 1 O

There are 8 strings starting with 2 and having this T as transition count
matrix:

21232113
21211323 21321123 21123213
21121323 21132123 23212113
23211213.
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The object of the present section is to give a parametrization for the set of
all such strings for a general T.

Two classical results will be useful. Both can be found in Billingsley [2].
Let T be a ¢ x ¢ matrix of non-negative integers. The first result says that,
apart from end effects, the number of transitions into { must equal the
number of transitions out of i: A necessary and sufficient condition for T
to be the transition count matrix for a string of length P is

(@) Y T,=p—1
¥ (5.2)
(b) T, —6,(i{)=T,—6,(i) for all i and some fixed &, /.

In (b), §,(b)is 1 or 0 as a=b or not. If k =1 works in (b), then any k can
be chosen as the starting state and the final state must also be this k. If
k #1, then these are unique and all compatible strings start at k& and end
at /.

The second resuilt gives a closed form expression for the number of
compatible strings.

THeorReM (Whittle, 1958). Let T satisfy conditions (a) and (b) in 5.2
above. The number of strings that start at k and end at | and have T as trans-

ition count matrix is the I, k cofactor of the ¢ x ¢ matrix with (i, j) entry
8,=T,/T,.

Suppose now that T satisfies conditions (a) and (b) and that an
admissible starting state k has been specified. This determines a unique
final state /. Let J be any labeled tree rooted at /. Define a matrix T by

T;.= T,~1 if (i, j) is an edge of J directed toward 1 (5.3)

For example, for the matrix T of (5.1) with starting state 2, the final state
must be 3. If

3
1 01
J=2 then T/=({2 0 0 (5.4)
01 0
1

Define J to be compatible with T if T/ has non-negative entries.
The rows of T” specify ¢ partitions (4", 42, ..., 1°). For the example above
A'=1,0,1. If 1 is a partition of n, let X, be the set of all partitions of
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{1, 2, .., n} into disjoint subsets of size the parts of 4. Thus if A= (4,, .., 1,)
with 4,20, ¥¢_, 4,;=n,

n!
"”nz,.!'

In the applications, 4’ represents the exits from i/ and x e X, codes where
the exits go. If x={1,2,5}{3,6}{4}, the first and second exits are to
symbol 1, the third exit is to symbol 2, the fourth exit is to symbol 3,
and so on.

| X (5.5)

THEOREM. Let T be a c x ¢ array of non-negative integers satisfying (5.2)
with k and | admissible starting and final states. The set of strings compatible
with k, I, and T is the disjoint union \) A, where J ranges over tabled trees
on {1, .., ¢} rooted at | and compatible with T, and

Al=nX/:’

i=1
with A the partitions generated by the rows of T’ and X ;i defined at (5.5).

Proof. The proof proceeds by a constructive algorithm. Given & and T,
the final state / is determined; let J be a labeled tree on ¢ vertices rooted
at /. A string will be constructed with last exit from 7 going to j if and only
if (i, j) is an edge in J directed toward /. Form T’ as at (5.2). Let
Ail, A%, .., A° be the partitions determined by the rows of T”. For each i,
1<i<c, let x;e X;; be a partition of the numbers between 1 and 3§_, A\
These partitions determine a string by the following rule.

Begin by writing down the starting state k. Next look at x, and write
down the part of the partition containing the number 1. Say this part is i,
so the string starts ki. Delete the 1 from x,. Next look at x; and write down
the part of the partition containing the lowest number. Delete this and
continue. If the algorithm gives directions to an x, which has had all
symbols deleted, write down the symbol above i in the tree J. Stop when
all symbols in J have been used.

An example appears following the rest of the proof. To show that the
algorithm works, that is, does not get stuck and produces each compatible
string once and only once, observe that because of (5.2) the number of
transitions remaining to go out of a state i is always at least as large as the
number into i. These numbers become equal to 0 when (and only when)
the last exit from i is determined from the tree. There can be no more calls
to i, so that the algorithm cannot get stuck.

It is clear that strings produced by different last exit trees J or by x # y,
in the same A, are distinct. Finally, every compatible string is thus
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encoded, for such a string has a last exit tree J and recording the successive
exits from 1, 2, ..., ¢ gives an element of 4,. |

The proof just given is a slight rewording of de Bruijn—Ehrenfest-Smith—
Tuttle theorem (BEST theorem). See, for example, Van Lint [33] or
Zaman [36].

ExaMmpLE. Consider the matrix (5.1) with J and 77 as in (5.3). The
tree partitions are A'=(1,0,1), i2=(2,0,0), 4i*=(0,1,0). Take the
corresponding x; to be

xi={2} {8} {1} {x}={L2L{s} {4} x={d}. {1}, {s}

The associated string begins with 2. In x,, the lowest symbol is in the first
block, so the string starts 21 (and the lowest symbol is deleted from x,).
In x,, the lowest symbol is in the third block so the string starts 213. From
x5, the string starts 2132. Going back to x,, the lowest symbol is in block
1, so the string starts 21321. From x, the string starts 213211, Now, all
symbols in x, have been deleted. From the tree J, the next symbol is 2, so
the string starts 2132112. Similarly, x, has all symbols deleted so the final
string is 21321123.

COROLLARY. Let T be a c¢xc array of non-negative integers satisfying
(5.2). Let k and | be admissible starting and ending states. If a compatible
string is chosen uniformly, the chance that the last exit tree of this string is
J equals

o ] T,
(iL.j)ed

The product is over edges in J directed toward the root. The normalizing
constant @ is given by

1
i T,
i)
where T} is the I, k co-factor of the ¢ x ¢ matrix with (i, j) entry &, ,—T,/T,.
If any T, =0, set the (i, j} entry to be 8, and delete such i’s from the product
defining 0.

Proof of the Corollary. The theorem shows that the number of strings
with last exit tree J equals

I (7. - 1! 1 7.

"L T
Lyt i.jyed
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Whittle’s formula given at the start of their section gives the total number
of compatible strings as

IL7T.! .,

=Tk

T1, T,!

Dividing gives the result. If some row sums 7; are zero, no symbol i can
appear and the problem is reduced to the case where T, > 0.

Remarks. (1) The corollary gives an easy algorithm for choosing a
random string with a fixed starting state and transition matrix T:
determine the final state /, choose a tree rooted at / with probability
proportional to the tree product as in the corollary. Form T, choose
X, X3, -, X, uniformly at random in J] X, and assemble the final
string. This algorithm is a better version of earlier work of Diaconis and
Freedman [8] and Zaman [36] who developed it as a means of proving
finite versions of de Finetti’s theorem for Markov chains. The older
algorithms sampled repeatedly until a tree occurred. Biochemists Altschul
and Erickson [1] used the older algorithms to generate random strings
with fixed transitions to calibrate DNA string matching algorithms.

(2) The argument above proves Theorem (5.1): Let X, =4, X, .., X,
be a path of the Markov chain. Let 7', be the transition count matrix of
Xy, s X,,. Corollary 1 showed that the last exit tree of X, ..., X, given X,
and T, has law proportional to the tree product. Further, B,, the matrix
of observed transition proportions T;/T;, converges almost surely to P as
n— oo. It follows that the law of the last exit tree given X, =k converges
to a distribution proportional to the tree product based on P and that the
normalizing constant converges to y. Finally, for large n, the ergodic
theorem yields

n(i)~P{X,=i}= Y  P,{last exit tree at time n=1}.

T rooted at i

This proves Theorem S.1.
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