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SUMMARY

A convenient measure of fecundability is time (number of menstrual cycles) required to achieve
pregnancy. Couples attempting pregnancy are heterogeneous in their per-cycle probability of success.
If success probabilities vary among couples according to a beta distribution, then cycles to pregnancy
will have a beta-geometric distribution. Under this model, the inverse of the cycle-specific conception
rate is a linear function of time. Data on cycles to pregnancy can be used to estimate the beta
parameters by maximum likelihood in a straightforward manner with a package such as GLIM. The
likelihood ratio test can thus be employed in studies of exposures that may impair fecundability.
Covariates are incorporated in a natural way. The model is illustrated by applying it to data on cycles
to pregnancy in smokers and nonsmokers, with adjustment for covariates. For a cross-sectional study,
when length-biased sampling is taken into account, the pre-interview attempt time is shown to follow
a beta—geometric distribution, so that the same methods of analysis can be applied even though all of
the available data are right-censored.

For a cohort followed prospectively, there will be some couples enrolled whose fecundability is
effectively 0, and for such applications, the beta could be considered to be contaminated by a
distribution degenerate at 0. The mixing parameter (proportion sterile) can be estimated by application
of the expectation-maximization (EM) algorithm. This, too, can be carried out using GLIM.

1. Introduction

Environmental exposures may affect human reproduction by many diverse mechanisms.
Sperm production may be suppressed in the male, or subtle abnormalities in the sperm
may impair their ability to fertilize the ovum. The exposed female may experience
anovulation, or may produce ova that are nonviable. Her cervical secretions may become
hostile to the passage of sperm, or the uterine lining may become abnormal so that the
developing blastocyst has trouble implanting. The blastocyst itself may be blighted and be
lost in a very early, unrecognized miscarriage.

All such mechanisms lead to a common observable effect: longer time is required on
average for affected couples to achieve pregnancy. Information on the number of menstrual
cycles required to achieve pregnancy can be gathered with little inconvenience or embar-
rassment to couples under study. Consequently, this provides a useful epidemiological
screening method for detecting effects of human exposures to reproductive toxins.

In this paper, we presume two or more groups are to be compared because of an exposure
or condition that may reduce fecundability. Couples attempting pregnancy are to be
followed for up to K menstrual cycles, or until pregnancy occurs. We assume X is fairly
small, so that aging during the follow-up interval will have negligible effects on the
fecundability of any given couple. In practice, K is usually some number less than or equal
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to 12. Couples will be assumed to vary in their fecundability, so that a given couple has a
per-cycle conception probability that stays constant throughout the follow-up interval, but
these probabilities vary across couples according to a beta distribution. This approach
resembles that of Maruani and Schwartz (1983), who extended to comparative applications
a model already familiar to demographers (Sheps and Menken, 1973; Suchindran and
Lachenbruch, 1975; Bongaarts, 1975). We will reparametrize and extend the method to
allow incorporation of continuous or categorical time-independent covariates. Cross-
sectional and retrospective designs will also be considered.

The second section discusses a general model of heterogeneity and derives some of the
basic relationships. The third section specializes to the beta distribution. It also describes
use of a standard statistical package such as GLIM to do maximum likelihood estimation of
the beta parameters. Section 4 describes the use of the model in retrospective studies. The
techniques are illustrated in Section 5, where we describe results obtained by applying the
model to fecundability data from a recent study comparing smokers with nonsmokers. The
example also illustrates the incorporation of covariates. Section 6 introduces the cross-
sectional design and shows that the time in cycles from beginning of a pregnancy attempt
to interview follows a beta—geometric distribution whose parameters relate in a simple way
to the parameters governing time to pregnancy in a prospective study. An extension of the
model to allow contamination of the beta by a proportion of completely sterile couples in
the sample is discussed in Section 7, where an EM-type algorithm is given that allows the
proportion sterile to be estimated iteratively by maximum likelihood. This algorithm is
applied to the data on smoking and fecundability, after modifying the data to include a
hypothetical subsample of sterile couples.

2. Effects of Heterogeneity

If all noncontracepting, sexually active couples had the same per-cycle conception proba-
bility, p, then the number of cycles required to achieve pregnancy would be distributed as
geometric with parameter p. In fact, there is ample evidence that couples vary in their
fecundability (Tietze, 1968; Leridon and Spira, 1984). About 30% of sexually active couples
achieve pregnancy in their first noncontracepting cycle, a smaller proportion of the
remaining couples achieve pregnancy in the second, and with each additional unsuccessful
cycle, the conception rate continues to decline, as the risk sets become further depleted of
the relatively fecund couples. The pronounced decrease in conception probability over time
is not properly viewed as a time effect, but as a sorting effect in a heterogeneous population.

Suppose the per-cycle conception probability, p, which we will also refer to as fecunda-
bility, is fixed for a given couple, but across couples varies according to some unspecified
underlying distribution. Let X denote the number of cycles required for conception, and
let g= 1 — p. For a given couple with fecundability p, X will follow a geometric distribution:

PriX = x|q) = ¢ '(1 — ).

Removing the conditioning on g by integrating over its distribution yields the probability
that conception occurs at x for a randomly selected couple:

Pr(X = x) = E[¢"'(1 — )] = E(¢""") — E(¢").
Similarly, one can show that
Pr(X > x — 1) = E(¢*™)).

Thus, the distribution of X can be written entirely in terms of the moments of g (or p). If
K is the maximum number of cycles of follow-up for the study, then the likelihood of the
data is completely specified by the first K moments of g. The maximum likelihood estimates



Beta-Geometric Distribution 549

for these moments are simple functions of the number of couples conceiving at each cycle,
E(g) being estimated by the proportion not conceiving at cycle 1, E(g?) by the proportion
not conceiving at cycle 1 or at cycle 2, and so on. This was noted previously by Sheps
(1964). v

An alternate way to write this likelihood is to decompose each term into a series of
cycle-specific conditional rates. Define y; as the conditional mean of p after j — 1 failures:

p=E@IX>j-1)=PrX=j|X>j-1)=1- E(q{)/E(qf—')_

This cycle-specific mean is the analogue of a hazard rate. We may then write

x—1
Pr(X=x)=Pr(X=x|X>x—- D) [ Pr(X>j|X>j— 1)

Jj=1

x—1

=E(p|X>x—-1) EE(q|X>j—1)

x—1

= Mx H (1 _I"-j)-

J=1

In similar fashion, we have
Pr(X > x) = Hl 1 - w).
=

Thus, each couple’s contribution to the likelihood can be written as if the data were the
result of a sequence of Bernoulli trials with parameters u;, us, . ... If factors are grouped
by cycle rather than by couple, this is seen to be identical (ignoring the combinatoric factor)
to a likelihood arising from a sequence of binomial trials, one at each cycle, where the
binomial parameters are the number of couples at risk and u;. We will see later that this
expression for the likelihood has some computational advantages.

Using these expressions, we can estimate the first X moments for a cohort followed for
K cycles. If there are two cohorts, they can be compared by a likelihood ratio test.
Unfortunately, this would not be expected to yield a powerful testing procedure, since there
are many moments to estimate and we are left with a chi-squared statistic with K degrees
of freedom. Thus, it seems reasonable to consider possible parametric descriptions of the
distribution of fecundabilities.

3. The Beta—Geometric Model

We will assume now that fecundability follows a beta distribution. We will use the
parametrization suggested by Griffiths (1973), involving a mean parameter, u, and a
“shape” parameter, 0, which is zero when there is no heterogeneity. The variance of p is
u(l — w)/(1 + 8). The density of p is

1 -1
pud(| — pyi-w-ovsplE d-n )
0’ 0
The probability that a couple with fecundability p conceives at cycle x is
Pr(X = x|p) = (1 — p)*"'p.
Removing the conditioning on p by integrating over the beta yields the probability that
conception occurs at x for a randomly selected couple:
A = py (1l = p) e gp o T [ — w + (= 1)6]
Blu/0, (1 — /6] = [+ G = 1]

Pr(X = x)
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This distribution has mean (1 — 60)/(x — 0) and variance u(1 — w)(1 — 0)/[(x — 6)°
- (p — 26)], whenever these terms are finite. We will call this distribution the beta-
geometric. It is a special case of the inverse Polya-Eggenberger distribution described, for
example, by Johnson and Kotz (1969, Chap. 9, §4.2); in their notation, set k = 1. It is also
related to a discrete decreasing failure rate model given in unpublished work by Padgett
and Spurrier (University of South Carolina Statistics Technical Report No. 97, 1984) and
has a prominent place in the demography literature (e.g., Suchindran and Lachenbruch,
1975).

As was pointed out by Sheps and Menken (1973), we do not need to assume that p is
constant across cycles within each couple. No matter what the distribution of p within
couples across time, if there is independence from cycle to cycle within each couple and if
the couple-specific means follow a beta distribution across couples then time to pregnancy
is beta—geometric.

What will the distribution of p be for couples who have experlenced Jj unsuccessful cycles?
If we condition on j failures having occurred, the conditional density of p is:

S(p1 X >j) & Pr(X >j|p)f(p)

oc (1 — p)jp(“_‘”/"(l — p)(l—u—ﬂ)/ﬂ
o« p(u—ﬁ)/ﬂ(l - p)[l—u+(j—l)0]/0_

This is again a beta distribution, but now with parameters [u/(1 + j#), 8/(1 + j6)], instead
of (u, ). Note that the mean, u;.,, i.e., the pregnancy rate at cycle j + 1, moves toward 0
as the number of unsuccessful cycles increases, and this time-dependence has a simple
functional relationship to the beta parameters. Another direct consequence of this result is
that the expected remaining waiting time for couples who have experienced j failures
increases linearly with j:

EX —jlX>)) =0 —=0)/(u—0)+j0/(n = 0).

Recall from Section 2 that the likelihood can be expressed as if it were the result of a
series of binomial trials whose parameters are the number of couples at risk and ;. The
product form of Pr(X = x) given in Section 2 specializes to the beta—geometric distribution
given above, following substitution of w; = u/[1 + 6(j — 1)].

A reparametrization is useful at this point. Define new parameters ¢ and d by

c=1/p, d=10/u.
The mean rate after j — 1 unsuccessful cycles is then

w=1/[c +d(j = 1]

In terms of these new parameters, the mean of the underlying beta distribution is 1/c, and
its variance is d(c — 1)/[c*(c + d)]. If we assume the mean conception probability is greater
than 0 and less than 1, then this variance can be 0 if and only if 4 is 0, so that the null
hypothesis d = 0 is equivalent to the hypothesis that the cycles to pregnancy are truly
geometrically distributed, i.e., there is no heterogeneity in fecundability among couples in
the group under study.

Maximum likelihood estimates for the beta parameters can be computed using packages
such as GLIM, which allow the user to specify a function of the (binomial) mean parameter
(which in this case is the cycle-specific conception probability) that is linearly related to the
predictor variables. In the present case, for a single population, we have the “link” function:

h(w) = 1/pj=c+d(j— 1),

1.e., inverse linearity in time.
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If two populations are to be compared, so that we estimate ¢, and d, for one group and
also ¢, and d, for another, it is possible that the risk ratio, (¢; + d-j)/(c; + d,J), crosses 1
in time. This implies that one of the groups may be less fecund initially but more fecund
after enough time has passed. One can easily show that the risks remain proportional over
time if and only if ¢,/d; = ¢,/d,. Similarly, the odds ratio for pregnancy remains constant
over time (as would be required to apply the discrete Cox model) if and only if (c — 1)/d is
the same for the two beta distributions. Thus, the beta—geometric model assumes neither
proportional risks nor constant odds ratios.

To use this technique for two populations, the above model is extended as follows:

w=c+d(j—1)+(cc—c) + (dr — d\)(j — DI,

where I is an indicator variable for the second population. The two beta distributions can
now be compared by means of a likelihood ratio test, yielding a chi-squared statistic with
2 degrees of freedom.

Covariates, continuous or categorical, can be incorporated and tested by including them
as linear terms in the above model in a fashion similar to the incorporation of group
indicators. This will be illustrated in Section 5.

4. Retrospectively Collected Data

The above discussion implicitly assumed the time-to-pregnancy data arose in the context
of a prospective study, where two groups of couples attempting pregnancy were followed
forward through time. Alternatively, a study can be conducted by interviewing women who
are already pregnant to ascertain, for those with planned pregnancies, how many noncon-
tracepting cycles preceded their successful conception. The difference between this retro-
spective design and the prospective one discussed previously is that the sampling unit for a
retrospective study is the pregnancy and not the attempt at pregnancy.

If there is a one-to-one correspondence between attempts and pregnancies, i.e., if every
attempt is eventually successful, then the two study designs should provide equivalent
information, in the absence of sampling biases. In fact, it is not true in most populations
that every decision to begin trying for pregnancy is successful. In a prospective study, there
will be a proportion of couples with fecundability so low that this group can be considered
to be sterile. The problem of extending the model to allow for this sterile subpopulation
will be treated in Section 7. With retrospectively collected time-to-pregnancy data, the
proportion sterile is known to be 0, since we begin with women currently pregnant; this
simplifies the analysis.

5. Example: Smoking and Fecundability

The beta—geometric model was applied to data from a retrospective study (Baird and
Wilcox, 1985) where women who were pregnant with planned pregnancies were asked how
many cycles it took them to get pregnant. Only women who had gotten pregnant within
24 cycles of trying were admitted to the study, since it was felt that recall beyond that
would be unreliable. (Alternatively, such women could have been included as providing
right-censored data.) Since medical interventions tend to begin after 12 unsuccessful cycles
(clinical “infertility”), we elected to truncate at cycle 12, treating times reported as longer
than that as right-censored.

A total of 678 women with planned pregnancies were interviewed, of whom 654 became
pregnant within 12 cycles after discontinuing contraception. Women were classified as
current smokers if they reported smoking at least an average of 1 cigarette a day during at
least the first cycle they were trying to get pregnant. This yielded 135 smokers.
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Because the model we are applying assumes that variation in pregnancy rates over time
can be attributed to heterogeneity in fecundability among couples, and not to true time
effects, it would be improper to apply it to any group in which true time effects are
suspected. Since there is evidence, both in these data and in the literature (Linn et al.,
1982; Harlap and Baras, 1984; Spira, Spira, and Schwartz, 1985) that women going off oral
contraceptives experience reduced fecundability for several cycles, 92 women whose most
recent method of contraception was given as the pill were excluded from these analyses.
This left 586 women, contributing a total of 1844 cycles, for analysis. The cycles to
pregnancy for smokers and nonsmokers are shown in Table 1.

The first question of interest is whether there is evidence for heterogeneity in this sample
of couples. If there is no variability to explain, we need not bother looking at explanatory
variables. The maximum likelihood estimates (with standard errors) for ¢ and d are 2.59
(.12) and .362 (.067), respectively. The evidence for heterogeneity among these fecund
couples is thus strong. The estimated beta fecundability distribution has mean .386 and
standard deviation .17. These estimates were obtained by GLIM, and are displayed in Table
2, which also gives the deviances.

Next we included an indicator term for current smoking status. This allowed the mean
of the beta distribution to be different for smokers and also changed the variance. The
parameter estimates and their standard errors are shown in the second model in Table 2.

Table 1
Observed cycles to pregnancy
Non- Non-
Cycle Smokers smokers Cycle Smokers smokers
1 29 198 8 5 9
2 16 107 9 1 5
3 17 55 10 1 3
4 4 38 11 1 6
5 3 18 12 3 6
6 9 22 > 12 7 12
7 4 7
Table 2
Models for smoking data
Standard
Parameter Estimate error Deviance

Constant 2.59 12
Time .36 .07 2231.5
Constant 2.45 12
Time .33 .07
Smoking 1.18 .40 2218.4
Constant 245 12
Time .34 .07
Smoking 1.18 .49
Smoking X Time -.00 .19 2218.3
Constant 2.55 .13
Time .32 .06
Smoking 1.19 .39

Coital frequency -.55 .23 2213.9
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The Wald-type chi-squared statistic for including the smoking term was 8.7, and the
likelihood ratio test gave a chi-squared value of 13.1. To allow for two completely different
beta distributions for the two exposure groups, an interaction is required between smoking
status and time. The results of this more general model are shown in the third model in
Table 2. The interaction term did nothing to improve the fit over the previous model (both
the Wald and the likelihood ratio chi-squared values being less than .1), suggesting that in
this case simply including a “main effect ” would have been adequate. The likelihood ratio
test for two different beta distributions versus a single beta distribution yielded a chi-
squared value of 13.2 on 2 degrees of freedom.

The estimated beta densities for smokers and nonsmokers are shown in Figure 1. Note
that we have by no means explained all of the variability in fecundability by means of this
single exposure variable, so that conception rates will still decrease with time in each of the
exposure groups. There is, however, a striking difference in fecundability by smoking status.
Figure 2 shows the fitted and observed cycle-specific conception probabilities for the first
12 cycles, for smokers and nonsmokers. The fitted values have been joined as an aid to the
eye; time is truly discrete in this context.

We were concerned that there may be bias related to the possibility that some of the
women reporting pregnancy in the first cycle were pregnant by accident. It was straightfor-
ward to repeat the analysis, ignoring the cycle 1 data. The resulting maximum likelihood
estimates were very similar to those given in Table 2.

Smokers
Q
=
Nonsmokers
o
(\i -
2
8 J
[0
A
Q
-
Q
(=] T T T T - T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Fecundability

Figure 1. Estimated beta densities as fit by maximum likelihood for the fecundability of smokers
and nonsmokers.
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0.4
1

Conception Rate

0.2
1

0.0

6
Cycle
Figure 2. Observed and fitted cycle-specific conception rates for smokers (solid circles) and non-

smokers (open circles). Vertical bars indicate plus and minus one standard error.

Covariates available included age (dichotomized at 30), gravidity (number of previous
pregnancies), and reported coital frequency. Age had no significant effect and neither did
gravidity. However, coital frequency, as one might expect, seemed to be important. When
coital frequency was reported to be greater than 4 times a week, fecundability was increased
(likelihood ratio chi-squared value = 4.4). The estimated effect of smoking remained stable
under dichotomous adjustment for coital frequency, as is shown in the last model in
Table 2.

To see how well the beta-geometric fits these data, we compared the moments as
estimated from the fitted beta parameters with the moments fitted by nonparametric
maximum likelihood for the entire data set. Table 3 shows the results. The two sets of

Table 3
Moments for the distribution of g=1—p
Beta- Non- Beta— Non-
Moment  geometric fit  parametric fit Moment geometric fit parametric fit

1 615 613 7 .095 .101
2 .407 403 8 .077 .077
3 284 .280 9 .063 .067
4 .207 .208 10 .052 .060
5 156 172 11 .044 .048
6 120 120 12 .037 .032
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moments are remarkably close, suggesting the beta—geometric adequately describes the data
in this case.

6. Cross-Sectional Studies

One other type of design that could be employed in comparative fecundability studies
would involve a population-based random sample of women who are asked whether they
are currently at risk of becoming pregnant. Those who are sexually active and not
contracepting are then asked how many cycles have passed since they discontinued
contraception, and may be questioned about exposures of interest. The elapsed number of
cycles since discontinuing contraception, to be referred to as “attempt time,” will be
recorded as the exact ordinal reported number of cycles, if less than or equal to some
maximal K, and as right-censored if greater than K. Denote the attempt time by 7 and the
total number of cycles to pregnancy by X.

Of what use is the resulting attempt time data? Suppose a nonsterile population is
sampled randomly, so that, for example, a couple destined to take 8 cycles to achieve
pregnancy is 8 times as likely to be sampled as a couple destined to take 1 cycle. Suppose
also that there are no systematic trends in the population, so that beginnings of attempts
are uniform in time. Then a couple destined to require 8 cycles is equally likely to be at
cycles 1, ..., 8 at the time of interview; i.e., the attempt time, conditional on X = 8, is
uniformly distributed on the integers 1, ..., 8.

Under the above assumptions, the sampling distribution of T, the attempt time, can be
shown in general to be

Pr(T = j) = Pr(X > j — 1)/E(X).

Similar relations were noted by Freeman and Hutchison (1980). Note that one consequence
of this relation is that a nonparametric estimate of the mean of X is the inverse of the
proportion of attempts that happen to be sampled at cycle 1.

If the distribution of X is beta-geometric, then a corollary of the above equation is that
T is also beta-geometric, but with parameters [(u — 6)/(1 — 8), /(1 — 0)] instead of (u, 8).
This means that the methods described above for prospective and retrospective studies of
cycles to pregnancy apply just as well to cross-sectional studies of attempt times, even
though the attempt time data is, in a sense, entirely right-censored. Similar phenomena
have been described by Allison (1985).

The caveat here is that a cross-sectional study of most populations will include sterile
couples, heavily overrepresented by length-biased sampling because their recruitable dura-
tion may span years. However, methods to be described in the following section can be
applied to extend the beta—-geometric to allow for contamination by couples with 0
fecundability.

7. Allowing for a Sterile Subpopulation

In a prospective study of couples attempting pregnancy, there will exist couples whose
fecundability is low enough to be approximated as 0. Thus, it may be more realistic to
consider the distribution of p to be a beta contaminated by a second distribution degenerate
at 0, as in Maruani and Schwartz (1983). Let w, denote the proportion of sterile couples in
the population under study, i.e., the mixing parameter.

After j cycles without conception, the distribution of p in the population remaining at
risk is still a mixture of a beta distribution with the degenerate distribution. However, the
beta distribution and the mixing parameter both depend on j. A larger and larger fraction
of the remaining couples will be from the sterile subpopulation. Let the cycle-specific
mixing parameter after j failures be denoted =;. If the original underlying beta distribution
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has parameters ¢ and d, then =; is governed by the following recursion:

Tj—1
T

I+ (=)l — le+ d(j — DI}

where the denominator represents the fraction of the risk set at cycle j who are still at risk
atcyclej + 1.

The problem can be viewed in the missing data framework described by Dempster, Laird,
and Rubin (1977); the data can be represented as multinomial with two cells collapsed,
which belongs to a curved exponential family. That is, for each woman we know the cycle
at which she conceived, if she did. For couples who have not achieved pregnancy in K
cycles of trying, we do not know which did not because they are sterile. For concreteness,
suppose K = 12. The sufficient statistics for the complete-data likelihood are the numbers
pregnant at each cycle, Xj, ..., X1, together with the number who are fecund but
unsuccessful, X3, and the number who are sterile, X,,. What we are able to observe is X,
..., X2, X13 + X14. The full-data likelihood, aside from the combinatoric factor, can be
written as

12 WE i 12
m’{m[(l - m))<1 ) a,)] (I =m) Il

where «;, which is a function of the beta parameters, denotes the probability that a couple
with nonzero fecundability achieves pregnancy at cycle j. The EM algorithm can now be
applied. The expectation step of the algorithm simply solves for X, in the equation

X 14 _ 7?0

Xis+ X 7o+ (1= m)l = 2P &)’

The maximization step then sets 7o = X,4/N, where N is the total number of women, and
separately maximizes the beta part of the likelihood.

This algorithm can be implemented in GLIM, at least approximately, by noting that we
can remove (by giving them zero weights) a fraction, 7,», of the nonpregnant remnant
Xi3 + X4, and then maximize the part of the likelihood involving the beta distribution, as
described above. Thus, weights are recomputed in each iteration following the expectation
step.

The beta family is rich enough to include densities that go to infinity at zero, and it was
not obvious to us that contamination by a subpopulation with 0 fecundability would be
readily detectable. It would not be surprising if the beta mean were biased downward, the
variance biased upward, and the proportion sterile seriously underestimated. To address
this concern, we decided to append 90 hypothetical nonconceiving women to the Baird
and Wilcox (1985) data and find maximum likelihood estimates based on the three-
parameter model. This corresponds to a sterility rate of .133. Using the algorithm described
above, we estimated the sterility rate to be .102; ¢ and d were estimated as 2.633 and .573,
respectively. This corresponds to a beta mean of .380 and standard deviation of .205,
compared to the uncontaminated mean of .386 and standard deviation of .17. Thus, while
the biases were all in the expected direction, the estimates were not seriously distorted.

Based on the likelihood ratio criterion, a confidence interval for 7o, can be constructed
as follows. For a specified fixed value of m, one can maximize the likelihood over the beta
parameters by applying the EM-type algorithm, as above, except that m is not reset. The
upper and lower limits of a 95% confidence interval for wo are then derived by finding
specific values that yield maximized log likelihoods which differ from the maximized
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likelihood value by 3.84/2. For the data with 90 sterile subjects added, the maxi-
mum likelihood estimate for 7o was .10, with an approximate 95% confidence interval of
(.02, .15). Similar strategies would yield confidence intervals for the other parameters.

With maximum likelihood methods, two cohorts can be compared as above, now allowing
for possibly different sterility rates, by means of a chi-squared likelihood ratio test with 3
degrees of freedom. Again, covariates can be incorporated.

If there is censoring at times less than K i.e., if couples drop out during the study, the
reweighting technique described above can be applied, but with the proportional exclusions
carried out on a cycle-by-cycle basis. Alternatively, the likelihood equations can be solved
by other means. The likelihood equations, allowing for interim dropouts, for the general
three-parameter model, together with the information matrix, are given in the Appendix.
This has been given before, for a different parametrization, but the reader is cautioned that
there are typographical errors in the published expressions (Maruani and Schwartz, 1983).

For a cross-sectional study of attempt times, the parameter m, will be overestimated, due
to length-biased sampling. If all reported attempts are included, correction for this bias is
not possible. One strategy is to restrict recruitment (i.e., analysis) to couples whose attempt
time is at most some L. Then sterile couples will be at risk of being sampled during a
known and finite total of L cycles, as compared with an average of

EX|X<L+ )Pr(X<L + 1)+ LPr(X > L)

cycles for fecund couples. The resulting distribution of 7 will be a truncated beta—geometric
(truncated at L) mixed with a uniform distribution on 1, ..., L, arising from the sterile
subpopulation. The EM algorithm can be applied here again to compute maximum
likelihood estimates for u, 6, and .

8. Discussion

The general notion underlying all of this is that apparent time effects may really just be
sorting effects within a population of heterogeneous risk. In effect, the composition of the
population changes over time, even when the individuals do not. Stated more generally,
both in continuous-time and discrete-time failure-time settings, heterogeneity of risk across
individual experimental units is intrinsically aliased with changes in risk over time. Similar
difficulties have recently been discussed by Vaupel and Yashin (1985).

Although this paper has focused on fecundability studies, similar issues arise in many
other settings where risk may be heterogeneous. For example, the risk of spontaneous
abortion varies from woman to woman. This causes a sorting effect analogous to the one
discussed here, when looking at the spontaneous abortion risk after a series of spontaneous
abortions have already occurred. One might mistakenly conclude from the observed
patterns of risk that having had a spontaneous abortion causally increases a woman’s risk
of having another one. This issue is discussed by Wilcox and Gladen (1982), who give
further references. The beta—geometric model could perhaps be applied to reproductive
history data, where the outcome is taken as the number of pregnancies before the first live
birth. The general model we propose may also be appropriate for certain reliability
applications.

The approach described in this paper can be viewed as a regression model with mixed
effects. Alternative strategies have been proposed. Stiratelli, Laird, and Ware (1984) have
described linear logistic regression with random effects allowed, under the assumption that
the random effects are normally distributed. In contexts where a proportion of the
population has a response probability of 0, this becomes unworkable since the logit of 0 is



558 Biometrics, September 1986

negative infinity and the random effect thus has a very badly behaved distribution. The
procedure we have outlined allows for heterogeneity among subjects and allows for a
subpopulation with 0 response probability.

If two groups are to be compared with no covariates, one might consider the use of
standard survival analysis techniques such as the log-rank test. This can be done, for
example, when comparing the smokers and the nonsmokers in the Baird and Wilcox data;
the chi-squared value produced is 10.8. However, the log-rank test (equivalent in the
discrete case to the Mantel-Haenszel test) is designed for a situation where the odds ratio
is constant. Under the beta—geometric model, the odds ratio is nonconstant and may even
cross 1, so that the log-rank test may perform poorly.

The procedure we have proposed is easy to apply, provided one already has access to a
program such as GLIM that does iteratively reweighted least squares for user-specified “link”
functions. Unfortunately, while easy, the EM algorithm is rather slow to converge, and this
may be a problem in some computing environments. There are, of course, many standard
maximization algorithms that could be adapted to these models; they might provide faster
convergence. Unfortunately, however, the incomplete-data likelihood is algebraically quite
cumbersome to work with, especially when there are covariates to be included.

The flatness of the likelihood in the mixing parameter suggests that the beta family is
rich enough that contamination by a subpopulation with O response is difficult to distinguish
from a slightly more variable beta. Thus, the mixing parameter is inherently difficult to
estimate. However, the estimates of the beta parameters remained quite stable in the
presence of contamination: the estimated mean conception probability (for the fecund
subpopulation) changed from .386 to .380, and the standard deviation changed from .17
to .20, when the estimation was carried out in the presence of a rather large group of sterile
couples. ‘

The discussion in this paper has presumed that two groups are to be compared, with
adjustment for time-independent covariates. Extensions to comparisons of more than two
groups can be done in the obvious way with the same inverse-u linear model. Time-
dependent covariates could also formally be included, without any modification of the
fitting macros, but the interpretation of the results becomes problematic. For example,
women who begin to smoke after two cycles of trying to get pregnant may not have the
same distribution of conception probabilities at cycle 3 as other women who are also at
cycle 3 but have been smoking all along.
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RESUME

Une mesure commode de la fécondité est le temps (nombre de cycles menstruels) nécessaire pour
arriver a la grossesse. Les couples désireux d’une grossesse sont hétérogénes du point de vue de la
probabilité de succeés par cycle. Si les probabilités de succés varient parmi les couples selon une
distribution beta, alors, les cycles jusqu’a la grossesse auront une distribution beta—géométrique. Avec
ce modéle, I'inverse du taux de conception spécifique d’un cycle est une fonction linéaire du temps.
Utilisant ces données sur les cycles jusqu’a la grossesse, les paramétres beta peuvent étre estimés
simplement par maximum de vraisemblance en utilisant un logiciel tel que GLIM. La rapport de
vraisemblance peut donc étre employé dans les études de situations qui peuvent diminuer la fécondité.
Les covariables sont incluses naturellement. On illustre le modéle en I’appliquant a des données sur
le nombre de cycles jusqu’a la grossesse chez des fumeurs et des non-fumeurs, avec ajustement de
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covariables. Pour une étude transversale, quand le biais lié a I’échantillonnage est pris en compte, le
temps d’attente pour une premiére entrevue suit une distribution beta-géométrique; par suite, les
mémes méthodes d’analyse peuvent étre appliquées quand bien méme les données disponibles sont
censurées a droite. Pour une cohorte suivie de fagon prospective, il y aura des couples dont la
fécondité est nulle, et pour de telles applications, on pourra considérer que la distribution beta est
contaminée par une distribution dégénérée en 0. Le paramétre du mélange (proportion de stériles)
peut étre estimé par application de I'algorithme EM de maximisation de I’espérance. On peut aussi
utiliser le logiciel GLIM.
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APPENDIX

Suppose that fecundabilities have a beta distribution with parameters (u, ) contaminated with a
proportion = of sterile couples. Assume that dropouts may occur. Then the data can be summarized
by n(y), the number who become pregnant at cycle y, and ¢(y), the number who drop out after y
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unsuccessful cycles. Define the following terms for convenience:
y—-1
oy = IOI [(1 = n+j0)/(1 + jO)],

A(y) = Z [/ = u+j0)],
AxAy) = X U/ = p + jo)],
As(y) = X [i/(1 + jo)],
Ayy) = Z [1/(1 = p + joY],
As(y) = Z /(1 = u + joy,
Ao(y) = X [j*/(1 = p + joY],
A(y) = X [7?/(1 + joy).

The above sums all run from 0 to y — 1 and the usual conventions that empty products equal 1 and
empty sums equal 0 are followed. Denote by T the cycle in which pregnancy occurs. Then the model
may be expressed by

gy)=Pr(T=y)=(1 —x)Q(Vu/[l —pu+ (y — 1],
Gy)=Pr(T>y) ==+ (1 - n)Q(y),

L = log-likelihood = %; {n(ylog[g(y)] + c(Mog[G(V)]}.

The likelihood equations are derived by setting the first derivatives of the log-likelihood to zero.
These derivatives are:
oL/op = T An(Y[1/p — Ay = D] = c(YN1 = M)A(NA(Y)/G(Y)},
0L/30 = T {n(Y)[A(y — 1) = A(V)] + c(W)(1 — MOV)4(y) — A(V/G(P)},
oL/or = ¥ {=n(y)/(1 — =) + c(P[1 = QVV/G(y)}.

The observed information matrix is the negative of the matrix of second derivatives of the log-
likelihood. Straightforward calculation yields:

L, = 3 (n()[1/? + 4y — D] + c(y)X1 = OG04 y) — 7A(¥P1/G(y)},
Lo =3 (=n(PAs(y — 1) + c(yX1 — ?)OWixAdi(V)AAy) — A()] = GV G(YP),
L == 3 [e(DOA(»)/G(yV],
Iy = =3 (m(P[A41(y) — A(y — D] + (W1 — M)QING(V[A47(y) — As( V)]
+ w[dxAy) — A(PP/G(¥)),
L = 3 {c(1)Q(M[A(y) — A(NV/G(y)H,
L. = 3 {n(»)/(1 = =) + (Y1 — QWF/G(y)?}.



